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Abstract. In order to understand the dynamic aperture limitations in LHC optics
versions 4 and 5 at injection energy (450 GeV), a thorough resonance analysis is per-
formed through Lie perturbation methods and Normal Form construction. In this
respect, a simple numerical tool has been developed, the Graphical Representation of
Resonances (GRR), allowing the evaluation and graphical representation of the reso-
nance strengths and detuning, up to a desired order. The resonance analysis performed
by means of GRR enabled us to understand the effect of the large errors in some spe-
cial quadrupoles of LHC optics version 5. We were also able to identify and minimise
the resonance which was correlated with the drop of the dynamic aperture, following
the introduction of a large skew octupole bias in the LHC optics version 5, using the
“target” error table. As shown by subsequent tracking studies, the proposed correction
procedures led to a considerable improvement of the dynamic aperture of the studied
LHC models.

INTRODUCTION

A crucial point in the design of hadron colliders is the long term beam stabil-
ity determined by the dynamic aperture (DA). The straightforward procedure to
calculate the DA of a given accelerator model is performed through element by
element tracking of particles. Considering the fact that the usual injection time for
accelerators like the LHC corresponds to 107 particle turns, tracking simulations
are limited by the lack of available computer power for following the full particle
orbits. A more serious problem comes from the fact that tracking cannot provide
any understanding regarding the resonance structure in the phase space of the sys-
tem. What seems to be of high interest is to recover the reasons triggering these
resonances thereby limiting the DA.

The necessary insight regarding the system’s non-linear dynamics can be given
by applying the methods of high order perturbation theory [1–3]. These approaches
can be conducted by using an explicit form of the system’s Poincaré map. This
map is usually computed through a Taylor expansion around the 1-periodic orbit
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of the accelerator beam, with the assistance of Lie algebraic tools. In general, the
map is written in variables which are not close to the invariants of motion. The
construction of Normal Forms consists in transforming the original variables of the
map to a new set of variables, which are close to the invariants of motion, in order
for the resulting map to have a simpler form. The generating function, through
which this symplectic transformation is performed, is computed by means of a
perturbative scheme using as parameter the distance to the origin. This function
contains the information regarding the distortion of the phase space due to non-
linearities and the influence of resonances on the dynamics of the system.

On the other hand, what could be of great interest is an indication about the
resonance strengths for specific initial conditions, especially close to the parts of
the phase space where the beam is lost. This is a key point for coping with the
non-linear dynamics of an accelerator, taking into account that particular multi-
polar magnet errors have a specific contribution to particular resonance strengths.
Thus, the resonance strengths establish a sort of quality factor [6], which can de-
termine whether the specifications proposed for the design of an accelerator lattice
are optimal with respect to the phase space regularity of the model. Through a
resonance analysis of this kind, one can associate the physical characteristics of the
accelerator to the DA of the model, find the limits and provide the necessary cures,
ensuring the long-term stability of the beam. In this respect, we developed a sim-
ple numerical tool, the Graphical Representation of Resonances (GRR), which uses
as input the output of standard Lie algebraic numerical codes [4] and allows the
evaluation and graphical representation of the resonance strengths and detuning,
up to a given order (see also [5,6]).

In this article, we present the impact of the use of GRR in the ongoing studies
for understanding the dynamics of the LHC optics versions 4 and 5. The article
is organised as follows: in Sect. I, we outline the basic ideas regarding Normal
Form analysis and the GRR tool. In the next section, we present examples of the
application of this resonance analysis in order to understand the dynamics of LHC
models. In the last section, the principal results are summarised together with
some objectives for future studies.

I GRAPHICAL REPRESENTATION OF

RESONANCES

A Resonance strength

By neglecting the weak coupling between the vertical and horizontal motion and
the longitudinal one, the system is restricted to the 4D phase space. In order to
construct the Normal Form U of a Poincaré map M representing the successive
intersections of a kicked accelerator beam at a fixed position of the path variable



s, one performs a symplectic transformation expressed by the functional equation

U = Φ−1 ◦M ◦ Φ ,

which transforms the variables of the original map z = (zx, z
∗
x, zy, z

∗
y) to a new set

ζ = (ζx, ζ
∗
x, ζy, ζ

∗
y ), where the (∗) denotes complex conjugate variables. The original

variables are usually the complexified version of the Courant-Snyder coordinates

zx,y =
√

2 Jx,y e
−i(ϕx,y+ϕx0,y0) , (1)

where Jx,y and ϕx,y are the action-angle variables of the integrable problem, in the
linear case. The actions are a function of the horizontal and vertical emittance

εx = 2 Jx = nσ(εn/γ)
1/2 cosφ and εy = 2 Jy = nσ(εnγ)

1/2 sin φ , (2)

where the normalisation factor nσ determines the amplitude of the particle in terms
of the rms beam size σ, εn is the normalised emittance, γ the energy factor and φ
is the amplitude ratio (tanφ = εy/εx).

