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Abstract

We present an analytic calculation of electron and tau O(α3) loop effects
on the muon anomalous magnetic moment. Computation of such three-loop
diagrams with three mass scales is possible using asymptotic and eikonal ex-
pansions. An evaluation of a new type of eikonal integrals is presented in
some detail.
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1 Introduction

The new measurement of the muon anomalous magnetic moment, aµ = (gµ−2)/2, in
the experiment E821 in Brookhaven has motivated many recent theoretical studies.
In the Standard Model, aµ receives contributions from electromagnetic and weak
interactions, as well as from loop effects involving hardrons. All three types of effects
have been studied recently. QED contributions are known to the four-loop level, and
even some five-loop diagrams have been evaluated. The next largest contribution
is due to hadronic loops and is the most difficult one to evaluate. There has been
recently significant progress in both evaluation of the light-by-light diagrams [1]
and hadronic vacuum polarization effects [2]. Electroweak two-loop effects are also
known [3].

The present paper is devoted to the only 3-loop QED contribution to aµ that has
not been evaluated analytically so far: from a diagram with electron and τ lepton
loop insertions in the photon propagator, shown in Fig. 1. Because of the three
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Figure 1: Three-loop contribution to muon anomalous magnetic moment with the elec-
tron and tau loops inserted in the photon propagator.

mass scales present in this diagram, me,µ,τ , it cannot at present be evaluated in a
closed form. However, we present an approach based on asymptotic and eikonal
expansions, which takes advantage of the wide separations between those scales and
permits an evaluation with an arbitrary accuracy.

We begin with a brief summary of the present knowledge of QED contributions
to the electron and muon anomalous magnetic moments, ae,µ (for more details see
e.g. [4]).

(a) Electron. To match the present experimental precision, one needs four terms
in the expansion of ae in the fine structure constant α,

ae =
4
∑

n=1

An

(

α

π

)n

+ . . . (1)

where ellipses indicate contributions of loops containing the heavy leptons µ and τ ;
A1,2 have been known since the early years of QED [5]. An analytical evaluation
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of A3 required the efforts of many groups and took almost 40 years; it has been
completed only recently [6]. A4 is known only numerically.

The perturbative series for ae is very well behaved, and, together with the most
recent experimental values for electron and positron [7], allows one to deduce a very
precise value of the fine structure constant [8, 4],

α−1 = 137.03599959(38)(13). (2)

(b) Muon. The value of α found from electron g − 2, eq. (2), can be applied
to compute the QED contribution to the muon anomalous magnetic moment aµ.
Because of the presence of electron loops, higher-order QED contributions to aµ are
enhanced with respect to ae. At present five terms of the expansion in α are needed:

aQED
µ =

5
∑

n=1

Cn

(

α

π

)n

(3)

with

C1 = A1 = 0.5,

C2 = A2 + a1(me/mµ) + a2(mµ/mτ ) = 0.765 857 388(44),

C3 = A3 + Cγγ
3 (e) + Cγγ

3 (τ) + Cvac. pol.
3 (e) + Cvac. pol.

3 (τ) + Cvac. pol.
3 (e, τ)

= 24.050 509(2),

C4 = A4 + 127.55(41) = 126.04(41),

C5 = 930(170), (4)

where a1,2 describe contributions of two-loop diagrams with electron and tau loops,
respectively [9, 10]. We will discuss them in detail later on.

In C3 we have contributions from light-by-light scattering diagrams with e and
τ loops [11], and vacuum polarization diagrams with either e, or τ [12], or both
types of loops. An analytical evaluation of this latter contribution of mixed e − τ
diagram, Cvac. pol.

3 (e, τ), is the main purpose of this paper and will be presented
below. Numerically it can be evaluated using the kernel from [13]:

Cvac. pol.
3 (e, τ) = 0.0005276(2). (5)

For C4 one uses the difference between the muon and electron coefficients found in
[14]. For C5 only a numerical estimate of the presumably dominant contributions is
known [15].

The present estimate of the total QED contribution to aµ is [4]

aQED
µ = 116584705.6(2.9)× 10−11. (6)
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2 Two-loop diagrams with electron and tau loops

Before calculating the contribution of the three-loop diagram of Fig. 1, we would
like to discuss a method of evaluating the two-loop diagrams shown if Fig. 2 (we
discuss only the Pauli formfactor, relevant for aµ). It will serve us as an example to
illustrate the main points of our calculational techniques. Of course, full analytical

γγ
e, µ, τ

γ

µ µ

Figure 2: Two-loop contributions of lepton loops in the photon propagator.

results for these two-loop contributions are known [9, 10]. It is instructive to note
how they were obtained. First, a closed analytical formula was found, with full
functional dependence on the ratio of masses me/mµ or mµ/mτ [10]. That formula,
containing dilogarithms, was found awkward to use, because of cancellations and
difficulties in estimating the accuracy in the numerical evaluation. In [9] expansions
of the exact result in powers of small mass ratios were given. Such expansions avoid
evaluation of special functions and their accuracy can be precisely assessed.

