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Stabilization of Large Scale Structure
by Adhesive Gravitational Clustering

T. Buchert1

Theory Division, CERN, CH–1211 Geneva 23, Switzerland

Abstract. The interplay between gravitational and dispersive forces
in a multi–streamed medium leads to an effect which is exposed in the
present note as the genuine driving force of stabilization of large–scale
structure. The conception of ‘adhesive gravitational clustering’ is ad-
vanced to interlock the fairly well–understood epoch of formation of large–
scale structure and the onset of virialization into objects that are dynam-
ically in equilibrium with their large–scale structure environment. The
classical ‘adhesion model’ is opposed to a class of more general models
traced from the physical origin of adhesion in kinetic theory.

1. Previrialization and Adhesion.

‘Adhesive gravitational clustering’ touches on the basis of why structures stabi-
lize after their formation. On the one hand, analytical understanding of structure
formation is well advanced (see, e.g., the review by Sahni & Coles 1995). How-
ever, models that evolve inhomogeneities into the nonlinear regime also predict
structure decay after their formation. On the other hand, the understanding of
virialization is hosted in stellar systems theory of classically isolated bound ob-
jects. What are the equilibrium structures that could be called ‘relaxed’ while
still interacting gravitationally with their large–scale structure environment ?
The fact that the transition to ‘virialized’ systems is not immediate is mirrored
in expressions such as ‘previrialization’, invoked by Peebles and collaborators
(Davis & Peebles 1977, Peebles 1990, Lokas et al. 1996). The ‘adhesion ap-
proximation’ as invented by Gurbatov et al. (1989) takes its title from the
phenomenological observation that structures ‘stick together’ after shells of cold
matter cross; numerical simulations predict multiple shell–crossings due to drag-
ging forces that prevent the particles from escaping high–density regions. We
shall identify these forces in the framework of kinetic theory. It is here where
an important period of ‘adhesive clustering’ sets in, which eventually leads to
the type of bound objects that we observe in the Universe and that may finally
populate fundamental planes in spaces spanned by integral properties of these
objects (Fritsch & Buchert 1999).
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2. The formation of large–scale structure.

The understanding of large–scale structure formation may be centred on Zel’do-
vich’s idea: just move the particles under inertia and follow them until they cross.
For suitably scaled variables the exact solution of a force–free continuum repro-
duces the linear theory of gravitational instability in the linear limit (Zel’dovich
1970, Zel’dovich & Myshkis 1973, Shandarin & Zel’dovich 1989, Buchert 1989).

Taking Zel’dovich’s simple view at face value, gravity is not important at
all to form structures like curved sheets, filaments and clusters, their formation
is merely an effect of focussing of trajectories we are familiar with in geometrical
optics of light rays. The resulting network of caustics is unstable: just increase
the depth (advance the time) of a water basin (the Universe) on the bottom of
which (at the time of shell–crossing) you see a network of high–intensity (high–
density) structures, and you have this phenomenon. Indeed, Zel’dovich’s model
applied to generic initial data, say powerlaw spectra with slopes in the range n <
−3 at the high–frequency end, reproduces astonishingly well the density fields
predicted by N–body runs of the same initial data (Melott et al. 1995). ‘Pancake
models’, which don’t have structure on small scales in the initial conditions, fall
in this category (Buchert et al. 1994). The spectral index n = −3 distinguishes
between two different scenarios of structure formation: either structures form
starting from large scales (top–down), or they form starting hierarchically from
small scales (bottom–up); the total power in some wave number interval has
logarithmic dependence in the case n = −3 implying that structures on every
scale form at about the same instant, since all wave numbers were given similar
initial amplitudes. In the other cases n > −3, n < −3 the integrated power has
powerlaw shape; hence, n = −3 defines clearly distinct regimes.

Truncation of high–frequency information in the sense of cutting down the
amplitude of short–wavelength perturbations to the ‘critical spectrum’ n = −3
results in optimized schemes which can compete with N–body runs down to
the scales of galaxy clusters (Coles et al. 1993, Melott et al. 1994). Refining
Zel’dovich’s step is possible in the framework of the Lagrangian perturbation
theory, where it can be re–evaluated within the full gravitational context as a
first–order solution (Buchert 1989; 1996 and ref. therein). As a consequence
the performance can be improved (Melott et al. 1995); ‘optimized Lagrangian
schemes’ work even for CDM–type intial data (Weiß et al. 1996). Also, other
characteristics of the matter distribution are matching the expected (Bouchet
et al. 1995).

Figure 1 shows a comparison of N–body density fields with those predicted
by various analytical schemes (some of them will be described below): the ‘adhe-
sion approximation’ works in the right direction and shows better performance
than the Lagrangian schemes. Still, if the Lagrangian schemes are optimized,
the ‘adhesion approximation’ falls short indicating that the model is not sat-
isfactorily tailored for the gravitational multi–stream effect it was launched to
describe. The spectral index of a powerlaw spectrum was n = −1 which is an ex-
treme test of the approximations: much power on small scales even results in the
superiority of the first–order over the second–order Lagrangian approximation,
since the latter accelerates structure decay after caustics have formed.