On the other hand, the new variables are expressed

ζx,y =
√

2 Ix,y e
−i(ψx,y+ψx0,y0) , (3)

i.e. as a function of the non-liner invariants of motion Ix,y and their conjugate
phases ψx,y.

The transformation Φ, as well as the maps, may be represented using the Lie
formalism, e.g.:

Φ = e:F : , (4)

which denotes a series of Poisson brackets operations. In general, the generating
function F is represented by a sum of homogeneous polynomials of the new vari-
ables. By taking the inverse transformation Φ−1, the generating function F can be
expressed as a function of the old variables

F =
∑
jklm

fjklm zx
j z∗x

k zy
l z∗y

m with fjklm ∈ C and j, k, l,m ∈ N . (5)

Inserting the expressions of the z variables in the series (5), one obtains:

F =
∑
jklm

fjklm (εx)
j+k
2 (εy)

l+m
2 e−iϕjklm , (6)

where the phase term variable is ϕjklm = (j − k)(ϕx + ϕx0) + (l − m)(ϕy + ϕy0).
The expression (6) is usually computed order by order by means of Lie algebraic
numerical tools, as the DaLie code [4], which is used in the present study.

The infinite series (6) is not convergent by construction. Furthermore, the num-
ber of terms grows very sharply with the order n = j+k+ l+m [1–3]. In practice,



one takes a truncated expression of the series (6), and in our case, we usually found
sufficient to carry out the calculation of the perturbing series up to 12th order
which corresponds to an 11th order map.

The expression of the phase ϕjklm shows that each term of the series (6) corre-
sponds to a resonance condition of the form

(j − k)νx + (l −m)νy + c = 0 with c ∈ Z ,

with νx and νy representing the frequencies of motion. These resonances are related
with the non-linear dynamical behaviour of the system. The norm of the coefficients
|fjklm| provides an indication about the strength of the corresponding resonances,
these last being associated with the multi-polar magnetic field errors. In fact,
multipole errors of a certain order nm will have a contribution to the coefficients
fjklm of order n ≥ nm. Hence, one could infer that the importance of a specific
resonance regarding the dynamics of the system can be revealed by the norm of
the corresponding coefficients. However, the series terms associated with the same
resonance (a, b) = (j − k, l−m) of order n will also appear in higher orders n+ n′,
with n′ a non-zero pair number. Thus, a more precise estimation of the resonance
strength in a given position of the phase space can be efficiently computed only by
including the contribution of these higher order terms. To do this, one may fix the
phase at an arbitrary value, e.g. ϕjklm = 0, without loss of generality. The strength
of a specific resonance (a, b) is given by the norm of

F(a,b) =
∑
jklm

j+k+l+m≤n
j−k=a , l−m=b

fjklm (εx)
j+k
2 (εy)

l+m
2 , (7)

where the contribution of all terms up to an order n is taken into account.

B Tune shift

In the same way, one can also compute the tune shift due to the non-linearities of
the system. In fact, in the non-resonant case, the variables ζ ′x,y after one conjugation
of the map U are:

ζ ′x,y = e−iΩx,y(ρx,ρy)ζx,y , (8)

where Ωx,y are the non-linear frequencies associated with the horizontal and ver-
tical motion and ρx,y = 2Ix,y = ζx,yζ

∗
x,y are the generalisation of the vertical and

horizontal emittance in the non-linear case. Taking into account that the tunes are

Ωx,y =
∂ H

∂ρx,y
(9)
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FIGURE 1. Difference between the tune values calculated with two methods, for a specific real-
isation of the magnet errors (seed 25) of LHC optics version 5 “nominal” table, for φ = 15◦ and
for different particle amplitudes.

where H is the new Hamiltonian associated with the map, the non-linear tunes can
be written as a series of homogeneous polynomials

Ωx,y(ρx, ρy) =
∑
jklm

j+k+l+m≤[(n−1)/2]
j−k=0 , l−m=0

ωjklm (ρx)
j+k
2 (ρy)

l+m
2 , (10)

where the (j, k, l,m) are such that the phase dependence vanishes, leaving only the
amplitude dependent terms in the polynomial. In order to evaluate the series (10),
the knowledge of the non-linear invariants ρx,y = 2Ix,y is necessary. These last can
be computed through the inverse transformation Φ−1(z). Hence, the non-linear
invariant can be expressed as a function of the linear ones εx,y and the non-linear
tunes can be calculated by the series (10) written in these latter variables. Note
also that the maximum detuning order is now the integer part of the expression
(n − 1)/2, e.g. the terms of an 11th order map will contribute up to a detuning
order of 5.