Here we demonstrate how such expansions can be obtained without knowledge of the
exact result. We first consider the case of the τ loop insertion. In this case a well
known method of heavy mass expansion is applicable (for a review see [16]). Let us
denote the loop momenta by pτ and pµ, for the momentum flowing inside the τ loop
and for that in the virtual photon respectively. There are two regions of integration,
with characteristic scales of momenta pτ ∼ pµ ∼ mτ and pτ ∼ mτ , pµ ∼ mµ. In
the case of the first region, which we can call the hard contribution, we can safely
regard the muon mass and external momentum as small with respect to the integra-
tion momenta, and expand the integrand in these small parameters. The resulting
integral corresponds to a vacuum diagram shown in Fig. 3(a). In the second region
we cannot neglect the external muon momentum, but now, since pµ ≪ pτ , we can
expand the τ loop propagators in Taylor series in pµ, so that the integral factorizes
into a product of two one-loop diagrams, shown in Fig. 3(b). This nice factorization
of the relevant integration regions is only possible in regularization schemes, which
do not introduce additional mass scales, such as dimensional regularization.

After evaluation of these two sub-diagrams and renormalization of the electric charge
of the muon, we find a finite result. Several of the terms we calculated agree with
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mτ

mτ

⊗ mµ

(a) (b)

Figure 3: Graphic representation of characteristic momentum scales in the two-loop
diagram with a τ loop. Solid and dashed lines denote, respectively, massive and massless
propagators.

formula (12) in [9]:

a2 (l = mµ/mτ ) =
l2

45
+

l4 ln l

70
+

9

19600
l4 −

131

99225
l6 +

4l6

315
ln l

−

∞
∑

n=3

(8n3 + 28n2 − 45)l2n+2

[(n + 3)(2n + 3)(2n + 5)]2
+ 2 ln l

∞
∑

n=3

nl2n+2

(n + 3)(2n + 3)(2n + 5)
.

The other two-loop diagram that we have to consider is the electron loop insertion
in the photon propagator (Fig. 2). Here the situation is somewhat more involved,
since there are now three integration regions. Introducing the obvious notation for
the integration momenta, pe,µ, we have: (pe ∼ pµ ∼ mµ), (pe ∼ me and pµ ∼ mµ),
and (pe ∼ pµ ∼ me). The first two regions correspond to known cases of the
“large momentum expansion” [16]. They are depicted in Fig. 4(a,b). Figure 4(a)
denotes a simple Taylor expansion of the electron propagators in me, justified if both
integration momenta are large. In Fig. 4(b) we have illustrated one of the two cases,
where one of the electron lines cannot be expanded in me, but where the integration
factorizes and we have a product of one-loop diagrams. More exotic is the third
case, Fig. 4(c), where the only scale of integration is me, since all dependence on
the muon mass and external momentum factorizes. Sub-diagrams of this type have
been encountered in a different context in eikonal expansions [17, 18]. Integrals that
arise in the present case are somewhat different and we give here some details of
their evaluation.

Since now the integration momentum pµ is much smaller than the external muon
momentum p, we can expand muon propagators in p2

µ. As a result we have to
compute integrals of the form

J(a1, a2) =
1

πD

∫

dDpµdDpe

(p2
µ)a1(2pµ · p)a2(p2

e + m2
e)[(pµ + pe)2 + m2

e]
. (7)
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mµ mµ

me

me
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Figure 4: Integration regions contributing to the two-loop diagram with an electron
loop. (a): Taylor expansion in me. (b): region of soft electron loop momentum. (c):
region of both momenta soft (double line denotes muon propagator expanded in the
square of its virtual momentum).

First, we use Feynman parameters to combine the last two propagators and integrate
over pe. We get

J(a1, a2) =
1

πD/2
Γ(ǫ)x−ǫ(1 − x)−ǫ

∫

dDpµ

(p2
µ)a1(2pµ · p)a2(p2

µ + m2
x)ǫ

, (8)

with m2
x ≡ m2

e/x(1 − x). Next, using again Feynman parameters, we combine the
first and the last term in the denominator. Finally, using

1

aαbβ
=

1

B(α, β)

∫

∞

0
dλ

λβ−1

[a + bλ]α+β , (9)

and integrating over pµ, we get

J(a1, a2) =
Γ
(

a2

2

)

Γ
(

a1 + a2

2
− 2 + 2ǫ

)

Γ
(

2 − a1 −
a2

2
− ǫ

)

Γ2
(

−1 + a1 + a2

2
+ ǫ

)

2Γ(a2)Γ
(

2 − a2

2
− ǫ

)

Γ(−2 + 2a1 + a2 + 2ǫ)

×
m4−2a1−a2−4ǫ

e

ma2

µ

=
−π2Γ

(

a1 + a2

2
− 2 + 2ǫ

)

m4−2a1−a2−4ǫ
e

22a1+2a2−3+2ǫΓ
(

a2+1
2

)

Γ
(

a1 + a2−1
2

+ ǫ
)

Γ
(

2 − a2

2
− ǫ

)

sin π
(

a1 + a2

2
+ ǫ

)

ma2

µ

.

