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Abstract

The theory of the ‘proton spin’ effect proposed in our earlier papers is extended to
include the chiral SU(3) symmetry breaking and flavour mixing induced by non-vanishing
quark masses in QCD. The theoretical basis is the derivation of exact, unified Goldberger-
Treiman (GT) relations valid beyond the chiral limit. The observed suppression in the
flavour singlet axial charge a0(Q2) is explained by an anomalously small value for the
slope of the singlet current correlation function 〈0|T ∂µJ0

µ5 ∂
νJ0

ν5|0〉, a consequence of the
screening of topological charge in the QCD vacuum. Numerical predictions are obtained
by evaluating the current correlation functions using QCD spectral sum rules. The results,
a0(Q2) = 0.31± 0.02 and

∫
dx gp

1(x,Q2) = 0.141± 0.005 (at Q2 = 10 GeV2), are in good
agreement with current experimental data on the polarised proton structure function gp

1 .

CERN–TH/98–385
PM/98-37
SWAT 98/208
December, 1998



1. Introduction

The ‘proton spin’ problem, i.e. the question of why the first moment of the flavour
singlet component of the polarised proton structure function gp

1 is anomalously suppressed,
has inspired an impressive research effort, both theoretical and experimental, for over a
decade. (For recent reviews, see e.g. refs.[1,2]. As is well-known, the first moment of gp
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can be expressed in terms of the axial charges of the proton as follows:∫ 1

0

dx gp
1(x;Q2) =

1
12
CNS

1

(
αs(Q2)

) (
a3 +

1
3
a8

)
+

1
9
CS

1

(
αs(Q2)

)
a0(Q2) (1.1)

Here, CNS
1 , CS

1 are the appropriate Wilson coefficients arising from the OPE for two
electromagnetic currents, while the axial charges are defined from the forward matrix
elements

〈p, s|J3
µ5|p, s〉 =

1
2
a3sµ 〈p, s|J8

µ5|p, s〉 =
1

2
√

3
a8sµ 〈p, s|J0

µ5|p, s〉 = a0(Q2)sµ (1.2)

where Ja
µ5 (often denoted Aa

µ) are the axial currents and sµ is the proton polarisation
vector. a3 and a8 are known in terms of the F and D coefficients from beta and hyperon
decay, so that an experimental determination of the first moment of gp

1 in polarised deep
inelastic scattering (DIS) allows a determination of the singlet axial charge a0(Q2). The
‘proton spin’ problem is that it is found experimentally that a0(Q2) is strongly suppressed
relative to a8, which would be its expected value if the OZI (Zweig) rule were exact in this
channel.

DIS is normally described theoretically using the QCD parton model. In this model,
the axial charges are represented (in the AB renormalisation scheme) in terms of moments
of parton distributions as follows[3,4]:

a3 = ∆u−∆d a8 = ∆u+∆d−2∆s a0(Q2) = ∆u+∆d+∆s−nf
αs

2π
∆g(Q2) (1.3)

In the parton model, the ‘proton spin’ problem takes the following form. In the naive, or
valence quark, parton model we would expect the strange quark and gluon distributions
to vanish, i.e. ∆s = 0, ∆g(Q2) = 0. In that case, a0 = a8, the OZI prediction. Inserted
into eq.(1.1), this gives the Ellis-Jaffe sum rule[5]. However, the observed suppression
a0(Q2) < a8 can be accommodated in the full QCD parton model by invoking either
or both a non-zero polarised strange quark distribution ∆s 6= 0 or a non-zero polarised
gluon distribution ∆g(Q2) 6= 0. An interesting conjecture (in line with the insights of our
alternative approach) is that the suppression is primarily due to the gluon distribution[3],
although a quantitative prediction would still only follow if ∆g(Q2) can be independently
measured, either through a precise analysis of the Q2 dependence of gp

1 [4] or directly
through other less inclusive high energy processes such as open charm production. Notice,
however, that even in the QCD parton model picture, it is not possible to identify a0(Q2)
with spin[6]. This identification only holds for free quarks, in which case the Q2 scale
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dependence (which is related to the UA(1) axial anomaly) disappears from a0. As has
been emphasised many times[7-9,1], the so-called ‘proton spin’ problem is not a problem
of spin – rather, it is a question of understanding the dynamical origin of the OZI violation
a0(Q2) < a8.

In a series of papers[7,10-12], we have a proposed an alternative, complementary,
approach to the ‘proton spin’ problem which provides both a new physical insight into
the origin of the suppression in a0(Q2) and a quantitative prediction, which is in good
agreement with the current experimental data. In our approach (reviewed in refs.[8,1]),
the flavour singlet axial charge a0(Q2) is decomposed into the product of an RG-invariant
1PI vertex and a non-perturbative, but target independent, QCD correlation function
which we subsequently identify as the first moment of the QCD topological susceptibility
χ′(0), i.e.

a0(Q2) =
1

2mN
6

√
χ′(0) Γ̂η0NN (1.4)

where χ′(0) = d
dk2χ(k2)|k=0 and

χ(k2) = i

∫
d4x eikx〈0|T Q(x) Q(0)|0〉 (1.5)

with Q = αs

8π trGµνG̃
µν the gluon topological charge density. In the vertex, η0 denotes

the ‘OZI Goldstone boson’, i.e. the (unphysical) state which would become the Goldstone
boson for spontaneously broken UA(1) in the absence of the anomaly (OZI limit). We now
make the key assumption that the RG-invariant vertex obeys the OZI rule, viz. Γ̂η0NN =√

2 Γ̂η8NN . Then, comparing with the GT relation for a8 in the chiral limit, we obtain our
prediction:

a0(Q2)
a8

=
√

6
fπ

√
χ′(0)

∣∣∣
Q2

(1.6)

The suppression in a0(Q2) simply reflects an anomalously small value of χ′(0), which we
confirmed by an explicit calculation using QCD spectral sum rules[12]. In this picture,
the suppression is therefore a target-independent effect, i.e. a generic property of the QCD
vacuum rather than a specific property of the proton. Since a0(Q2) can be expressed, via
the axial UA(1) anomaly, as the proton matrix element of the topological charge Q, its
suppression can be understood as a screening of topological charge in the QCD vacuum.
We conclude that the fundamental dynamics underlying the violation of the Ellis-Jaffe
sum rule is not to do with quark spin, but instead is a manifestation of topological charge
screening by the QCD vacuum.

This ‘target-independence’ property may in principle be tested directly in experiment,
by studying semi-inclusive DIS in which a hadron carrying a large fraction of the target
energy is observed in the target fragmentation region. Such experiments should be possible
at, e.g. polarised HERA. The details of our proposal are described in refs.[13-15].

Although our previous analysis was restricted to the chiral limit of QCD, it was clear
from the derivation that the final result for a0(Q2) should only have a weak dependence
on the quark masses. Indeed, the cancellation of the explicit quark mass dependence in
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a0(Q2) was already pointed out in ref.[7]. However, the introduction of quark masses does
involve a significant complication in the analysis. The purpose of this paper is therefore
to present the generalisation of our theory of the ‘proton spin’ to QCD beyond the chiral
limit.

Underlying our approach to polarised DIS – the ‘CPV’ method reviewed in some detail
in ref.[1] – is the UA(1) Goldberger-Treiman (GT) relation. The initial insight that the
‘proton spin’ problem was essentially one of OZI violation and could be understood in
terms of an extension of the GT relation to the flavour singlet channel was made by one
of us in ref.[7]. The UA(1) GT relation was subsequently put on a firm field-theoretical
basis in refs.[10,11], where the connection with the slope of the topological susceptibility
was first established.

The introduction of quark masses complicates the UA(1) GT analysis in two ways.
First, the pure gluon topological susceptibility has to be combined with correlation func-
tions of pseudoscalar operators of the form φ5 =

∑
q̄γ5q arising from the extra explicit

chiral symmetry breaking terms in the divergence of the axial current. Second, since the
quark masses break flavour SU(3), the UA(1) GT relation is mixed with those for the
flavour non-singlet axial charges. In this paper, we present the unified GT relations for
the flavour singlet and non-singlet axial charges, expressing them in terms of 1PI vertices
and the first moments of the correlation functions of the divergences of the axial currents
as follows:

Ga
A =

1
2mN

Fab Γ̂ηbNN (1.7)

where a = 0, 3, 8 is the SU(3) flavour index, the axial charges are normalised as

G3
A =

1
2
a3 G8

A =
1

2
√

3
a8 G0

A(Q2) = a0(Q2) (1.8)

and
(FFT )ab = lim

k=0

d

dk2
i

∫
d4x 〈0|T ∂µJa

µ5(x) ∂
νJb

ν5(0)|0〉 (1.9)

It is important to realise that, like the singlet UA(1) GT relation, these are exact relations
in QCD field theory. They go beyond the pole-dominance approximation used in the
conventional GT relations, replacing the decay constants by current correlation functions
and the πNN or ηNN couplings by appropriate 1PI vertex functions.

In the second part of the paper, we make this analysis quantitative by calculating
the relevant current correlation functions using QCD spectral sum rules. This confirms
the stability of our earlier results[12] to the introduction of quark masses. A very care-
ful analysis is presented, with particular attention given to the inclusion of higher order
corrections in αs or m2

sτ and to the stability of the sum rules with respect to the Borel
parameter τ . We find that the size of the explicit chiral and SU(3) breaking effects is in
line with our theoretical expectations and confirms the validity of the Laplace sum rule
method for calculating correlation functions, such as the topological susceptibility, in the
flavour singlet channel.

The paper is organised as follows. In section 2, we quote the (anomalous) chiral
Ward identities which we need to derive the unified Goldberger-Treiman relations. The
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derivation itself is presented in section 3. In section 4, we relate these new GT relations
to the ‘proton spin’ sum rule and describe our expectations for the results of a spectral
sum rule calculation of the relevant current correlation functions. This is elaborated on in
section 5, where the pattern of explicit mass cancellations is exhibited in the framework of
an effective lagrangian.

In section 6, we evaluate the current correlation functions (1.9) using the QCD spectral
sum rule technique. The presence of quark masses requires a substantially more compli-
cated analysis than we had previously performed in the chiral limit to evaluate the slope
of the topological susceptibility. However, the results confirm our earlier conclusions[12].
In section 7, these numerical results are used in the GT relations and our prediction for
the ‘proton spin’ suppression is obtained. Our conclusions from this work are presented in
section 8.

Appendix A deals with some technical aspects of the derivation of the unified GT
formulae. Their relationship with conventional current algebra and PCAC methods is dis-
cussed briefly in Appendix B. The renormalisation group properties of the Green functions
and vertices involved in the GT relations are derived in Appendix C. Finally, since both
our formal methods and spectral sum rule analysis have been repeatedly criticised in the
literature by Ioffe (see e.g. refs.[16,17] and references therein), we explain in Appendix D
why these criticisms are not correct and show in detail the errors in refs.[16-20] which lead
Ioffe to his false conclusions.

2. Chiral Ward Identities

The derivation of the generalised Goldberger-Treiman relations is based on the chiral
Ward identities satisfied by the composite operator propagators and vertex functions. In
this section, we derive these in the form which will be most convenient for the applications
which follow.