The precision of the calculation using the Normal Form machinery can be checked
by comparing the tunes computed through the series expansion (10) with the val-
ues provided by a direct application of a Laskar type frequency analysis [7] (we use
the the SUSSIX code [8]) of tracking data generated by SIXTRACK [9] for several
particle orbits, in the case of the “nominal” error table of LHC optics version 5.
We generated 10 particle orbits, the amplitude of which varies from ns = 1σ to 10σ
and the amplitude ratio is kept fixed φ = 15◦. In Fig.1, we present graphically the
difference between the horizontal (left) and vertical (right) tune given by the two
computation methods for a specific realisation of the magnet errors (“seed” number
25) . The different graphs correspond to different orders in the calculation of the
tune (from 1st to 5th order) and the horizontal axis corresponds to different ampli-
tudes measured in σ. The vertical axis represents the tune difference in logarithmic
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FIGURE 2. Norm of the 7th order resonance coefficients fjklm of the generating function (6),
for 60 seeds of LHC optics versions 5 using the “nominal” error table.

scale and the vertical doted line denotes the barrier after which the particles begin
to be chaotic. It is apparent that, at least up to the point where the particles are
stable and after adding the 4th order contribution, the two approaches converge
to the same value, with a precision of 10−5. Let us just remark that this result is
only valid for a regular orbit evolving on a KAM torus. For a chaotic orbit, the
calculation becomes meaningless as the tune is not constant.

II APPLICATION TO THE LHC

A Limitations in the dynamic apperture of LHC optics

versions 4 and 5

A global picture of the resonance strengths given by the generating function F
is represented graphically in the 3D plot of Fig. 2. This graph represents the norm



of the 7th order resonance coefficients fjklm with n = 7, for LHC optics version 5,
using the “nominal” error table and for 60 seeds. Each number on the horizontal
axis corresponds to a different 7th order resonance (60 in total - see Table 1). The
first 7 series of spikes represent the amplitudes of the normal resonances and the
next 23 the normal sub-resonances. The remaining 30 correspond to the 7th order
skew resonances and sub-resonances.

The importance of the (7,0) resonance for predominantly horizontal motion was
reported in previous studies [10,11]. Nevertheless, this is not at all visible in this
picture, i.e. the first series of spikes is quite small as compared with certain sub-
resonances and skew resonances, in the middle of the graph. This is indeed due
to the fact that the subresonance strengths mask the importance of the (7,0) reso-
nance. On the other hand, the higher order series terms contributing to a specific
resonance are not included in the coefficients fjklm.

Through Eq.(7), we were able to evaluate the strength
∣∣∣F(a,b)

∣∣∣ of the 7th order

resonances up to 12th order, for an amplitude ratio of 15◦ at 8σ, which is close to the
minimum DA of this LHC model. A graphical representation of these resonances
(14 in total) is given in Fig. 3. The depicted points correspond to the average
value of the resonance driving terms over the 60 random realisations of the magnet

TABLE 1. Correspondence of numbers labelling the horizontal axis of Fig. 2 with
the 7th order resonances

Normal

resonances sub-resonances
7th order 5th order 3th order 1st order

(j, k, l, m) No (j, k, l, m) No (j, k, l, m) No (j, k, l, m) No

(7,0,0,0) 1 (6,1,0,0) 8 (5,2,0,0) 18 (4,3,0,0) 27
(5,0,2,0) 2 (5,0,1,1) 9 (4,1,1,1) 19 (3,2,1,1) 28
(3,0,4,0) 3 (4,1,2,0) 10 (3,0,2,2) 20 (2,1,2,2) 29
(1,0,6,0) 4 (3,0,3,1) 11 (3,2,2,0) 21 (1,0,3,3) 30
(5,0,0,2) 5 (2,1,4,0) 12 (2,1,3,1) 22
(3,0,0,4) 6 (1,0,5,1) 13 (1,0,4,2) 23
(1,0,0,6) 7 (4,1,0,2) 14 (3,2,0,2) 24