In the following we shall encounter a broader range of possible models that
show how to consolidate and generalize the adhesion idea.
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Figure 1. Comparison of analytical approximation schemes: Dis-

played is the cross–correlation coefficient S =<
δnumδapprox

σnumσapprox
> that

compairs the density contrast fields δ of a variety of analytical schemes
(normalized to their r.m.s. values σ) and averaged over some scale
as a function of wavenumber; from top to bottom: Optimized La-
grangian approximations (second–order (Melott et al. 1995) and first–
order (Coles et al. 1993, Melott et al. 1994)), Adhesion model (Gur-
batov et al. 1989, Weinberg & Gunn 1990), Zel’dovich approximation
(Zel’dovich 1970), Second–order Lagrangian approximation (Buchert
& Ehlers 1993), Frozen–Potential approximation (Bagla & Padmanab-
han 1994, Brainerd et al. 1994), Linear theory (‘chopped’, i.e. with
adapted average, and unchopped). S measures whether mass is moved
to the right place, S = 1 means ideal congruence of both fields.
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3. Adhesion: effective dynamics of multi–stream systems.

Working towards a model that continues to be valid after shell–crossing singu-
larities develop may be grounded on multi–stream hydrodynamics of interpene-
trating streams of a cold medium. This way to go, although being logically the
most adequate one, may not have the broad range of expression that we gain by
moving to a kinetic description. The conception to be presented below, however,
is a phenomenological one. We keep the notion of a continuous (coarse–grained)
fluid element, but we consider its motion in phase space. Thus we are deal-
ing with a one–particle distribution function, or simply a phase space density,
neglecting terms that would arise by coarse–graining the N–particle distribu-
tion function. The basic system of equations therefore consists of the so–called
Vlasov–Poisson system. By averaging out the velocity information we end up
with a set of equations that describe an effective dynamics of a possibly multi–
streamed medium. (For details see: Buchert & Domı́nguez 1998). This effective
dynamics will in general entail a hierarchy of evolution equations for the velocity
moments of the phase space density. Here is what I shall call the “phenomeno-
logical closure” condition: imagine the shape of a fluid element in velocity space
that crosses a caustic in real space. The so–called velocity ellipsoid, centered
on a fluid element with a bulk velocity that originally coincides with the veloci-
ties of individual particles, will expand in a highly anisotropic fashion; as soon
as a three–stream system develops, two of the streams will head off in almost
opposite directions and the third (decaying) stream will have small velocity, so
that overall the ellipsoid starts out to be a flattened disk. Only later, when
more and more streams develop, the ellipsoid has a chance to become spherical
(“virialized”). We are going to mask this ellipsoid with a sphere for all times
and look at the effective multi–stream force that is excerted on the bulk motion
v̄ = 〈v〉 of the coarse–grained fluid element. Mathematically, we require that
the velocity dispersion tensor be idealized by an isotropic tensor:

Πij = ̺(〈vv〉 − v̄v̄) = pδij ; p = α(̺) > 0 . (1)

The last equation requires in addition that the multi–stream pressure should be
given as a function of the density only. This is the ‘poor man’s way’ to close the
hierarchy.
In cosmology we study the evolution equations for the two dynamical fields
peculiar–velocity u and peculiar–acceleration w, or the density ̺, respectively.
The corresponding effective evolution equations for these fields with the assump-
tions sketched above are (H := ȧ

a
):

∂t̺ + 3H̺ +
1

a
(̺ui),i = 0 , ∂tui +

1

a
ujui,j + Hui = wi −

α′

̺a
̺,i , (2)

subjected to the Newtonian field equations wi,i = −4πGa(̺ − ̺H), wi,j = wj,i.
Note that u is the bulk velocity of a fluid element in coordinates that are comov-
ing with the Hubble flow (the overbar is omitted for simplicity, and a comma
means spatial derivative with respect to these coordinates). Figure 2 illustrates
how this bulk flow will give away its kinetic energy into internal kinetic energy
of the fluid element; the elements acquire a “temperature” when they move into
the multi–stream region, while the amplitude of the bulk flow decays.
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Figure 2. The coarse–graining idea is exemplified for a family of
crossing trajectories from a 2D tree–code simulation: we appreciate
the oscillatory behavior of innermost trajectories that are kept back
from escaping the high–density region due to multi–stream forces;
within the multi–stream regions there are many streams (velocities)
at a given Eulerian position. Two possible situations are highlighted
for a coarse–grained volume element with oscillatory bulk velocity (left)
and smoothly decaying bulk velocity (right): the kinetic energy of the
bulk motion is transformed into internal kinetic energy of the coarse–
grained element as the element moves into the beast.
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3.1. Old Adhesion.