For the propagators, the starting point is the Ward identity for the generating func-
tional W [V a

µ5, V
a
µ , θ, S

a
5 , S

a] of Green functions which are ‘1PI’ with respect to the desig-
nated fields (composite operators). Here, V a

µ5, V
a
µ , θ, S

a
5 , S

a are the sources for the com-
posite operators Ja

µ5, J
a
µ , Q, φ

a
5, φ

a respectively, where

Ja
µ5 = q̄γµγ5T

aq Ja
µ = q̄γµT

aq Q =
αs

8π
trGµνG̃

µν

φa
5 = q̄γ5T

aq φa = q̄T aq (2.1)

In this notation, T i = 1
2λ

i are flavour SU(nf ) generators, and we include the singlet UA(1)
generator T 0 = 1 and let the index a = 0, i. We will only need to consider fields where i
corresponds to a generator in the Cartan sub-algebra, so that a = 0, 3, 8 for nf = 3 quark
flavours. We define d-symbols by {T a, T b} = dabcT

c. Since this includes the flavour singlet
U(1) generator, they are only symmetric on the first two indices. For nf = 3, the explicit
values are d000 = d033 = d088 = 2, d330 = d880 = 1/3, d338 = d383 = −d888 = 1/

√
3. (For

further notation and description of the formalism used here, see ref.[11].)
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The chiral Ward identities are written in the functional formalism as follows:

∂µ
δW

δV a
µ5

− 2nfδa0
δW

δθ
− dadcm

d δW

δSc
5

+ dadcS
d δW

δSc
5

− dadcS
d
5

δW

δSc
= 0 (2.2)

where we have displayed both the anomalous breaking term for the UA(1) current and the
soft breaking induced by the quark masses. The quark mass matrix is written as maT a,
so that for nf = 3, mu 0 0

0 md 0
0 0 ms

 = m01 +m3T 3 +m8T 8 (2.3)

Notice that there are no variation terms for the currents themselves as we have restricted
to fields where a is a Cartan sub-algebra index. It is convenient to use a notation where a
functional derivative is denoted simply by a subscript. So, also transforming to momentum
space, we can rewrite eq.(2.2) compactly as

ikµWV a
µ5
− 2nfδa0Wθ − dadcm

dWSc
5

+ dadcS
dWSc

5
− dadcS

d
5WSc = 0 (2.4)

The Ward identities for composite operator Green functions are derived by taking
functional derivatives of this basic identity. We will need the following identities for 2-
point functions:

ikµWV a
µ5V b

ν5
− 2nfδa0WθV b

ν5
−MacWSc

5V b
ν5

= 0

ikµWV a
µ5θ − 2nfδa0Wθθ −MacWSc

5θ = 0

ikµWV a
µ5Sb

5
− 2nfδa0WθSb

5
−MacWSc

5Sb
5
− Φab = 0 (2.5)

where we have introduced the still more compact notation

Mab = dacbm
c Φab = dabc〈φc〉 (2.6)

〈φc〉 is the VEV 〈q̄T cq〉, so that for nf = 3 the condensates may be written as 〈ūu〉 0 0
0 〈d̄d〉 0
0 0 〈s̄s〉

 =
1
3
〈φ0〉1 + 2〈φ3〉T 3 + 2〈φ8〉T 8 (2.7)

Notice that with these definitions,

1
8
detM = mumdms

1
6
detΦ = 〈ūu〉 〈d̄d〉 〈s̄s〉 (2.8)

with the obvious generalisation for arbitrary nf .
Combining the individual equations in (2.5), we find the important identity:

kµkνWV a
µ5V b

ν5
−MacΦcb = WSa

D
Sb

D
(2.9)
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where Sa
D is the source for the current divergence operator Da = 2nfδa0Q+ dacdm

cφd
5. In

conventional notation,

WSa
D

Sb
D

= i

∫
dx eikx 〈0|T Da(x) Db(0)|0〉

= i

∫
dx eikx 〈0|T ∂µJa

µ5(x) ∂
νJb

ν5(0)|0〉 (2.10)

The zero-momentum Ward identities play a special role. These follow immediately
from eqs.(2.5) under the assumption that there are no massless particles (in particular,
no exact Goldstone bosons) contributing 1/k2 poles in the 2-point functions. With this
assumption, we find simply

2nfδa0Wθθ +MacWSc
5θ = 0

2nfδa0WθSb
5

+MacWSc
5Sb

5
+ Φab = 0 (2.11)

The generating functional for proper vertices, Γ, is defined from W by a partial Leg-
endre transform (Zumino transform[21]), in which the transform is made only on the fields
Q, φa

5 , φ
a and not on the currents. A number of important results on these transforms are

collected in Appendix A. The resulting proper vertices are ‘1PI’ wrt the propagators for
these composite operators only. As explained fully in ref.[11], by separating off the particle
poles in the propagators, this is the definition which gives the closest identification of these
field-theoretic vertices with physical low-energy couplings such as gπNN etc.

We therefore define the generating functional Γ[V a
µ5, V

a
µ , Q, φ

a
5, φ

a] as:

Γ[V a
µ5, V

a
µ , Q, φ

a
5, φ

a] = W [V a
µ5, V

a
µ , θ, S

a
5 , S

a]−
∫
dx

(
θQ+ Sa

5φ
a
5 + Saφa

)
(2.12)

The chiral Ward identities corresponding to eq.(2.4) are therefore:

ikµΓV a
µ5
− 2nfδa0Q− dacdm

cφd
5 + dacdφ

dΓφc
5
− dacdφ

d
5Γφc = 0 (2.13)

The Ward identities for the 2-point vertices will also be important in the derivation of the
GT relations. These follow directly from eq.(2.13):

ikµΓV a
µ5V b

ν5
+ ΦacΓφc

5V b
ν5

= 0

ikµΓV a
µ5Q − 2nfδa0 + ΦacΓφc

5Q = 0

ikµΓV a
µ5φb

5
+ ΦacΓφc

5φb
5
−Mab = 0 (2.14)

It is then straightforward to derive the following important identity, analogous to eq.(2.9):

kµkνΓV a
µ5V b

ν5
+MacΦcb = ΦacΓφc

5φd
5
Φdb (2.15)
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3. The Goldberger-Treiman Relations

We now present a unified derivation of the Goldberger-Treiman relations for the flavour
singlet and non-singlet axial charges.(1) The derivation follows the principles of refs.[10,11],
extended to include non-zero quark masses and flavour mixing. This allows us to present
all the GT relations in terms of a single, unified formula involving the 2-point correlation
functions of the divergences of the flavour singlet and non-singlet currents.

The axial charges Ga
A are defined as the form factors in the forward nucleon matrix

elements of the axial currents, viz.

〈p, s|Ja
µ5|p, s〉 = Ga

Asµ (3.1)

where pµ and sµ = ū(p, s)γµγ5u(p, s) are respectively the momentum and polarisation
vector of the nucleon.

To express this matrix element in our composite propagator-vertex formalism, we
introduce an interpolating field N and source SN for the nucleon as in refs.[10,11]. (Notice
that this is purely a formal device – there is no dynamics implicit in this manoeuvre.) The
matrix element is then just the 3-point function WV a

µ5SN SN
with the external propagators

amputated. From eq.(A.8), we can re-express this in terms of the vertex functional Γ as
follows:

〈p, s|Ja
µ5|p, s〉 = ū(p, s)

[
W−1

SN SN
WV a

µ5SN SN
W−1

SN SN

]
u(p, s)

= ū(p, s)
[
ΓV a

µ5NN + WV a
µ5θ ΓQNN + WV a

µ5Sb
5

Γφb
5NN

]
u(p, s) (3.2)

Since the propagators on the rhs vanish at zero momentum (this requires the absence of
any 1/k2 poles, which is assured by the UA(1) anomaly and quark masses), we find simply

2mNG
a
A ūγ5u = ū

[
kµΓV a

µ5NN

∣∣
k=0

]
u (3.3)

where mN is the nucleon mass. The GT relations then follow immediately from the Ward
identity (2.13) for Γ. Differentiating wrt the nucleon fields, we find

2mNG
a
A = ΦabΓ̂φb

5NN

∣∣
k=0

(3.4)

where for convenience we define iū Γφa
5NN u = Γ̂φa

5NN ūγ5u, etc.

(1) Similar generalised GT relations have been presented some time ago, with the same motivation of

explaining the ‘proton spin’ problem, by Efremov, Soffer and Törnqvist[22] using the more conventional

PCAC language.
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A non-forward version of the GT relation, which was used extensively in refs.[10-12],
can be found from eq.(3.2) by using the Ward identities (2.5) for the propagators together
with (2.13) for ΓV a

µ5NN . This allows us to write, for all k,

2mNG
a
A(k2) + k2Ga

P (k2) =−
(
2nfδa0Wθθ +MacWSc

5θ

)
Γ̂QNN

−
(
2nfδa0WθSb

5
+MacWSc

5Sb
5

)
Γ̂φb

5NN (3.5)

Ga
P (k2) is the pseudoscalar form factor in the non-forward matrix element 〈p, s|Ja

µ5|p, s〉,
and again has no 1/k2 pole for the reasons given above. This expression clearly reduces to
eq.(3.4) on using the zero-momentum Ward identities (2.11) for the propagators.

The remaining step to convert eq.(3.4) into the useful form of the GT relations is to
normalise the field φa

5 appropriately. Clearly, eq.(3.4) is independent of the normalisation.
However, with a suitable choice, the vertices can be made both RG invariant and essentially
identical to the physical Goldstone boson couplings gπNN etc. To achieve this, we define
normalised fields

ηa = Babφ
b
5 (3.6)

where B is a constant matrix(2) such that

d

dk2
Γηaηb

∣∣∣
k=0

= δab (3.7)

This condition ensures that the fields ηa have unit coupling to the Goldstone bosons. The
case of the singlet η0 is of course special, since it is only after mixing with the topological
field Q (and then flavour mixing) that it becomes the physical η′. The intricacies of this
are discussed fully in ref.[11]. Indeed, this is why it is most convenient to impose the
normalisation condition as above on the matrix of 2-point vertices Γηaηb , which is the
inverse of the pseudoscalar propagator matrix, since this most simply characterises the η0

before mixing with Q.

(2) From the Ward identity (in matrix notation)

ikµΓVµ5η + ΦBT Γηη −MB−1 = 0

and writing
ΓVµ5η = ikµf(k2)

we find
Γηη = k2(ΦBT )−1f + (ΦBT )−1MΦ(BΦ)−1

The normalisation condition (3.7) can therefore be applied while keeping B in eq.(3.6) a constant. This
determines (see Appendix B for the relation to PCAC)

f(0) = ΦBT

However, it is not possible, as in the chiral limit case[11], to impose a normalisation valid for all k, such

as Γηaηb = k2δab − (m2
η)ab, by allowing B to be a function of k2.
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The proof that the vertices ΓηaNN defined with the fields normalised according to
eq.(3.7) are RG invariant now goes through in the same way as shown in the chiral limit
in ref.[11]. In Appendix C, we summarise some of the main results for the extension to
non-zero quark masses. Ref.[11] also contains a careful description of how our formalism
is related to standard current algebra (PCAC). A simple illustration of this is included in
Appendix B.

Re-expressing eq.(3.4) in terms of the properly normalised vertices, we have

2mNG
a
A = ΦacB

T
cb Γ̂ηbNN

∣∣
k=0

(3.8)

where B is to be determined from the 2-point vertex condition

d

dk2
Γφa

5φb
5

∣∣
k=0

= BT
ac

d

dk2
Γηcηd

∣∣
k=0

Bdb = BT
acBcb (3.9)

The straightforward approach to finding Γφa
5φb

5
is to write it as one component of the

inverse of the propagator matrix WSS (with S = {θ, Sa
5}). This was the approach used in

refs.[10,11] to relate Γφ0
5φ0

5
to the topological susceptibility Wθθ. However, inverting this

matrix in the multi-flavour case is cumbersome, so here we use an alternative approach.
First, we use the Ward identities (2.14) to express Γφa

5φb
5

in terms of ΓV a
µ5V b

ν5
:

kµkνΓV a
µ5V b

ν5
= ikνΦac Γφc

5V b
ν5

= Φac Γφc
5φd

5
Φdb − MacΦcb (3.10)

Then, using the general identity (A.9) for partial Legendre transforms, we relate ΓV a
µ5V b

ν5

to the 2-current propagator WV a
µ5V b

ν5
:

ΓV a
µ5V b

ν5
= WV a

µ5V b
ν5

− WV a
µ5S W

−1
ST WT V b

ν5
(3.11)

where S and T represent {θ, Sa
5}. Combining with eqs.(2.9) and (2.15) finally yields

Φac Γφc
5φd

5
Φdb = WSa

D
Sb

D
+ kµWV a

µ5S W
−1
ST WT V b

ν5
kν (3.12)

and so, in matrix notation,

ΦBTBΦ =
d

dk2
WSDSD

∣∣
k=0

+
d

dk2

(
kµWVµ5S W

−1
ST WT Vν5kν

)∣∣
k=0

(3.13)

The argument is almost complete. ΦBT is precisely the combination we need for the
GT relations (3.8), and is related by eq.(3.13) directly to the first moment of the 2-point
correlation function (2.10) for the divergences of the currents. This generalises the relation
with the topological susceptibility found in refs.[10,11].