(3,0,1,3) 15 (2,1,1,3) 25
(2,1,0,4) 16 (1,0,2,4) 26
(1,0,1,5) 17

Skew

(6,0,1,0) 31 (5,1,1,0) 38 (4,2,1,0) 48 (3,3,1,0) 57
(4,0,3,0) 32 (4,0,2,1) 39 (3,1,2,1) 49 (2,2,2,1) 58
(2,0,5,0) 33 (3,1,3,0) 40 (2,0,3,2) 50 (1,1,3,2) 59
(0,0,7,0) 34 (2,0,4,1) 41 (2,2,3,0) 51 (0,0,4,3) 60
(6,0,0,1) 35 (1,1,5,0) 42 (1,1,4,1) 52
(4,0,0,3) 36 (0,0,6,1) 43 (0,0,5,2) 53
(2,0,0,5) 37 (5,1,0,1) 44 (4,2,0,1) 54

(4,0,1,2) 45 (3,1,1,2) 55
(3,1,0,3) 46 (2,0,2,3) 56
(2,0,1,4) 47
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FIGURE 3. Average value and standard deviation of the 7th order resonance strength at 8σ and
φ = 15◦ for LHC optics version 5 “nominal” error table, over 60 seeds. The three different graphs
represent resonance driving terms computed up to 3 different orders.

errors and the error bars are equal to one standard deviation. The three different
lines represent resonance strengths the computation of which is conducted up to 3
different orders (7th, 9th and 11th). It is now clear that the (7,0) resonance has
a quite big influence in the dynamics of the system. Moreover, the contribution of
the higher orders to this resonance are quite important, a fact which could have
not been revealed by simply checking the coefficients of the function F (Eq. 6).
On the other hand, this graph also shows that the strength of the (6,1) resonance
is quite big. A further analysis of the detuning of the system reveals that at this
part of the phase space, the particle tunes are close to this resonance.

By using GRR, we were able to understand the reason for this strong excitation
of the (7,0) resonance, limiting the DA of LHC optics version 5 with respect to
version 4, at least for motion close to the horizontal plane. It was found that the
large multi-pole errors corresponding to some special type of quadrupoles (“warm”
quadrupoles) on the two high-beta insertions (I.P.3 and I.P.7) of the LHC optics
version 5 were in the heart of the problem [13]. In Fig. 4, we present the average
(over 60 seeds) absolute value of the relative difference, that is the difference of
the resonance strength weighted by the biggest one among the two, between the 12
most prominent resonances of LHC optics version 4 and 5. There is a 50% difference
between the amplitudes of the (7,0) resonance in the two lattices. By switching
off the errors in the “warm” quadrupoles, the two lattices become approximately
identical. This effect is indeed due to the strong kick produced by the interplay of
the important beta function values in these areas of the machine (of the order of
350 m in I.P. 3 and 600 m in I.P.7 [14]) with the strong multi-pole errors of the



TABLE 2. The effect of the multipole errors of warm quadrupoles
on the dynamic aperture for different LHC optics versions 4 and 5
machines. The average and minimum DA over 60 seeds is shown,
for φ = 15◦ and 45◦.

Phase Type
DA
(σ)

LHC Version

4
5

Nominal Target

15◦
Warm Quads
switched ON

Average 10.0 9.1 10.4
Minimum 8.5 7.4 8.6

Warm Quads
switched OFF

Average 10.7 11.6 12.4
Minimum 9.6 10.3 11.3

45◦
Warm Quads
switched ON

Average 11.1 11.3 12.8
Minimum 9.5 9.2 11.4

Warm Quads
switched OFF

Average 11.4 12.4 13.8
Minimum 10.1 10.7 12.3

“warm” quadrupoles (especially the b3 and b7).
This resonance analysis study guided us in the correction of the LHC optics

version 5 with an important average improvement of the DA. The results of the 6-
dimensional tracking studies with SIXTRACK [9] are reported in Table 2. We give
the minimum and average value of the DA for several cases of LHC optics version 4
and 5, with and without the errors in the “warm” quadrupoles. The “target” error
table is the one proposed in order for the LHC to reach the target DA of 12σ so
as to have a safety factor of 2 [11], considering the fact that the collimators will be
positioned at 6σ. The tracking is conducted for two directions of the phase space
(amplitude ratios of 15◦ and 45◦) which, in our case, correspond roughly to the
minimum and average values of the DA, over all phases [15]. For all cases and for
both phase values, the average gain of the D.A. is of the order of 2σ. Especially
for the “target” error table, we are able to reach the target DA of 12σ.