One of the most committed of all approaches to multi–streaming is furnished by
Burgers’ equation. An exact solution in 3D is available. Still, numerical tech-
niques await a highly resolved insight into the multi–stream regime. Instead, the
“burgerlencing” effect, being quintessential for holding fluid elements together
inside high–density peaks, is roughhewned into the phenomenological language
of ‘adhesion’. A smart way to employ Burgers’ equation on the cosmological
stage was proposed by Gurbatov et al. (loc.cit.). Below, we give their formal
arguments leading to the ‘adhesion approximation’, which we right after that
shall derive from kinetic theory following Buchert & Domı́nguez (loc.cit.).

Certainly one of the simplest ways of stating the formal structure of the
‘Zel’dovich approximation’ (Zel’dovich 1970, 1973) is to postulate a law of mo-
tion of the form

w = F (t)u . (3)

If gravity drags into the direction of the peculiar–velocity field, then the gravi-
tational field equations are not needed to close the system of equations (2): the
peculiar–velocity solves

u̇ + (H − F (t))u = 0 . (4)

If the field is appropriately scaled and a new time–variable is introduced (see
below), Zel’dovich’s approximation manifests itself as an essientially force–free
description of the continuum.

Gurbatov et al. (loc.cit.) proposed that one should add a forcing that
is directly proportional to the Laplacian of the peculiar–velocity field to this
equation which, in the scaled variables, attains the form of Burgers’ equation.
To derive the ‘adhesion approximation’ from the effective kinetic equations (2)

we just need to insert the law of motion (3) into the second of the equations (2),
which involves the multi–stream “pressure”:

u̇ + (H − F (t))u = ζF (t)∆qu ; ζ :=
α′(̺)

a2

1

4πG̺
. (5)

In the ‘adhesion approximation’ the function F (t) is determined as in Zel’dovich’s
approximation by the requirement of reproducing the linear solution of gravita-
tional instability:

F (t) = 4πG̺H
b(t)

ḃ(t)
, (6)

where b(t) is identical to the growing density contrast mode solution of the
Eulerian linear theory of gravitational instability for “dust” (i.e., it solves the

equation b̈ + 2Hḃ − 4πG̺Hb = 0).
Changing the temporal variable from t to b and defining a rescaled velocity

field ũ := u/aḃ, Equation (5) becomes the well–known key equation of the
‘adhesion approximation’ where µ is assumed constant (Gurbatov et al. loc.cit.):

dũ

db
= µ∆qũ ,

d

db
:=

∂

∂b
+ ũ · ∇q , µ :=

ζF (t)

ḃ
=

α′(̺)

a2

̺H

̺

b

ḃ2
. (7)
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3.2. The Lagrangian Linear Regime.

The ‘adhesion approximation’, as we saw above, can be derived from kinetic
routes. Although this derivation is not a contrived experimenting way of formally
getting the Laplacian forcing, we may criticize it for its limited range of validity
in the kinetic framework. Buchert & Domı́nguez (loc.cit.) have shown that the
description has to be limited to small velocity dispersion which is a necessary
condition to still follow Zel’dovich’s trajectories for the bulk flow (the law of
motion (3)). Starting out from the full system of effective kinetic equations we
may pursue a systematic way of constructing models of ‘adhesion’ by using the
Lagrangian perturbation theory. To the first order in the displacements from a
homogeneous–isotropic reference cosmology Adler & Buchert (1999) obtain for
the longitudinal part of the (Lagrangian) displacement field P(X, t):

P̈ + 2HṖ − 4πG̺HP =
Cα

a2
∆XP ; Cα := α′ = const. , Ẋ = 0 . (8)

The markedly familiar differential operator in this equation helps to construct
solutions of this Lagrangian linear equation from known solutions of the Eulerian
linear theory. The so constructed solutions may be employed as models for
adhesive gravitational clustering in the weakly nonlinear regime.

3.3. New Adhesion.

The apparent disparity between the standard ‘adhesion model’ and the La-
grangian perturbation approach can be made more transparent by reorganiz-
ing the general equations into a single equation for the gravitational peculiar–
acceleration:

ẅ + 6Hẇ + (2Ḣ + 8H2 − 4πG̺H)w = 4πG̺Hζ∆qw + Ṙ + 4HR . (9)

R represents nonlinear residuals in the equations which are touched a little
further in a paper in preparation (Buchert 1999).

Hence, we are led to suggesting the following model equation for adhesive
gravitational clustering in the nonlinear regime, neglecting the residuals:

ẅ + 6Hẇ + (2Ḣ + 8H2 − 4πG̺H)w = 4πG̺Hζ∆qw . (10)

A beautiful feature of this equation is that it embodies two limiting cases: 1.
the standard ‘adhesion approximation’ in the limit of small velocity dispersion,
and 2. the Lagrangian linear model (8) being a solution of

ẅ + 6Hẇ + (2Ḣ + 8H2 − 4πG̺H)w =
Cα

a2
∆Xw . (11)

The proposed new models will have, by construction, an improved performance
for the modeling of large–scale structure, but they will hopefully also give more
insight into the clustering properties at the stages of stabilization of large–scale
structure, previrialization and the onset to “virialized” systems. A further clue
might be inferred with regard to the possible emergence of N–soliton states
(compare Götz (1988) for a one–dimensional example).
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