It remains to show that the final term in eq.(3.13) vanishes. The first and last fac-
tors are of O(k2), so this will contribute zero unless there is a 1/k2 pole in the inverse
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pseudoscalar propagator matrix W−1
ST . As already mentioned, there are no 1/k2 poles in

the propagators themselves, so all we need show is that the determinant ∆(k2) of this
propagator matrix is non-vanishing at k = 0. This follows from the formula

∆(0) = Wθθ(0) (detM)−1 detΦ (3.14)

since detM and detΦ are non-zero (eqs.(2.8)) and Wθθ is non-vanishing away from the
chiral limit. An elegant proof of eq.(3.14), based on the zero-momentum Ward identities
for WST is as follows. Define

M̂ =
(

1 0
0 M

)
W =

(
Wθθ WθSb

5
WSa

5 θ WSa
5 Sb

5

)
(3.15)

with ∆ = detW . Then,

detM ∆ = detM̂ detW

=
∣∣∣∣ Wθθ WθSb

5
MacWSc

5θ MacWSc
5Sb

5

∣∣∣∣ (3.16)

Using the zero-momentum Ward identities (2.11) and, in the case of the a = 0 row taking
a linear combination with the first (θ) row, the determinant simplifies, leaving

detM ∆ =
∣∣∣∣Wθθ WθSb

5
0 −Φab

∣∣∣∣
= Wθθ detΦ (3.17)

as required.

This completes the proof of the GT relations. To summarise, we have shown that the
flavour singlet and non-singlet axial charges are given by the single, unified relation

2mNG
a
A = Fab Γ̂ηbNN

∣∣
k=0

(3.18)

where F ≡ ΦBT is determined from

FFT =
d

dk2
WSDSD

∣∣
k=0

(3.19)

that is,

FacF
T
cb = lim

k=0

d

dk2
i

∫
dx eikx 〈0|T ∂µJa

µ5(x) ∂
νJb

ν5(0)|0〉 (3.20)

In current algebra terms, the matrix F determined from eq.(3.20) can be identified,
subject to the standard PCAC (pole dominance) approximation described in Appendix B,
with the pseudo-Goldstone boson decay constants. Under the same PCAC assumptions,
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the vertices can be identified with the low-energy meson-nucleon coupling constants, i.e.
Γ̂η3NN |k=0 = gπNN , etc. It should be emphasised, however, that the relations (3.18) and
(3.20) are exact – they are neither dependent on this interpretation nor make any PCAC
assumption or approximation.

Eq.(3.18) is therefore the natural generalisation of the U(1) GT relation proved in
refs.[10,11]. There we showed that, in the chiral limit, the singlet axial charge is given by

2mNG
0
A = 2nf

√
χ′(0) Γ̂η0NN

∣∣
k=0

(3.21)

where χ′(0) is the first moment of the topological susceptibility, viz.

χ′(0) = lim
k=0

d

dk2
i

∫
dx eikx〈0|T Q(x) Q(0)|0〉 (3.22)

The new formula extends this to include mixing with the flavour non-singlet sector, intro-
ducing a matrix structure which replaces the simple square root in eq.(3.21) and general-
ising the fields in the correlation function to the entire divergence of the current including
mass terms as well as the anomaly Q.

3.1 Flavour mixing

The remaining theoretical question related to the unified GT relation (3.18) concerns
SU(3) flavour mixing and the extent to which eq.(3.20) determines F .

In the context of PCAC or chiral perturbation theory (incorporating the 1/Nc expan-
sion to allow the inclusion of the flavour singlet η′ (see ref.[23] and references therein)),
the problem of η − η′ mixing is currently receiving renewed attention[23,24]. According
to Kaiser and Leutwyler[23], the decay constant matrix in the a = 0, 8, η − η′ sector is
required to contain 4 parameters, viz.(

f0η′ f0η

f8η′ f8η

)
=

(
f0 cosϑ0 −f0 sinϑ0

f8 sinϑ8 f8 cosϑ8

)
(3.23)

with ϑ0 6= ϑ8, in contrast to the previous conventional analysis which assumed ϑ0 = ϑ8.
Low-energy theorems[23] yield f0, f8 and sin(ϑ0 − ϑ8) easily, from the diagonal and off-
diagonal combinations

∑
P=η′,η f0P f0P ,

∑
P f8P f8P and

∑
P f0P f8P respectively, but the

remaining combination of the mixing angles is harder to identify.
Returning to our result (3.18), (3.20), we find a similar situation. Clearly the relation

(3.20) can only determine 3 parameters in Fab (in the a,b = 0,8 sector). However, in
general our analysis requires Fab to be characterised by 4 parameters, including a mixing
angle undetermined by eq.(3.20).

To see this in more detail, consider the defining equation (3.9) for B, re-expressed in
terms of F itself:

Φac
d

dk2
Γφc

5φd
5

∣∣
k=0

Φdb = Fac
d

dk2
Γηcηd

∣∣
k=0

FT
db = FacF

T
cb (3.24)

11



Since the l.h.s. is symmetric, it can be diagonalised by an orthogonal matrix R, i.e.

Φac
d

dk2
Γφc

5φd
5

∣∣
k=0

Φdb = RTD2R (3.25)

where D is diagonal. But since the r.h.s. of eq.(3.24) is unchanged if F is right-multiplied
by an independent orthogonal matrix OT , we find the general solution

F = RTDO (3.26)

A convenient parametrisation for F is therefore

F = f

(
cos θ − sin θ
sin θ cos θ

) (√
6s 0
0 1

) (
cosφ sinφ
− sinφ cosφ

)
(3.27)

The four parameters are interpreted as an overall scale f which in the PCAC approximation
and the limit of exact SU(3) becomes the pion decay constant, an OZI breaking (s 6= 1)
parameter, an angle θ characterising SU(3) breaking, and finally a mixing angle φ for the
ηa fields.

We can now check whether any special cases of this general parametrisation are con-
sistent with the RGE (C.10) for Fab. Clearly there is an exact SU(3) limit in which both θ
and φ are zero, with the RGE being satisfied by Ds = γs, Df = 0. The case θ = 0, φ 6= 0
is also RG consistent, with the same solution. (This corresponds to the case ϑ0 = ϑ8 in
the parametrisation (3.23).) However, the RGE cannot be satisfied with θ 6= 0 but φ = 0.
In the general SU(3) breaking case, therefore, Fab must depend on a mixing angle φ which
cannot be determined from the condition (3.20).

The consequence of this is that in order to use the full unified GT relation (3.18) to
make predictions that include the effect of SU(3) flavour mixing, we would need a further
(linear) condition on F beyond eq.(3.20).

Without such an extra condition, we have to neglect flavour mixing. This will produce
an uncertainty in our final predictions which we can estimate by defining an SU(3) breaking
parameter from the condensates (2.7), viz. t =

√
6〈φ8〉/〈φ0〉. (The

√
6 factors here and

in the definition of s arise because of the different normalisation of the singlet generator:
trT 0T 0 = nf whereas trT iT j = 1

2δ
ij for i, j = 1, . . .8.) Using standard values (6.16) for

the condensates, t ' 0.16. We therefore expect the SU(3) breaking angle sin θ to be of
O(t) and so omitting flavour mixing effects will produce an uncertainty of O(10− 20%) in
our final results.

However, when we evaluate the correlation functions (3.20) using QCD spectral sum
rules (section 6), it is in any case difficult to do better, since to incorporate flavour mixing
we would have to saturate the spectral functions (below tc) with the two states η′ and η,
for both the flavour diagonal and off-diagonal correlators. This would greatly complicate
the analysis without significantly improving the accuracy of the final results, so we do not
attempt it here. Consequently, our final predictions, presented in section 7, are subject to
the approximation of neglecting SU(3) flavour mixing.
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4. GT Relations and the Sum Rule for the First Moment of gp
1

As already quoted in the introduction, the first moment of the polarised proton struc-
ture function gp

1 satisfies the following sum rule:

Γp
1(Q

2) ≡
∫ 1

0

dx gp
1(x;Q2)

=
1
12
CNS

1

(
αs(Q2)

) (
a3 +

1
3
a8

)
+

1
9
CS

1

(
αs(Q2)

)
a0(Q2) (4.1)

where the aa are the axial charges occurring in the GT relations we have just derived:

G3
A =

1
2
a3 G8

A =
1

2
√

3
a8 G0

A(Q2) = a0(Q2) (4.2)

The RG scale (Q2) dependence of a0(Q2), due to the anomalous dimension of the singlet
axial current, is explicitly displayed.

This sum rule has been analysed using the composite operator propagator-vertex
approach to DIS in ref.[12]. Working in the chiral limit, it was shown that

Γp
1singlet =

1
9

1
2mN

2nf C
S
1

(
αs(Q2)

) √
χ′(0)

∣∣
Q2 Γ̂η0NN (4.3)

Following refs.[10-12], we now assume that the vertices are well approximated by their OZI
values. This is the key assumption that allows us to make a quantitative prediction for
Γp

1 on the basis of a calculation of the topological susceptibility alone. The RG invariance
of the vertices is a necessary condition for this assumption to be reasonable. Further phe-
nomenological evidence from UA(1) current algebra supporting this conjecture is discussed
in refs.[10-12].

We therefore assume that Γ̂η0NN satisfies the OZI rule, i.e. Γ̂η0NN =
√

2 Γ̂η8NN ,
so that all the OZI breaking in Γp

1singlet resides in the topological susceptibility
√
χ′(0).

Comparing with the standard OZI relation for a8, we then find that[10,11]

a0(Q2)
a8

=
√

6
fπ

√
χ′(0)

∣∣
Q2 (4.4)

This leads to the following prediction[12] for the ‘proton spin’ sum rule:

a0(Q2 = 10GeV2) = 0.35± 0.05
Γp

1(Q
2 = 10GeV2) = 0.143± 0.005 (4.5)

based on our original derivation of χ′(0) using QCD spectral sum rules[12]:√
χ′(0)

∣∣
Q2=10GeV2 = (23.2± 2.4) MeV (4.6)
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This is to be compared with the OZI prediction a0
∣∣
OZI

= a8 = 0.58± 0.03 and with
the current experimental data from the SMC collaboration[25]:

Γp
1(Q

2 = 10GeV2)
∣∣
(x>0.003)

≡
∫ 1

0.003

dx gp
1(x;Q2) = 0.141± 0.012 (4.7a)

The result for the entire first moment depends on how the extrapolation to the unmeasured
small x region x < 0.003 is performed. Using a simple Regge fit, SMC find Γp

1 = 0.142±
0.017 from which they deduce a0 = 0.34±0.17, while using a small x fit using perturbative
QCD evolution of the parton distributions[4,26] they find Γp

1 = 0.130 ± 0.017 and a0 =
0.22± 0.17 (all at Q2 = 10GeV2).

More recently, SMC have published a further analysis[27] of their data, this time
quoting a slightly lower number for the integral over the measured region of x:

Γp
1(Q

2 = 10GeV2)
∣∣
(x>0.003)

≡
∫ 1

0.003

dx gp
1(x;Q2) = 0.133± 0.009 (4.7b)

Whatever the ultimate resolution of the small x extrapolation, it is encouraging that
our prediction (4.5) is in the region now favoured by the data. We would therefore like
to test the precision of our result further. An assumption in making this prediction was
that the value of a0 is smooth in the quark masses, so that the chiral limit will be a good
approximation, correct up to the usual order of soft SU(3) breaking in ratios of decay
constants. The extended version of the GT relations derived in section 3 allow us to test
this.

Using the new form (3.18) of the GT relations, we can immediately rewrite the first
moment sum rule for gp

1 in the following compact form:

Γp
1(Q

2) ≡
∫ 1

0

dx gp
1(x,Q2) =

1
9

1
2mN

Ca
1

(
αs(Q2)

)
Ga

A

=
1
9

1
2mN

Ca
1

(
αs(Q2)

)
Fab Γ̂ηbNN (4.8)

where we have defined the numerically rescaled Wilson coefficients C0
1 = CS

1 and C3
1 =√

3C8
1 = 3

2C
NS
1 . All the vertices ΓηaNN are RG scale invariant. Apart from the running

coupling in the Wilson coefficients, the only Q2 scale dependence is contained in the singlet
components of Fab, according to the RG equation (C.10).

Following the approach of refs.[10-12], we again assume that these RG-invariant ver-
tices are all well approximated by their OZI values. Isospin invariance ensures that the
off-diagonal terms in the 2-current correlation functions involving the triplet index 3 vanish,
so we need consider only:

FFT = lim
k=0

d

dk2
i

 〈0|∂µJ0
µ5 ∂

νJ0
ν5|0〉 0 〈0|∂µJ0

µ5 ∂
νJ8

ν5|0〉
0 〈0|∂µJ3

µ5 ∂
νJ3

ν5|0〉 0
〈0|∂µJ8

µ5 ∂
νJ0

ν5|0〉 0 〈0|∂µJ8
µ5 ∂

νJ8
ν5|0〉

 (4.9)
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In section 6, we evaluate these correlators (in the 0, 8 sector) using spectral sum rules. As
explained in the last section, we restrict ourselves to single-particle saturation of the appro-
priate spectral functions, keeping only the η′ contribution in the flavour singlet correlator
and η in the octet. We do not evaluate the off-diagonal correlator, which is expected to
be small due to the approximate cancellation between the decay constants for the η′ and
η states in the spectral function.