B Correction of the effect of the octupole error bias on

the LHC dipoles

A similar resonance analysis was followed in order to understand the drop of the
DA in LHC optics version 5, using the “target” error table, after the inclusion of
a large bias of the systematic per arc octupoles in the main dipoles of the model
[16]. Indeed, the inclusion of these new realistic values for the octupole errors
deteriorated the DA of the “target” table (see Table 3, “strong b4”, “strong a4”
and “strong b4, a4” cases).

The experience from LHC optics version 4 [10] has shown that the bias can be
usually cancelled by erect and skew octupole spool pieces in half of the machine,
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FIGURE 4. Average absolute value of the resonance strengths relative difference at 8σ and 15◦

between LHC optics version 4 and 5 with and without the errors on the “warm” quadrupoles.

TABLE 3. The effect of realistic erect and skew octupolar errors and their
corrections on the dynamic aperture of LHC optics version 5 at injection.
The average and minimum DA over 60 seeds is shown, for φ = 15◦ and 45◦.

Errors and
Correctors

Phase [◦]
15 45
Dynamic Aperture [σ]

Minimum Average Minimum Average
Target error table 11.3 12.4 12.3 13.8
Strong b4 9.6 12.2 10.8 13.4
+b4 spool piece (SP) 11.8 12.6 12.0 13.7
Strong a4 10.4 12.1 10.0 12.9
+a4 SP 10.2 12.1 9.5 12.5
+ optimised a4 SP 11.3 12.5 11.7 13.8
Strong b4, a4 10.1 12.0 10.0 12.6
+b4 SP, a4 SP 9.7 12.0 9.5 12.5
+b4 SP, optimised a4 SP 11.2 12.6 11.8 13.6

each located at one end of the dipoles and powered in series (having one spool piece
type in the outer channel corresponding to the 1st, 5th, 6th and 7th octant and
one in the inner channel corresponding to the remaining octants). The correction
of the bias of the erect octupole component with erect octupole spool pieces in half
of the machine fully restored the DA of the “target” error table (see Table 3, “+b4
spool piece” case). Nevertheless, it was not sufficient to suppress the bias of the
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FIGURE 5. Strength of resonances for LHC optics version 5 due to skew octupole errors before
and after correction.

skew octupole component following the same procedure (see Table 3, “+a4 SP”
and “+b4 SP, a4 SP” cases).

A resonance analysis with GRR has revealed that the skew octupoles mainly
excite the (1, –1) resonance. In order to cancel the effect of the skew octupoles,
a minimisation procedure was followed, by producing maps parameterised by the
strength of the skew octupole spool pieces. The minimisation of the first order
coefficients f1012, f2101 of the (1, –1) resonance with skew octupole spool pieces
positioned in the outer channel of the LHC lattice and powered in series was very
beneficial. This can be easily seen in Fig. 5 where we present the strength difference
of some important resonances between the “target” error table and the tables with
the large skew octupole bias before and after the correction. The resonances in
this graph are evaluated at an amplitude of 8σ and for amplitude ratio of 15◦. All
points represent the average values over 60 seeds and the error bars correspond
to the standard deviation. The effect of the correction of the (1, –1) resonance
is indeed very visible. The resonance strength are considerably reduced after the
correction with the skew octupole spool pieces. In particular, the (1, –1) resonance
strength decreases by a factor of three so that there is approximately no difference
left with the one of the “target” error table. This improvement was verified by the
tracking studies, where the D.A. is fully restored after the correction with respect
to the one of the initial “target” error table (Table 3, “optimised a4 SP” and “+b4
SP, optimised a4 SP” cases).



III CONCLUSIONS

We followed a resonance analysis procedure in order to understand the reasons
which limit the DA of LHC optics version 4 and 5. For this, we used the standard
Normal Form approaches of Hamiltonian perturbation theory assisted by semi-
analytical numerical methods. For the accurate evaluation and representation of
the resonance driving terms, we constructed a simple numerical tool, the Graphical
Representation of Resonances. Using the GRR tool, we were able to identify the
deteriorating effect of the large errors in some special quadrupoles with respect to
the DA of LHC optics version 5. Further, we identified the (1, –1) resonance which
was correlated with the drop of the DA after the introduction of a large skew oc-
tupole bias in the dipoles of the LHC optics version 5 “target” error table. In order
to recover the lost DA, we used octupole spool pieces which minimised the effect of
this resonance. Particle tracking has shown that, by following the proposed correc-
tion schemes, the DA of the LHC models under study was considerably improved.
We can thus be confident that this type of resonance analysis can be used as a
guide in order to achieve an efficient correction of accelerator models. In the near
future, the GRR tool will be appropriately standardised and documented in order
to be accessible for anyone desiring to perform this type of resonance analysis in a
lattice of interest.
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