We should mention that the integrand in eq. (7) could also contain products p · pe.
It is possible to replace them by combinations of products of pµ · pe and pµ · p using
traceless products (see e.g. [17]). However, in the present case there are at most two
powers of pe in the numerator and we can use the following simple formulas:

(p · pe)
2
→

p2p2
e

D
+

[

(pµ · p)2
−

p2p2
µ

D

]

D(pe · pµ)2 − p2
ep

2
µ

(D − 1)(p2
µ)2

, p · pe →
(p · pµ)(pµ · pe)

p2
µ

.
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Adding the contributions of the three integration regions, we find, after renormal-
ization, that the terms we obtained agree with formula (11) of [9]:

a1(k = me/mµ) = −
25

36
+

π2

4
k −

1

3
ln k + (3 + 4 ln k)k2

−
5

4
π2k3

+

[

π2

3
+

44

9
−

14

3
ln k + 2 ln2 k

]

k4 +
8

15
k6 ln k −

109

225
k6

+
∞
∑

n=2

[

2(n + 3)

n(2n + 1)(2n + 3)
ln k −

8n3 + 44n2 + 48n + 9

n2(2n + 1)2(2n + 3)2

]

k2n+4.

3 Three-loop diagram with e and τ loop inser-

tions

We now proceed to the actual focus of our work, the contribution of the three-loop
diagram with e and τ loop insertions, shown in Fig. 1. So far its contribution to aµ

has been evaluated only numerically [12].

Using the techniques described above, we can easily obtain an expansion of the
Pauli part of this diagram with arbitrary accuracy. There are now three integration
momenta and we have to consider five integration regions, combinations of the con-
ditions described in the context of two-loop diagrams. Using the notation pτ,µ,e for
the integration momenta in the three loops, the regions we have to consider are:

• pτ ∼ pµ ∼ pe ∼ mτ ,

• pτ ∼ mτ ; pµ ∼ pe ∼ mµ,

• pτ ∼ mτ ; pµ ∼ mµ; pe ∼ me,

• pτ ∼ mτ ; pµ ∼ pe ∼ me,

• pτ ∼ pµ ∼ mτ ; pe ∼ me.

Calculations in each of these regions are analogous to the cases described in the
previous section. For present purposes it is more than sufficient to retain the first
three terms in the m2

µ/m
2
τ expansion and two terms in m2

e/m
2
τ . After renormalization

we find

Cvac. pol.
3 (e, τ) ≃

m2
µ

m2
τ

(

4

135
ln

mµ

me

−
1

135

)

+
m4

µ

m4
τ

(

−
229213

12348000
+

π2

630
−

37

11025
ln

mτ

mµ
−

1

105
ln

mτ

mµ
ln

mτmµ

m2
e

+
3

4900
ln

mµ

me

)
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+
m6

µ

m6
τ

(

−
1102961

75014100
+

4π2

2835
−

398

297675
ln

mτ

mµ

−
8

945
ln

mτ

mµ

ln
mτmµ

m2
e

−
524

297675
ln

mµ

me

)

+
2

15

m2
e

m2
τ

−
4π2

45

m3
e

m2
τmµ

= 0.0005276(2), (10)

in agreement with the numerical evaluation. The error in the result is due to the τ–
lepton mass uncertainty. The leading-logarithmic term of this expansion corresponds
to simply replacing α(q2 = 0) by α(m2

µ) in the two-loop diagram with a τ loop. We
have included the last term, with odd powers of me and mµ, even though it is not
relevant numerically. It illustrates typical contributions of the eikonal expansion,
the only source of terms non-analytical in masses squared.

We have checked eq. (10) by comparing it with an analytical integration, using the
kernel function given in [13]. Terms quadratic in masses mτ,µ,e are in complete
agreement. The odd powers of me have not been included in [13].

With formula (10) the complete QED contribution to aµ is now known analytically.
In this particular case this result does not noticeably improve the accuracy of the
QED prediction, since the error in (10) comes from the τ lepton mass measurement.
However, the technique presented here might facilitate other calculations. We have
seen that a combination of large momentum, heavy mass, and eikonal expansions
eliminates the need for numerical calculations and enables us to construct arbitrarily
accurate expansions without knowledge of the exact result.
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