In this approximation of consistently neglecting the SU(3) flavour mixing, and using
the OZI relation Γ̂η0NN =

√
2 Γ̂η8NN , we then identify the ‘proton spin’ suppression from

eq.(4.8) as:
a0(Q2)
a8

' 1√
6
F00

F88
(4.10)

where

F00 '
√

lim
k=0

d

dk2
i〈0|∂µJ0

µ5 ∂
νJ0

ν5|0〉 (4.11)

and

F88 '
√

lim
k=0

d

dk2
i〈0|∂µJ8

µ5 ∂
νJ8

ν5|0〉 (4.12)

5. Quark Mass Dependence

Before presenting the spectral sum rule analysis in section 6, we give here some ana-
lytic arguments based on the Ward identities which suggest that the first moment of the
correlation functions (4.9) will have only a weak dependence on the quark masses. The
basic reason for this is the identification, up to the standard PCAC pole-dominance as-
sumptions, of F with a decay constant. The explicit dependence on the pseudo-Goldstone
boson masses which is present in WSa

D
Sb

D
drops out in the first moment.

To see this another way, consider the Ward identity (2.9). Taking the first moment,
we see that the explicit dependence on the quark masses m vanishes, leaving

FFT =
d

dk2
WSa

D
Sb

D

∣∣
k=0

=
d

dk2

(
kµkνWV a

µ5V b
ν5

)∣∣∣
k=0

(5.1)

The 2-current correlation function can be parametrised as

WV a
µ5V b

ν5
= i

∫
dx eik.x 〈0|T Ja

µ5(x) J
b
ν5(0)|0〉

= Πab
T (k2)

(
gµν −

kµkν

k2

)
+ Πab

L (k2)
kµkν

k2
(5.2)

where Πab
T (k2), Πab

L (k2) are dynamical functions which are not determined by the chiral
Ward identities. (They are of course related by eqs.(2.5) to other correlation functions.)
While Πab

L (k2) will have poles corresponding to the pseudo-Goldstone bosons coupling
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to the currents, Πab
T (k2) is a pole-free function (at least for momenta below the masses

of the pseudovector resonances). Πab
T (0) is therefore not expected to have a substantial

dependence on the pseudoscalar masses. The absence of a massless pseudoscalar pole in
(5.2) requires Πab

L (0) = Πab
T (0), so clearly

d

dk2
WSa

D
Sb

D

∣∣
k=0

= Πab
L (0) = Πab

T (0) (5.3)

Although we do not expect a strong mass dependence of the correlation functions
(5.1), the individual correlators in the decomposition

d

dk2
WSa

D
Sb

D

∣∣
k=0

= 4n2
fδa0δb0

d

dk2
Wθθ

∣∣∣
k=0

+ 2nfδa0Mbd
d

dk2
WθSd

5

∣∣∣
k=0

+ 2nfδb0Mac
d

dk2
WSc

5θ

∣∣∣
k=0

+ MacMbd
d

dk2
WSc

5Sd
5

∣∣∣
k=0

(5.4)

certainly do have an explicit dependence on m. This of course cancels in the sum, although
the pattern of cancellations is very intricate.

To illustrate all this, it is instructive to write a simple effective action Γ[Q, φa
5 ] which

encodes the information in the zero-momentum chiral Ward identities, and use this to
derive explicit expressions for the correlation functions in eq.(5.4).

The zero-momentum Ward identities are

ΦacΓQφc
5

∣∣∣
k=0

= 2nfδa0 ΦacΓφc
5φb

5

∣∣∣
k=0

= Mab (5.5)

The simplest effective action compatible with these identities is

Γ[Q, φa
5 ] =

∫
dx

[
1
2a
Q2 + 2nfQΦ−1

0a φ
a
5 +

1
2
φ5Φ−1f

(
−∂2 − µ2

)
fΦ−1φ5

]
(5.6)

The final term is written in matrix notation. fab and µ2
ab are matrices, a and fab are

constant, and µ2
ab is defined by

fac µ
2
cd fdb = −MacΦcb (5.7)

µ2 is the pseudo-Goldstone boson mass matrix in the OZI limit of QCD, i.e. neglecting the
coupling to the anomaly Q.

It is important to realise that the effective action (5.6) is only an approximation,
where the simplest choice of kinetic terms for the fields φa

5 has been made. This corre-
sponds to the pole dominance approximation in standard PCAC (see Appendix B). In this
approximation, as we now show, there is strictly no m dependence in (5.1).

The second derivatives of the effective action are(
ΓQQ ΓQφb

5
Γφa

5Q Γφa
5φb

5

)
=

(
a−1 2nfΦ−1

0b

2nfΦ−1
a0 Φ−1f

(
k2 − µ2

)
fΦ−1

)
(5.8)
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The correlation functions are found by inverting this matrix. We find

Wθθ = −a ∆̃−1

WθSb
5

= 2nfa ∆−1
0d Φdb

WSa
5 θ = 2nfa Φac

(
f
(
k2 − µ2

)
f
)−1

c0
∆̃−1

WSa
5 Sb

5
= −Φac ∆−1

cd Φdb (5.9)

where
∆̃ = 1− 4n2

fa
(
f
(
k2 − µ2

)
f
)−1

00
(5.10)

and
∆ = f

(
k2 − µ2

)
f − 4n2

fa Î (5.11)

with Î = δa0δb0. Notice the highly non-trivial µ2 dependence in all these correlators.(3)
A simple calculation now confirms that (recalling Da = 2nfδa0Q +Macφ

c
5) the zero-

momentum Ward identity
WSa

D
Sb

D

∣∣∣
k=0

= −MacΦcb (5.12)

is satisfied. A slightly trickier calculation also shows that the M and µ2 terms cancel
completely in the first moment and we find

d

dk2
WSa

D
Sb

D

∣∣∣
k=0

= facfcb (5.13)

In fact, this is required by the key identity (3.9), which shows

d

dk2
WSa

D
Sb

D

∣∣∣
k=0

= Φac
d

dk2
Γφc

5φd
5

∣∣∣
k=0

Φdb (5.14)

The first moment of the correlation function WSa
D

Sb
D

is therefore given by the decay con-
stants in the simple effective action (5.6).

Notice however that fab is only constrained to be a constant by the pole-dominance
approximation, not by the chiral Ward identities. In general, the fab appearing in eq.(5.8)
could be functions of momentum, i.e. fab(k2). In that case, (5.13) is replaced by

d

dk2
WSa

D
Sb

D

∣∣∣
k=0

=
d

dk2

(
f
(
k2 − µ2

)
f
)∣∣∣

k=0

= f2(0)− f(0)µ2f ′(0)− f ′(0)µ2f(0) (5.15)

We see therefore that d
dk2WSa

D
Sb

D

∣∣∣
k=0

can have a dependence on the quark masses, but

only proportional to the derivative f ′(0). If, as is consistent with the success of PCAC,

(3) The expressions (5.9) are (in a different notation) identical to those derived in ref.[28] from an effective
action or diagrammatic resummation including effects beyond leading order in the 1/Nc expansion.
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the pole-free dynamical function f(k2) is slowly-varying in the small-momentum region,
then this dependence is relatively weak.

The conclusion of all this is that FFT = d
dk2WSa

D
Sb

D

∣∣∣
k=0

has only a weak residual quark
mass dependence proportional to the derivative of a slowly varying dynamical function.
The strong, explicit dependence on the quark masses cancels amongst the four individual
correlation functions in eq.(5.4).

The same pattern of cancellations is observed if we now write spectral sum rules for
d

dk2WSa
D

Sb
D

∣∣∣
k=0

using simply the pole-dominance approximation for the propagators given

in eq.(5.9). At first sight, we might therefore expect this pattern to be reproduced in the
full QCD spectral sum rules described in the next section. In fact that is not so. Of
course the sum rules go beyond the pole-dominance approximation, but in addition, for
Green functions such as those needed here, which satisfy dispersion relations requiring
subtractions, even the sign of the corrections to pole-dominance is not simply determined
on general grounds. Nevertheless, as we shall see, the full spectral sum rules do confirm
the picture outlined here by showing numerically the relative insensitivity of d

dk2WSa
D

Sb
D

to the strange quark mass.
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6. QCD Spectral Sum Rules and Current Correlation Functions

First, we derive the QCD spectral sum rules (for a review, see e.g. ref.[29]) for the
flavour-singlet current correlation function

ψ5(k2) =
( 1

2nf

)2

i

∫
d4x eikx〈0|T ∂µJ0

µ5(x) ∂
νJ0

ν5(0) |0〉 (6.1)

Recall the anomalous current conservation equation (c.f. eq.(2.2)) is

∂µJ0
µ5 = D0 =

∑
q=u,d,s

2mq q̄γ5q + 2nfQ (6.2)

From its analyticity properties and asymptotic behaviour, the correlator obeys the
subtracted dispersion relations

1
k2

[
ψ5(k2)− ψ5(0)

]
=

∫ ∞

0

dt

t

1
(t− k2 − iε)

1
π

Imψ5(t) (6.3)

and
1
k4

[
ψ5(k2)− ψ5(0)− k2ψ′5(0)

]
=

∫ ∞

0

dt

t2
1

(t− k2 − iε)
1
π

Imψ5(t) (6.4)

From the leading large K2 ≡ −k2 > 0 behaviour of the correlator, which is K4 log(K2/µ2),
one can deduce that the corresponding derivatives

F =
d2

(dK2)2
( ψ5

K2

)
G = − d

dK2

( ψ5

K4

)
(6.5)

are superconvergent and thus obey the homogeneous RGE:[
− ∂

∂t
+ βαs

∂

∂αs
−

∑
i

(1 + γm)xi
∂

∂xi
− 2γ

]
(F ;G)(t, αs, xi) = 0 (6.6)

Here, xi ≡ mi/µ is the ratio of the renormalised quark mass with the MS-scheme sub-
traction scale µ, and t ≡ L/2 where

L ≡ log(K2/µ2) (6.7)

β, γ and γm are respectively the QCD β-function, the anomalous dimension for J0
µ5 and

the mass anomalous dimension. The anomalous dimension γ is O(α2
s), viz.

γ(αs) = −
(αs

π

)2

(6.8)

and does not contribute at the order we consider here. The coefficients of β and γm are

β(αs) =
∑
i=1

βi

(αs

π

)i

γm(αs) =
∑
i=1

γi

(αs

π

)i

(6.9)
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where, for three flavours[29],

β1 = −9/2 β2 = −8
γ1 = 2 γ2 = 91/12 (6.10)

The expression for the running coupling to two-loop accuracy can be parametrised
as[29]:

as(µ) ≡ ᾱs(µ)
π

= a(0)
s

[
1− a(0)

s

β2

β1
log log

µ2

Λ2
+O(a2

s)
]

(6.11)

where
a(0)

s ≡ 1
−β1 log(µ/Λ)

(6.12)

and βi are the coefficients of the β function given above. We shall use, for three flavours,

Λ = (375± 75) MeV (6.13)

from τ decay [30] and LEP[31] data.
The expression for the running quark mass in terms of the invariant mass m̂i to

two-loop accuracy is (4)[32,29]:

m̄i(µ) = m̂i

(
−β1as(µ)

)−γ1/β1
[
1 +

β2

β1

(γ1

β1
− γ2

β2

)
as(µ) +O(a2

s)
]

(6.14)

where γi are the coefficients of the quark-mass anomalous dimension given above. In this
analysis, we shall retain only the strange quark mass and neglect mu and md. We use

m̄s(1 GeV) ' (197± 29) MeV (6.15)

from the e+e− → hadrons[33] and τ decay[34] data, and the correlated values of the
invariant mass m̂s and Λ. We shall also use[29]:

〈s̄s〉 ' (0.6 ∼ 0.8)〈ūu〉 〈ūu〉 = −(0.238 GeV)3 (6.16)

Now, applying the inverse Laplace operator[35]

L ≡ lim
K2,n→∞; n/K2≡τ

(−1)n (K2)n

(n− 1)!
∂n

(∂K2)n
(6.17)

to the dispersion relations (6.3) and (6.4) gives the sum rules (5)

τ−3L(F) + ψ5(0) =
∫ ∞

0

dt

t
e−tτ 1

π
Imψ5(t) (6.18)

τ−2L(G)− ψ5(0)τ + ψ′5(0) =
∫ ∞

0

dt

t2
e−tτ 1

π
Imψ5(t) (6.19)

(4) The truncation of the series at this order is necessary for self-consistency as the quark-quark correlator

will be used to O(αs).
(5) The unsubtracted sum rule, which is independent of ψ5(0) and ψ′5(0), is more sensitive to the higher

meson states, and thus is more appropriate for studying gluonium parameters[36].
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We use the usual duality ansatz for parametrising the spectral function:

1
π

Imψ5(t) ' 2m4
η′f2

η′δ
(
t−m2

η′
)

+ θ(t− tc) “QCD continuum” (6.20)

where fη′ is the RG non-invariant η′ ‘decay constant’ (see refs.[11,37]) normalised as

〈0 |∂µJ
(0)
µ5 | η′〉 = 2nf

√
2 fη′m2

η′ (6.21)

Then, after transferring the QCD continuum contribution to the lhs of eqs.(6.18) and
(6.19), we obtain the sum rule:

ψ′5(0) = τ−2
[
−L(Gc) +

1
τm2

η′
L(Fc)

]
+ ψ5(0)τ

[
1 +

1
τm2

η′

]
(6.22)

where the index c in Fc and Gc indicates that the QCD continuum effect has been trans-
ferred into the QCD expression of the correlators(6).

Analogously to F and G, their Laplace transforms also obey an homogeneous RGE
[38], where the resummation of the log-terms can be done by subtracting at τ = 1/µ2 and
introducing the running coupling and masses.

At this point, it is convenient to decompose the full correlation function (6.1) as follows

ψ5(k2) ≡ ψgg(k2) + 2
(ms

nf

)
ψqg(k2) +

(ms

nf

)2

ψqq(k2) (6.23)

where

ψgg(k2) ≡ χ(k2) ≡ i

∫
d4x eikx〈0|T Q(x) Q(0)|0〉

ψqg(k2) ≡ i

∫
d4x eikx〈0|T Q(x) s̄γ5s(0) |0〉

ψqq(k2) ≡ i

∫
d4x eikx〈0|T s̄γ5s(x) s̄γ5s(0) |0〉 (6.24)

Here, we have used the expression (6.2) for the divergence of the current and neglected the
u and d quark masses.

For the next stage in developing the sum rules, we need the perturbative QCD ex-
pressions for these correlators. These have been calculated in the literature. First, the
perturbative QCD expression for the gluon-gluon correlator ψgg(k2) has been reported in
[12] and reads:

ψgg(k2) = ψPT
gg + ψNP

gg , (6.25)

where

ψPT
gg = −

(αs

8π

)2 2
π2
k4L

[
1 +

(αs

π

)(1
2
β1L+

83
4

+ ...+ 6
(
3m2

s +
π

αs
λ2

) 1
k2

)]
ψNP

gg = −
( αs

16π2

)[(
1 +

1
2
β1

(αs

π

)
L

)
〈αsG

2〉+
2
K2

αs〈gG3〉
]

(6.26)

(6) In the following, we shall omit this index for convenience of notation.
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The new corrected coefficient of the perturbative O(α3
s) term comes from the erratum

in [39]. Notice that we have computed the ms-dependent contribution of O(α3
s) coming

from the 2-loop Feynman diagram with a quark loop inserted on one gluon propagator.
This is a new calculation that has not previously been published in the literature.(7)

We have also included the correction due to a tachyonic gluon mass λ, where[40]:

λ2 ' −(0.43± 0.09) GeV2 (6.27)

in order to take into account the summation of the perturbative series (as a phenomeno-
logical alternative to renormalons). A full discussion of the motivation for including this
term and its phenomenology is given in ref.[40].

The non-perturbative contributions come from [41] and [42]. Throughout the analysis,
we shall use the values of the gluon condensates [43]:

〈αsG
2〉 = (0.07± 0.01) GeV4 (6.28)

and [41]
〈g3G3〉 = (1.5± 0.5) GeV2〈αsG

2〉 (6.29)

A similar value of 〈αsG
2〉 has been obtained recently from lattice calculations [44].

The QCD expression for the quark-gluon correlator ψqg(k2) has been evaluated in
[45]. In the MS-scheme, it reads:

ψqg(k2) = ψPT
qg + ψNP

qg , (6.30)

where

ψPT
qg =

(αs

π

)2

ms
3

16π2
k2L

[
L− 2

3

(11
4
− 3γE

)]
ψNP

qg = −
(αs

π

)2

〈s̄s〉L
2

+
(αs

π

)ms

8π
〈αsG

2〉 L
k2

+
(αs

π

) 1
2k2

〈gs̄σµν λa

2
Ga

µνs〉 (6.31)

and γE = 0.5772 . . . is the Euler constant.
Finally, the QCD quark-quark correlator ψqq(k2) is known to order O(α3

s) for the per-
turbative term [46]. Including the condensates of dimension 6 [35,29], it can be expressed
as:

ψqq(K2 ≡ −k2) = K2
3∑

d=0

ψ2d(K2)
K2d

(6.32)

In the MS-scheme, the perturbative expression of the renormalised two-point function can
be written as:

ψ0(K2) =
3

8π2

∑
i=0

(αs

π

)i
i+1∑
j=0

cijL
j (6.33)

(7) We thank Alexei Pivoravov for checking this result.
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where cij are constant terms from the evaluation of the QCD Feynman diagrams. To
O(α2

s), they read [47,45]:

c00 = −2
c10 = −131/12

c20 =
1
6

[
−17645/24 + (353− 8nf )ζ(3) + (511/18)nf + (3/4)ζ(4)− 50ζ(5)

]
c01 = 1
c11 = 17/3

c12 = −1
2
γ1c01

c21 = 10801/144− (39/2)ζ(3)− nf

[
65/24− (2/3)ζ(3)

]
c22 = −1

4

[
c11(−β1 + 2γ1) + 2γ2c01

]
c23 =

1
12
γ1(−β1 + 2γ1)c01 (6.34)

where ζ(n) are the Riemann zeta functions with

ζ(2) =
π2

6
ζ(3) = 1.202 . . . (6.35)

Given the approximations and accuracy to which we are working, we only keep the following
chiral symmetry breaking and non-perturbative condensate contributions:

ψ2 =
3

8π2
m2

s

[
2L+

4
3

(αs

π

)(
−3L2 + 2L− 3 + 6ζ(3)

)]
ψ4 =

3
8π2

m4
s

(
3− 2L

)
−ms〈s̄s〉+

1
8π
〈αsG

2〉

ψ6 = −ms〈gs̄σµν λa

2
Ga

µνs〉+
112
27

πραs〈s̄s〉2 (6.36)

The mixed condensate can be parametrised as:

〈gs̄σµν λa

2
Ga

µνs〉 = M2
0 〈s̄s〉 (6.37)

where the value of M2
0 = (0.8±0.1) GeV2 comes from the baryon [48,49] and B∗-B [50] sum

rules and ρ = 2 ∼ 3 [43,51] indicates the deviation from the vacuum saturation estimate
of the four-quark operators.

To complete the sum rules, we need the Laplace tranforms of F and G. These can
be obtained from the renormalised QCD expressions above with the help of the generic
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formulae:

L
[

1
K2n

]
=

τn

Γ(n)

L
[
L

K2n

]
=

τn

Γ(n)

[
Lτ + ψ(n)

]
L

[
L2

K2n

]
=

τn

γ(n)

[
L2

τ + 2ψ(n)Lτ + ψ2(n)− ψ′(n)
]

L
[
L3

K2n

]
=

τn

Γ(n)

[
L3

τ + 3ψ(n)L2
τ + 3

(
ψ2(n)− ψ′(n)

)
Lτ + ψ3(n)− 3ψ(n)ψ′(n) + ψ

′′
(n)

]
(6.38)

where

Lτ ≡ − log τµ2

ψ(1) = −γE

ψ′(1) = ζ(2)
ψ′′(1) = −2ζ(3)

ψ(n) =
n−1∑
j=1

1
j
− γE

ψ(k)(n) = (−1)kk!
[n−1∑

j=1

1
jk+1

− ζ(k + 1)
]

for k ≥ 1 (6.39)

It is then convenient to write the Laplace transforms in the sum rule (6.22) in the notation

L(F ;G) = L(Fgg;Ggg) + 2
(m̄s

nf

)
L(Fqg;Gqg) +

(m̄s

nf

)2

L(Fqq;Gqq) (6.40)

where the indices gg, qg and qq correspond respectively to the gluon-gluon, quark-gluon
and quark-quark correlators in eq.(6.24).

6.1 The sum rule for χ′(0) in the chiral limit

In the chiral limit, ψ′5(0) reduces to the purely gluonic correlator χ′(0) evaluated for
zero quark mass. This estimate has already been done in our earlier paper [NSV2]. In this
case, the chiral Ward identities require ψ5(0) = 0. The Laplace transforms of the gluonic
correlator read [12]:

L(Fgg) =
( ᾱs

8π

)2 2
π2
τ
(
1− e−tcτ (1 + tcτ)

)[
1 +

( ᾱs

4π

)[
83 + 4β1(1− γE) + 24(3m2

s +
π

ᾱs
λ2)τ

]]
+

( ᾱs

8π

)
τ3

[
1
2π
〈αsG

2〉+
( ᾱs

π

)
τ〈gG3〉

]
(6.41)
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and

L(Ggg) =
( ᾱs

8π

)2 2
π2
τ
(
1− e−tcτ

)[
1 +

( ᾱs

4π

)[
83− 4β1γE − 24γE(3m2

s +
π

ᾱs
λ2)τ

]]
− τ3

( ᾱs

8π

)[
1
2π
〈αsG

2〉+
( ᾱs

2π

)
τ〈gG3〉

]
(6.42)

Substituting into the Laplace sum rule (6.22), we find the result shown in Fig. 1. This
gives a plot of

√
χ′(0) versus τ for the optimal value of tc = 6 GeV2. We observe good

stability in the range of τ from 0.2 to 0.5 GeV−2. At the stability points, we find√
ψ′5(0)

∣∣
ms=0

≡
√
χ′(0) = (26.4± 4.1) MeV (6.43)

The central value is a little higher than the Laplace sum rule value of (22.3 ± 4.8) MeV
obtained in ref.[12] due to the change[39] in the O(α3

s) perturbative coefficient in eq.(6.26).
The different sources of errors are summarised in Table 1.

Since the validity of the spectral sum rules for calculating χ′(0) has been criticised in
the literature by Ioffe[16,17] (see refs.[16-20] and our detailed rebuttal in Appendix D), we
should emphasise some features of this derivation.

First, one should notice that the optimization of the sum rule is obtained at the scale
τ−1 = (2− 5) GeV2, which is relatively high compared to the scale of ordinary mesons of
the order of m2

ρ ' 0.6 GeV2. This result is in agreement with the expectation [41,40] that
the scale of the U(1) channel (gluonium) is relatively high compared with the flavour non-
singlet (meson) scale. At the optimisation scale we therefore expect (and find) that higher
dimension condensates (including ‘instanton’ effects[18,52]) are strongly suppressed. This
is contrary to the claims in ref.[19], where τ−1 is taken at the too low value of 1 GeV2.

Second, the apparently large perturbative radiative corrections in the expressions for
the two-point correlators tend to cancel in the sum rule (6.22), explaining the almost
equal value of χ′(0) obtained at leading order and the one including the perturbative αs

corrections. This is reassuring in view of the unknown higher order radiative corrections.
In order to study the convergence of the perturbative series, we have estimated the α2

s

corrections à la BNP [30] assuming that the coefficient of αs grows geometrically, which,
numerically, is about 430. This effect remains a small correction to the lowest order
estimate.

We have also studied the effect of a 1/k2 correction due to the summation of the
perturbative series, which we have parametrised here (see ref.[40]) through a phenomeno-
logical tachyonic gluon mass λ2. We see that the presence of this term tends to shift the
optimisation scale to smaller τ values, but affects only slightly the value of χ′(0).

The decay constant fη′ defined in eq.(6.21) can be estimated in the same way using
just the first (once-subtracted) sum rule in eq.(6.18). We find the result (see Fig. 2)

fη′ = (24.4± 3.6) MeV (6.44)

where the different sources of error are again given in Table 1.
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One can also derive a Finite Energy Sum Rule (FESR) for χ′(0). This can simply
be found by taking the small τ limit of the Laplace transform sum rule. Including the
radiative corrections, and neglecting the small λ2 corrections, we obtain [12]

χ′(0) '
∫ tc

0

dt

t2
1
π

Imψ5(t)−
( ᾱs

8π

)2 2
π2
tc

[
1 +

( ᾱs

4π

)(
83− 4β1

)]
(6.45)

which confirms the consistency of the set of values of the parameters χ′(0), fη′ and tc
obtained from the Laplace sum rules.

6.2 The sum rule for ψ′5(0) with massive quarks

In the case of massive quarks, ψ5(0) is non-zero. However, its value is known from
the exact chiral Ward identities (2.9) or (2.11):

ψ5(0) = − 4
(2nf )2

ms〈s̄s〉 (6.46)

where we again set mu = md = 0. As before, we then have two unknown physical
quantities, viz. Imψ5(t) and ψ′5(0), to be determined from the two subtracted sum rules
(6.18) and (6.19). (The unsubtracted sum rule[29], independent of ψ5(0), is more sensitive
to the higher meson and gluonium mass than the subtracted sum rules, but is in any case
not needed in this analysis.)

We now need the Laplace transforms of the quark-gluon and quark-quark correlators
(see eqs.(6.31) and (6.32)). First, for the quark-gluon correlator, we have

L(Fqg) = τ2

[( ᾱs

π

)2 3ms

16π2

(11
6

)
+ γE

τ

2

( ᾱs

π

)2

〈s̄s〉

+
( ᾱs

π

)ms

8π
〈αsG

2〉(1− γE)τ2

](
1− e−tcτ

)
+

( ᾱs

π

)τ2

2
M2

0 〈s̄s〉 (6.47)

and

L(Gqg) = τ2

[( ᾱs

π

)2 3ms

16π2

(11
6
− 17

3
γE + 3γ2

E + ζ(2)
)

+ (1− γE)
τ

2

( ᾱs

π

)2

〈s̄s〉

+
( ᾱs

π

)ms

8π
〈αsG

2〉
(
γE −

3
2

)τ2

2

](
1− e−tcτ

)
−

( ᾱs

π

)τ2

4
M2

0 〈s̄s〉 (6.48)

The Laplace transform of the perturbative part of the quark-quark correlator including
the O(αs) corrections has a non-trivial analytic expression in terms of the Riemann ζ
functions. It is more convenient to express it in a numerical form:

L(FPT
qq ) =

3
8π2

τ2

[
1 +

(17
3

+ 2γE

)( ᾱs

π

)
+O(α2

s)
](

1− e−tcτ
)

L(GPT
qq ) = − 3

8π2
τ2

[
2 + γE + 13.298

( ᾱs

π

)
+O(α2

s)
](

1− e−tcτ
)

(6.49)
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The Laplace transforms of the m2
s and λ2 corrections are

L(F (2)
qq ) =

3
8π2

τ3

[
m̄2

s

[
2γE − 12.868

( ᾱs

π

)]
− 4γE

( ᾱs

π

)
λ2

]
L(G(2)

qq ) =
3

8π2
τ3

[
m̄2

s

[
2(1− γE) + 12.152

( ᾱs

π

)]
+ 4(γE − 1)

( ᾱs

π

)
λ2

]
(6.50)

and the Laplace transforms of its non-perturbative part are

L(FNP
qq ) = − τ4

[
3

8π2
m̄4

s(1 + 2γE) +
( 1

8π
〈αsG

2〉 −ms〈s̄s〉
)

+
τ

2

[
−M2

0ms〈s̄s〉+
112
27

πραs〈s̄s〉2
]]

L(GNP
qq ) = τ4

[
3

8π2
m̄4

sγE +
1
2

( 1
8π
〈αsG

2〉 −ms〈s̄s〉
)

− τ

6

[
−M2

0ms〈s̄s〉+
112
27

πραs〈s̄s〉2
]]

(6.51)

Finally, collecting all these expressions in the combination (6.40), we deduce the
Laplace sum rule for the complete correlation function ψ′5(0) with ms 6= 0. Our result
is shown in Fig. 1. We find √

ψ′5(0) = (33.5± 3.9) MeV (6.52)

for the range of stability in τ = (0.2 − 0.4) GeV−2. The result obtained with λ2 = 0 is
very similar, though the stability in τ occurs at a slightly larger value of τ ∼ 0.6 GeV−2.

Similarly, we find the value for the decay constant fη′ for non-zero strange quark mass
(see Fig. 2):

fη′ = (27.4± 3.7) MeV (6.53)

Comparing these results with those obtained above in the chiral limit, we find that
the effect of the SU(3) breaking quark mass is to increase the values of fη′ and

√
ψ′5(0) by

approx. 10% and 20% respectively. This is a reasonable conclusion. The SU(3) breaking
effects are not negligible, but they are of the order expected in relatively smooth quantities
such as decay constants which, as explained in section 5, are expected to be only weakly
dependent on the quark masses.

Certainly we find no evidence of the huge SU(3) breakings advertised in ref.[19], which
were taken as an indication of the failure of the spectral sum rule method in the flavour
singlet channel. The main reason for our different conclusion is that the τ stability region
in our calculation is found to be much lower than that used in ref.[19], and so the SU(3)
breaking terms of O(m2

sτ) are much smaller implying a much better convergence of the
corresponding OPE. A more detailed comparision of our work with ref.[19] is given in
appendix D.
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6.3 Flavour non-singlet correlation functions

For the full unified Goldberger-Treiman relations, we also need the corresponding
results for the octet current. These results are immediately obtained from the formulae
presented above, with the obvious changes of mη for mη′ etc. In the derivation, we find it
convenient to use the normalisations:

〈0|∂µJ8
µ5|η〉 =

2nf√
3

√
2 f̃ηm

2
η, (6.54)

ψ88
5 (k2) =

3
(2nf )2

i

∫
d4x eik.x 〈0|T D8(x) D8(0)|0〉 (6.55)

and:

ψ08
5 (k2) =

√
3

2nf
i

∫
d4x eik.x 〈0|T D0(x) D8(0)|0〉 (6.56)

where Da is normalised as in eq.(2.10). With these normalisation factors, the quark corre-
lator ψss occurs with the same coefficient in the sum rules for ψ5, ψ88

5 and ψ08
5 . The octet

decay constant is related to the conventionally normalised fη by

fη = 2
√

6 f̃η (6.57)

so that fη = fπ = 93.3 MeV for exact SU(3). We find:√
ψ′885 (0) = (43.8± 5.0) MeV (6.58)

and
f̃η = (30.0± 3.4) MeV (6.59)

which corresponds to
fη = (147± 17) MeV (6.60)

The sources of the errors are again tabulated in Table 1.
In order to quantify the systematic errors of the approach, we have re-estimated the

value of fπ using the same inputs, approximations and methods (for different estimates
of fπ from sum rules, see e.g. [29]) as used above for fη, by using obvious changes of the
parameters (quark masses, meson mass, continuum threshold). In this way, one obtains:

fπ = (107± 12) MeV (6.61)

Taking into account the slight deviation of the central value from the experimental number,
we can consider as a final result:

fη/fπ = 1.37± 0.16 (6.62)
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where we expect that the error quoted here has been over-estimated. This ratio is in line
with our expectations, since phenomenologically fK ' 1.2fπ, and we would expect SU(3)
breaking to be stronger for the η than the K [23,24].

As a by-product, we have checked that a systematic rescaling of the value of the
decay constants fη and fη′ will affect similarly the value of the slope of both the non-
singlet ψ′885 (0) and singlet ψ′5(0) correlators, such that the ratios of correlators and decay
constants which we use are not affected by this change.

Together with good tc and τ stability, these results therefore confirm the general
reliability of the spectral sum rules in this channel.

∆O[MeV] tc = 6 ± 2 Λ m̄s τ = 0.3 ± 0.1 〈αsG2〉 Total

fη′ |ms=0 2.5 2.3 – 0.9 0.8 3.6√
χ′(0) 3.3 2.2 – 0.1 0.8 4.1

fη′ 2.7 2 1.3 0.5 0.8 3.7√
ψ′5(0) 2.1 1.9 2.6 – 0.8 3.9

f̃η 0.9 1.3 2.9 – 0.8 3.4√
ψ′885 (0) 1.3 2 4.3 0.3 0.8 5.0

fη′/f̃η 0.030 0.025 0.045 – – 0.060√
ψ′

5(0)√
ψ′88

5 (0)
0.022 0.008 0.015 – – 0.028

Table 1: Error estimates in MeV for the different observables.

The sources of errors are in [GeV]d where d is the corresponding dimension.

As already mentioned in sections 3 and 4, the calculation of the off-diagonal correlator
ψ′085 is much more delicate, since the contributions of both the η and η′ to the spectral
function must be taken into account. These tend to cancel because of the relative signs of
the decay constants after flavour mixing, and the sum rule prediction for ψ′085 should then
be relatively small. This is confirmed by preliminary estimates. However, a complete cal-
culation including the effects of flavour mixing for both the off-diagonal ψ′085 and diagonal
ψ′5 and ψ′885 correlators requires significant further analysis and is beyond the scope of the
present work.

We conclude that the QCD spectral sum rule method is indeed giving reliable results
for the decay constants and susceptibilities in both the flavour singlet and non-singlet
channels. Although the pattern of cancellations of quark mass effects observed in the
effective lagrangian, or pole dominance, analysis in section 5 is not manifest in the more
precise sum rule method, the essential observation that the slope at k = 0 of the correlation
functions WSa

D
Sb

D
is relatively insensitive to the quark masses is confirmed by the numerical

results found here.
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7. Quantitative Analysis of the Unified GT Relation

In this section, we discuss the implications of these numerical results for the unified
Goldberger-Treiman relations and the ‘proton spin’ suppression.

Collecting the results of the previous section and re-converting to the normalisations
in sections 2-5, we have found

(
FFT

)
ab

= lim
k=0

d

dk2
WSa

D
Sb

D
=

(
(201 ± 23)2

(152 ± 17)2

)
MeV2 (7.1)

in the a, b = 0, 8 sector, within an approximation where we have kept only the η′, or η, in
the spectral functions for the correlators 〈0|T D0 D0|0〉, or 〈0|T D8 D8|0〉, respectively.

Within this approximation, neglecting SU(3) flavour mixing in the unified GT formula,
the generalisation beyond the chiral limit of the suppression formula for the singlet axial
charge is (see eq.(4.10)):

a0

a8
=

1√
6
F00

F88
=

1√
2

√
ψ′5(0)√
ψ′885 (0)

= 0.55 ± 0.02 (7.2)

This should be compared with the corresponding result in the chiral limit, using our new
determination (6.43) of χ′(0) and using the sum rule estimate (6.61) for fπ:

a0

a8
=

√
6

fπ

√
χ′(0) = 0.60 ± 0.12 (7.3)

The relatively small error in eq.(7.2) is due to the cancellation of the systematic errors
in the ratio (see Table 1), which was not taken into account in eq.(7.3). Running these
results from the scale τ−1 ' 3 GeV2 to the SMC scale of Q2 = 10 GeV2, and substituting
a8 = 3F −D = 0.58± 0.03, we find

a0(Q2 = 10GeV2) = 0.31± 0.02
Γp

1(Q
2 = 10GeV2) = 0.141± 0.005 (7.4)

compared with

a0(Q2 = 10GeV2) = 0.33± 0.05
Γp

1(Q
2 = 10GeV2) = 0.144± 0.009 (7.5)

in the chiral limit.
We therefore find very good agreement between the final prediction for the singlet

axial charge in the presence of quark masses and in the chiral limit. This confirms our
theoretical expectation that a0 is relatively insensitive to the quark masses. Moreover,
our new prediction for the ‘proton spin’ suppression remains, notwithstanding the large
errors on the experimental data, in good agreement with the experimental results quoted
in section 4.
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8. Conclusions

In this paper, we have extended our previous analysis of the ‘proton spin’ problem in
the chiral limit by considering the effects of chiral SU(3) symmetry breaking and flavour
mixing due to the quark masses.

The formal basis of our analysis is the derivation of the new, unified Goldberger-
Treiman relations:

Ga
A =

1
2mN

Fab Γ̂ηbNN (8.1)

where F is determined from

FacF
T
cb = lim

k=0

d

dk2
i

∫
dx eikx 〈0|T ∂µJa

µ5(x) ∂
νJb

ν5(0)|0〉 (8.2)

Apart from the mixing between the flavour singlet and octet channels induced by the non-
vanishing strange quark mass, the most significant change is the generalisation of the slope
of the topological susceptibility χ′(0) to the equivalent correlation function involving the
total divergence of the singlet axial current, viz. d

dk2 〈0|T ∂µJ0
µ5 ∂

νJ0
ν5|0〉

∣∣
k=0

. This is the
quantity which displays the smoothest approach to the chiral limit, with the explicit quark
mass dependence present in the individual correlators (section 5) cancelling in the sum.
This observation may have important implications for attempts to calculate the topological
susceptibility using lattice methods[53], where it is notoriously difficult to approach the
chiral limit too closely.

We emphasise again that the unified GT relations are new results and are exact in
QCD. The familiar PCAC forms (in the flavour non-singlet channels) are obtained by
approximating the 1PI vertices by the corresponding low-energy meson-nucleon coupling
constants and by approximating the slopes of the current correlation functions by decay
constants. Away from the chiral limit, both approximations assume pole-dominance of the
matrix elements and correlation functions by the pseudo-Goldstone bosons.

The relevant correlation functions were then evaluated using QCD spectral sum rules.
In the singlet as well as octet channel, very good stability was obtained with respect to the
parameter τ . The optimum value of τ−1 = 2.5− 5 GeV2 is in line with general arguments
for the appropriate scale in the gluon-rich UA(1) channel. Specific criticisms[16-20] of the
applicability of spectral sum rules to the UA(1) channel were shown to be incorrect.

Our final numerical results agree with our earlier findings[12]. The suppression in the
flavour singlet axial charge, driven by the mechanism of topological charge screening, is
confirmed. The reduction in the predicted value of a0(Q2) compared to its chiral limit
is slight (less than 10%), in agreement with our general theory, although it should be
emphasised that our results still neglect flavour mixing. Translated into a prediction for
the first moment of gp

1 , under the assumption that the RG-invariant vertices in eq.(8.1)
are well approximated by their OZI values, our final result:

a0(Q2 = 10GeV2) = 0.31± 0.02
Γp

1(Q
2 = 10GeV2) = 0.141± 0.005 (8.3)

remains in good agreement with experiment, and confirms our proposal that the ‘proton
spin’ suppression is a target-independent effect due to the screening of topological charge
by the QCD vacuum.

31



Appendix A: Partial Legendre transforms

We derive here the relations between the Green functions and vertices, defined as
functional derivatives of the generating functionals W and Γ respectively, used in the
derivation of the GT relations[11].

For generality, we derive these results for a set of fields Φa and ‘currents’ Jr, with
sources Sa and V r, where the partial Legendre transform is made wrt the sources Sa only.
That is,

W [V, S] = Γ[V,Φ] + SaΦa (A.1)

We adopt a compact notation where any Lorentz indices are implicit and a spacetime
integration is assumed in the sum over repeated indices. As in the text, functional differ-
entiation is indicated by subscripts. Thus, e.g., WS denotes δW

δS at fixed V , etc.
By definition,

Φa = WSa (A.2)

while
ΓΦa = −Sa ΓV r = WV r (A.3)

From

δa
b =

δ

δΦa
Φb =

δV r

δΦa
WV rSb +

δSc

δΦa
WScSb

= −ΓΦaΦc WScSb (A.4)

we recover the usual result that the 2-point vertex matrix is just the inverse of the propa-
gator matrix, but in this case restricted to the Sa,Φa sector.

Similarly, from

0 =
δ

δV r
Φb =

δV t

δV r
WV tSb +

δSc

δV r
WScSb

= WV rSb − ΓV rΦc WScSb (A.5)

we find
ΓV rΦb = WV rSc W−1

ScSb (A.6)

which can therefore be identified as the matrix element 〈0|Jr|Φb〉.
Taking this further,

0 =
δ

δV r

(
WSaScΓΦcΦb

)
= WV rSaSc ΓΦcΦb +WSaSc

(
ΓV rΦcΦb + WV rSd ΓΦdΦcΦb

)
(A.7)

from which we find

ΓV rΦcΦb + WV rSd ΓΦdΦcΦb = W−1
SaSc WV rScSd W−1

SdSb (A.8)
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which is identified as 〈Φa|Jr|Φb〉.
As a final example, we derive the crucial identity (3.11) used in our derivation of the

GT relations:

ΓV rV s =
δ

δV r
WV s =

δV t

δV r
WV tV s +

δSd

δV r
WSdV s

= WV rV s + ΓV rΦdWSdV s

= WV rV s − WV rSc W−1
ScSd WSdV s (A.9)

the last line following from eq.(A.6).

Appendix B: Current algebra, Dashen’s formula and the GT relation

As an illustration of how standard current algebra (PCAC) relations arise from our
formalism, we give here a short derivation of the Dashen formula for the masses of the
pseudo-Goldstone bosons.

The starting point is the identification (see eq.(A.6))

ΓV a
µ5ηb = 〈0|Ja

µ5|ηb〉 = ikµf
ab(k2) (B.1)

where the on-shell function fab(m2
η) is the decay constant matrix for the pseudo-Goldstone

bosons ηa. In terms of the normalised fields ηa = Babφ
b
5, the Ward identity (2.14) is written

as
ikµΓV a

µ5ηb + ΦacB
T
cd Γηdηb −MacB

−1
cb = 0 (B.2)

Now take d
dk2

∣∣
k=0

of this equation. Using the normalisation condition (3.7), we find
immediately

fab(0) = ΦacB
T
cb (B.3)

The assumption that fab is only a slowly-varying function of k2 then allows (B.3) to be
identified with the decay constant matrix. This is (as explained in detail in ref.[11]) the
standard PCAC approximation, equivalent to pole dominance of correlation functions by
pseudo-Goldstone bosons.

In the same approximation, we can write

Γηaηb = k2δab − (m2
η)ab (B.4)

Neglecting the mixing with Q, this would produce a pole in the propagator matrix with the
corresponding mass matrix obtained from the zero-momentum limit of the Ward identity
(B.2). In matrix notation, this means that

0 = −ΦBTm2
η −MB−1 (B.5)
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and so
ΦBTm2

ηBΦT = −MB−1BΦT (B.6)

Using the identification (B.3) of the decay constant, we therefore have (recall ΦT = Φ),

fac (m2
η)cd f

T
db = −MacΦcb (B.7)

This is Dashen’s formula for the pseudo-Goldstone bosons, which for the nf = 2 chiral
symmetry breaking pattern SU(2)L × SU(2)R〉SU(2)V is simply

f2
π m2

π = −(mu +md)〈q̄q〉 (B.8)

Mixing with the glueball field Q in general shifts the masses of the physical pseudo-
Goldstone bosons. However, in the simple case where Φa0 ≡ 2〈φa〉 is zero for a 6= 0, this
is only relevant in the singlet sector. There, the formula (B.7) refers to the unphysical η0,
not to the η′. The corresponding formula for the physical η′ including mixing with the
glueball field Q, and involving a different identification of the η′ decay constant, is derived
(in the chiral limit) in ref.[11].

We can also relate the generalised GT relations in the text to the standard formula
using pole dominance. For nf = 2, eq.(3.18) reduces to

mN gA = F gπNN (B.9)

where gA ≡ 2G3
A in our notation. Evaluating F from eq.(3.20) using pole dominance, we

find

F 2 =
d

dk2

(∣∣〈0|∂µJ3
µ5|π〉

∣∣2 (−1)
k2 −m2

π

)∣∣∣
k=0

= f2
π (B.10)

recovering the standard GT formula and confirming the interpretation of F in eq.(3.18)
as a decay constant matrix. Notice that since this derivation assumes pole dominance, it
is an approximation. Unlike the new relation (3.18), the standard GT relation becomes
exact only in the chiral limit.

Appendix C: Renormalisation Group

The renormalisation group equations (RGEs) for the various quantities arising in the
derivation of the unified GT relations can be derived using the same methods developed
in ref.[11]. In this appendix, we summarise the most important identities.

The starting point is the definition of the renormalised composite operators[54]. For
QCD, with non-zero quark masses, we have (denoting bare operators with the label ‘B’
and renormalised operators with no label for simplicity)

J0
µ5 = ZJ0B

µ5 Ja6=0
µ5 = Ja6=0B

µ5

Q = QB − 1
2nf

(1− Z)∂µJ0B
µ5

φa
5 = Zφφ

aB
5 φa = Zφφ

aB (C.1)
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where Zφ is the inverse of the mass renormalisation, Zφ = Z−1
m . The anomalous dimensions

associated with Z and Zφ are denoted γ and γφ respectively. These definitions ensure that
the combinations ∂µJ0

µ5 − 2nfQ and mq [q̄γ5q] occurring in the UA(1) anomaly equation
(e.g. eq.(6.2)) are RG invariant.

The fundamental RGE for the generating functional W is therefore (in the notation
of section 2, where suffices on W denote functional differentiation):

DW = γ
(
V 0

µ5 −
1

2nf
∂µθ

)
WV 0

µ5
+ γφ

(
Sa

5WSa
5

+ SaWSa

)
+ . . . (C.2)

where D =
(
µ ∂

∂µ + β ∂
∂g − γm

∑
q mq

∂
∂mq

)∣∣∣
V,θ,S5,S

and a spacetime integration is assumed

in the sum over repeated indices. The notation + . . . refers to the additional terms which
are required to produce the contact term contributions to the RGEs for n-point Green
functions of composite operators. These are discussed fully in ref.[11], but will be omitted
here for simplicity. They vanish at zero momentum.

The RGEs for Green functions are found simply by differentiating eq.(C.2) wrt the
sources. Simplifying the results using the chiral Ward identities (2.5), we find a complete
set of RGEs for the 2-point functions. These are:

DWV 0
µ5V 0

ν5
= 2γWV 0

µ5V 0
ν5

+ . . . DWV 0
µ5V b

ν5
= γWV 0

µ5V b
ν5

+ . . . DWV a
µ5V b

ν5
= 0 + . . .

DWV 0
µ5θ = 2γWV 0

µ5θ + γ
1

2nf
M0bWV 0

µ5Sb
5

+ . . .

DWV a
µ5θ = γWV a

µ5θ + γ
1

2nf
M0bWV 0

µ5Sb
5

+ . . .

DWV 0
µ5Sb

5
= (γ + γφ)WV 0

µ5Sb
5

+ . . . DWV a
µ5Sb

5
= γφWV a

µ5Sb
5

+ . . .

DWθθ = 2γWθθ + 2γ
1

2nf
M0bWθSb

5
+ . . .

DWθSb
5

= (γ + γφ)WθSb
5

+ γ
1

2nf

(
M0cWSc

5Sb
5

+ Φ0b

)
+ . . .

DWSa
5 Sb

5
= 2γφWSa

5 Sb
5

+ . . . (C.3)

It is straightforward to check the self-consistency of these RGEs with the Ward identities
(2.5) and (2.11). The pattern of cancellations which ensures this is nevertheless quite
intricate.

Next, we need the RGE for the generating functional of the 1PI vertices. This follows
immediately from its definition in eq.(2.12) and the RGE (C.2) for W :

D̃Γ = γ
(
V 0

µ5 −
1

2nf
ΓQ∂µ

)
ΓV 0

µ5
− γφ

(
φa

5Γφa
5

+ φaΓφa

)
+ . . . (C.4)

where D̃ =
(
µ ∂

∂µ + β ∂
∂g − γm

∑
q mq

∂
∂mq

)∣∣∣
V,Q,φ5,φ

.
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The RGEs for the 1PI vertices are found by differentiation and, using the Ward
identities (2.14) to simplify the results, we find in particular:

DΓ̂QNN = −γΓ̂QNN + γ
1

2nf
Φ0b

(
ΓQφb

5
Γ̂QNN + ΓQQΓ̂φb

5NN

)
+ . . .

DΓ̂φa
5NN = −γφΓ̂φa

5NN + γ
1

2nf
Φ0b

(
Γφa

5φb
5
Γ̂QNN + Γφa

5QΓ̂φb
5NN

)
− γ

1
2nf

M0aΓ̂QNN + . . .

(C.5)

Here, D = D̃ + γφ〈φa〉 δ
δφa . As explained in ref.[11], this is identical to the RG operator

D defined above (acting on W ) when the sources are set to zero and the fields to their
VEVs. With some calculation, the consistency of the GT formulae (3.4) and (3.5) can now
be shown using the RGEs (C.3) and (C.5). Again, a very intricate pattern of cancellations
occurs to ensure this.

The RGEs for the 2-point vertices occurring in the Ward identities (2.14) are easily
found by differentiating eq.(C.4). The most important is

DΓφa
5φb

5
= −2γφΓφa

5φb
5
+ γ

1
2nf

(
Γφa

5Q

(
Φ0cΓφc

5φb
5
−M0b

)
+ a↔ b

)
+ . . . (C.6)

This allows us to deduce the RGE for the matrix Bab which relates the φa
5 fields to

the canonically normalised ηa fields by ηa = Babφ
b
5. Recall the definition (3.9):

d

dk2
Γφa

5φb
5

∣∣
k=0

= BT
ac

d

dk2
Γηcηd

∣∣
k=0

Bdb = BT
acBcb (C.7)

From eq.(C.6) and the zero-momentum limit of the Ward identities (2.14), we deduce

DBab = −γφBab + γBacΦc0Φ−1
0b (C.8)

The RGE for Fab now follows immediately from its definition F = ΦBT and the RGE
DΦ = γφΦ. It is simply

DFab = γδa0F0b (C.9)

that is,

DF0b = γF0b for all b
DFab = 0 a 6= 0 (C.10)

The final step in proving RG consistency of the unified GT formulae is to show that
the vertices Γ̂ηaNN (at k = 0) are RG invariant. Eq.(C.10) then ensures the required RGE
for the axial charges, viz.

DGa
A = γδa0G

a
A (C.11)

To check this explicitly, notice that eq.(C.5) for Γ̂φa
5NN simplifies at k = 0. The contact

terms vanish and using the zero-momentum Ward identities (see eq.(2.14)) we find

DΓ̂φa
5NN

∣∣
k=0

= −γφΓ̂φa
5NN

∣∣
k=0

+ γΦ−1
a0 Φ0bΓ̂φb

5NN

∣∣
k=0

(C.12)
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Since Γ̂φa
5NN

∣∣
k=0

= BT
abΓ̂ηbNN

∣∣
k=0

, and comparing eq.(C.12) with the RGE (C.8) for B,
we confirm

DΓ̂ηaNN

∣∣
k=0

= 0 for all a (C.13)

Appendix D: Comparison with the literature

In a number of papers and lectures (see e.g. refs.[16,17]), Ioffe has criticised our earlier
work on the ‘proton spin’, expressing his view that our formal theory is “not justifiable”
and claiming that the spectral sum rule technique we use is not valid for calculating the
topological susceptibility or decay constants in the flavour singlet channel.

These criticisms are made explicit in the recent paper [17]. Describing our derivation
of the UA(1) Goldberger-Treiman relation (in the chiral limit) for G0

A, Ioffe states that
“the matrix element 〈p|Q|p〉 was saturated by contribution of two operators Q and singlet
pseudoscalar operator φ5 – and the result was obtained by orthogonalisation of the cor-
responding matrix.” This simply reflects a failure to understand our theoretical method.
As we have repeatedly emphasised, no approximation is involved in the decomposition of
the matrix element into composite propagators and 1PI vertices, as e.g. in eq.(3.5) here.
If a different basis of operators is chosen, the definition of the vertices changes too – they
become 1PI with respect to the new basis. The basis of operators chosen for the decompo-
sition is in no sense required to be ‘complete’ – the procedure is not the familiar quantum
mechanical one of inserting a complete set of states. The matrix element is not being
saturated with a restricted number of operators chosen from some complete set. The only
approximation comes in our subsequent conjecture that the vertices, defined specifically as
we have defined them, obey the OZI rule. The motivations and a posteriori justifications
for this conjecture are explained carefully and at length in our papers.

Still referring to our work[12], Ioffe continues, “the calculation of χ′(0) by QCD
sum rules is not correct, because as shown in ref.[19] by considering the same problem
with account of higher order terms of OPE than it was done in [12], the OPE breaks
down at the scales characteristic of this problem.” This refers to ref.[19], where Ioffe and
Khodzhamiryan suggested that the extent of SU(3) breaking which occurs in the Laplace
sum rule approach is unrealistically large, and concluded that QCD spectral sum rules
were unreliable in the UA(1) channel. In the rest of this appendix, we show explicitly how
their calculation is related to ours and point out a number of problems (errors in the QCD
expressions, inconsistencies of the input and stability parameters, etc.) in their approach
which are responsible for this false conclusion.

We consider the current correlation function

Π0q
µν(k) = i

∫
d4x eik.x 〈0|T J0

µ5(x) J
q
ν5(0)|0〉

= Π0q
T (k2)(gµν −

kµkν

k2
) + Π0q

L (k2)
kµkν

k2
(D.1)

where J0q
µ5 = q̄γµγ5q is the axial current for each flavour of quark q = u, d, s separately.

The notation follows our eq.(5.2). Comparing with the notation of ref.[19], the ΠL are
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the same up to a minus sign, whereas our ΠT is a linear combination of the form factors
defined there. Only ΠL plays a role in what follows.

Taking the divergences, and using the chiral Ward identity (2.9), we have

kµkνΠ0q
µν(k) = k2Π0q

L (k2) = i

∫
d4x eik.x 〈0|T D0(x) Dq(0)|0〉+ 4mq〈q̄q〉 (D.2)

where

D0 = 2nfQ+
∑

q=u,d,s

2mq q̄γ5q

Dq = 2Q+ 2mq q̄γ5q (D.3)

The relation with the correlators studied in the text is therefore

ψ5(k2)− ψ5(0) =
1

(2nf )2
k2

∑
q=u,d,s

Π0q
L (k2) (D.4)

with the other SU(3) combinations giving ψ03
5 and ψ08

5 . Taking the derivative wrt k2 and
evaluating at k = 0, we find

ψ′5(0) =
1

(2nf )2
∑

q=u,d,s

Π0q
L (0) (D.5)

Π0q
L (k2) obeys an unsubtracted dispersion relation

Π0q
L (k2) =

∫ ∞

0

dt

t− k2 − iε

1
π

ImΠ0q
L (t) (D.6)

The corresponding Laplace sum rule is simply

τ−3L(FΠ) =
∫ ∞

0

dte−tτ 1
π

ImΠ0q
L (t) (D.7)

We can also write a once-subtracted sum rule, which enables us to calculate Π0q
L (0):

τ−2L(GΠ) + Π0q
L (0) =

∫ ∞

0

dt

t
e−tτ 1

π
ImΠ0q

L (t) (D.8)

Here,

FΠ ≡ d2

(dK2)2
Π0q

L GΠ ≡ d

dK2

(
Π0q

L

K2

)
(D.9)

Taking the SU(3) singlet combination of these sum rules for q = u, d, s clearly gives just
the Laplace sum rules (6.18) and (6.19) analysed in the text.
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In ref.[19], Ioffe and Khodzhamiryan define the ‘decay constants’ for individual quark
flavours as follows:

〈0|Jq
µ5|η′〉 = ikµg

q
η′ (D.10)

and by saturating the r.h.s. of eq.(D.7) with the η′, obtain sum rules for fη′gq
η′ for q = u, d

and q = s. Taking the ratio, they find an unrealistic SU(3) breaking characterised by
gs

η′/g
u,d
η′ ∼ 2.5 and conclude that the Laplace sum rule for ΠL with the flavour singlet axial

current does not work.
However, as we have shown in the text, a correct implementation of the sum rule

method does indeed work, showing good stability over a range of appropriate τ and tc
values and giving results for the decay constants in both flavour singlet and non-singlet
channels which show only the expected level of SU(3) breaking. In the rest of this section,
we shall therefore quote the full formula for the sum rule (D.7) for Π0q

L , correcting some
mistakes and omissions in ref.[19], then briefly indicate some of the problems with their
calculation.

From the results given in section 6, we can immediately read off the required sum
rule:

2nf

√
2fη′gq

η′m
2
η′e

−τm2
η′ + . . . =

3
8π2

τ−2
( ᾱs

π

)2(
1− (1 + tcτ)e−tcτ

)
(1 + δPT

gg )

+
3
2

( ᾱs

π

)[
1
2π
〈αsG

2〉(1 + δNP
gg ) +

( ᾱs

π

)
τ〈gG3〉

]
+ δqs

3
2π2

τ−1m2
s(1− e−tcτ )(1 + δPT

qq )

− 2(1 + 3δqs)
( ᾱs

π

)
M2

0 τms〈s̄s〉 − δqs4ms〈s̄s〉

(D.11)

where (see also [35])

δPT
gg =

( ᾱs

π

)[
83
4

+ β1(1− γE) + 6
(
3m2

s +
π

ᾱs
λ2

)
τ

]
δNP
gg = −

( ᾱs

π

)(9π
8

)
(1− e−tcτ )

δPT
qq =

(17
3

+ 2γE

)( ᾱs

π

)
(D.12)

The dots on the l.h.s. denote the presence of any further intermediate states (in particular
the η) which might be required. The terms appearing with δqs are present only when q is
chosen to be the s quark, and as usual we have assumed mu = md = 0.

We now comment on some of the differences between the paper [19] and our work:
• It is a priori dangerous to use the sum rule for Π0q

L with the individual quark flavours
while only keeping the η′ as an intermediate state in the sum rule. This would imply
that only the η′ and not the η would contribute in the mixed SU(3) combination Π08

L . It
follows that the quantity gs

η′/g
u,d
η′ used in ref.[19] is not the most reliable measure of the
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strength of SU(3) breaking: while a value close to 1 would indicate self-consistently that
SU(3) symmetry is very accurate and the η − η′ mixing angle is very small, a large value
would simply show that the initial hypothesis of η′ saturation for the individual Π0q

L is not
self-consistent. (Ref.[19] refers to a further calculation taking η − η′ mixing into account,
but the details are not given.)

• The formula (D.11) differs in a number of important ways from that used in ref.[19].
In (D.11), the coefficient of the term 4ms〈s̄s〉 coming from the zero-momentum Ward
identities has been corrected compared to ref.[19]. We have included the leading-order
radiative corrections, which in this example have a significant effect in inducing stability
in τ and tc. Notice that the radiative corrections have a far greater effect on this single
sum rule than in the combined sum rule used in the text to calculate ψ′5(0), where they
cancel between the L(F) and L(G) terms. We have also included the contribution of O(m2

s)
arising from the correlator denoted by ψqq in the text, which was omitted in ref.[19] but
is of the same order as the other principal terms for the values of τ used in [19].

• In our analysis of the sum rules, we find good stability at values of tc ' 6 GeV2 and τ in
the range (0.2−0.4) GeV−2. In contrast, ref.[19] uses too low a value of tc ' 2.5 GeV2 and
without finding stability takes an ad hoc τ value of about 1 GeV−2. This is far too high
and goes against the expectation [41,40] that the optimal scale τ should be comparatively
low in the gluon-rich flavour singlet channels. For this value of τ , the convergence of the
OPE for the terms of O(m2

sτ) is also poor.

We can therefore conclude that the analysis of the sum rule for ΠL(k2) in ref.[19]
(equivalent to our once-subtracted sum rule for ψ5(k2)) is unreliable and that their con-
clusion that the spectral sum rule method does not work in the flavour singlet channel is
mistaken.

By taking the once-subtracted sum rule (D.8) for Π00
L (k2) in combination with (D.7),

we can write a Laplace sum rule for Π00
L (0), the quantity required for the generalised

Goldberger-Treiman relations (and therefore the ‘proton spin’ effect). This sum rule is of
course identical to that for ψ′5(0) analysed in the text. This is not discussed in ref.[19].
Alternatively, Ioffe and Khodzhamiryan use a finite energy sum rule (FESR), analogous
to the one described in our eq.(6.45) but omitting the radiative corrections. However, the
FESR should be used with great care due to its strong tc dependence, and the fact that
the result comes from a difference of large numbers. Indeed, it is unsurprising that by
substituting their set of values of fη′ , gη′ , and tc, which are inconsistent with the values
we have obtained from the Laplace sum rule based on τ and tc stabilities, they obtain an
unreliable result.

Finally, in more recent papers[20], Ioffe and Oganesian extend the work of ref.[19] by
combining it with a sum rule for G0

A itself, derived using a composite 3-quark operator with
the quantum numbers of the proton. However, one can immediately notice that the choice
of the interpolating nucleon currents used by the authors is far away from the optimised
choice analysed in refs.[48,49]. Irrespective of the validity of this method, it is evident that
the results of ref.[20] are as unreliable as those discussed above, and for the same reasons,
since the results of ref.[19] are used as input parameters in the new sum rule.
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Fig. 1 The dependence of the correlation functions χ′(0),
√
ψ′5(0) and

√
ψ′885 (0) (in GeV)

on the Laplace sum rule parameter τ (in GeV−2).
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Fig. 2 The dependence of the decay constants fη′
∣∣
ms=0

, fη′ and f̃η (in GeV) on the
Laplace sum rule parameter τ (in GeV−2).
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