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Abstract

This paper describes the extension of the Modified Observables technique in
estimating simultaneously more than one Trilinear Gauge Couplings. The opti-
mal properties, unbiasedness and consistent error estimation of this method are
demonstrated by Monte Carlo experimentation using ℓνjj four-fermion final state
topologies. Emphasis is given in the determination of the expected sensitivities in
estimating the λγ − ∆gz

1 and ∆kγ − ∆gz
1 pair of couplings with data from the 183

GeV LEPII run.
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1 Introduction

It has been shown [1], that by expanding the probability distribution function (p.d.f.) and
keeping only linear terms with respect to the Trilinear Gauge Couplings (TGC’s), one can
build estimators (the Optimal Observables) which are linear functions of the couplings
around the expansion point. Furthermore, this linear dependence can be easily evaluated
by theory. An efficient estimation of the couplings can be performed by inverting these
linear relations. Such an estimation has the same accuracy as the unbinned maximum
likelihood technique.

The method of the Optimal Observables has been extended [2] to incorporate the in-
fluence of the detector effects to the measurement of the kinematical vectors. An iterative
procedure has been also introduced to ensure the consistency and optimality of the tech-
nique, independent of the choice of the parametric expansion point. In the same paper,
the optimal properties of this (Modified Observables) method have been demonstrated
for one coupling fits to the 172 GeV LEPII data.
In the meanwhile larger data samples are available from the 183 GeV LEPII run and
the application of the Modified Observable technique to a simultaneous estimation of two
couplings is very relevant.

This paper concentrates on the simultaneous estimation of two TGC’s by employing
phenomenological models [3] where two couplings could deviate freely from their Stan-
dard Model (S.M.) values whilst certain constraints are imposed on the other couplings.
This paper is dealing with WW events produced in e+e− annihilation, where one of the
W’s decays leptonically whilst the other decays in two jets. A large sample of 60000
WW → ℓνqq̄ Monte Carlo (M.C.) events was used to evaluate cross sections and other
statistics, as well as their dependence on the coupling values by the M.C. reweighting
procedure [4]. These events have been produced either by PYTHIA [5] (employing only
the CC03 production diagrams) or by EXCALIBUR [6] (full 4-fermion production) at dif-
ferent coupling values and they have undergone full detector simulation by the DELSIM
[7] simulation programme. Moreover these events have been reconstructed and selected
by the same analysis algorithms as the real data [8] [9] accumulated with the DELPHI
[10] detector. The background contamination has been simulated by the production of
the physics channels [8] [9] [11] which produce final state topologies indistinguishable from
the signal WW events.

This paper is organised as follows: the statistical technique and its asymptotic proper-
ties are described in Section 2, whilst numerical results obtained by M.C. experimentation
are presented in Section 3. Finally, Section 4 contains the comparison with other tech-
niques and the conclusions.

2 Modified Observables in Multi-Parametric Fits

The present study is focusing on two parameter (TGC’s) estimations but this analysis
can be extended to any number of parameters in a straight forward way.

The probability distribution function, with respect to the observed kinematical vector
~Ω, is expressed [2] [3] as a function of the two couplings α1 and α2 as
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P (~Ω; α1, α2) =
∫ dσ(~V ; α1, α2)/d~V

σtot(α1, α2)
· ǫ(~V ) · R(~V ; ~Ω) · d~V

=
∫

∑2
i=0

∑2−i
j=0 cij(~V )αi

1α
j
2

∑2
i=0

∑2−i
j=0 Sijαi

1α
j
2

· ǫ(~V ) · R(~V ; ~Ω) · d~V (1)

where

~V is the true kinematical vector which describes the events

ǫ(~V ) is the efficiency of observing an event produced at ~V

R(~V ; ~Ω) is the resolution function, i.e. the probability the true kinematical vector ~V to

be measured as ~Ω

dσ(~V ;α1,α2)

d~V
is the differential cross-section

σtot(α1, α2) is the total cross-section and

Sij =
∫

cij(~V )d~V .

In [2], it has been shown that the Optimal Observables including detector effects, in
the neighbourhood of the parametric point {α0

1, α
0
2}, are defined as the mean values of

the following quantities:

z1(~Ω; α0
1, α

0
2) =

∫

y01(~V ; α0
1, α

0
2)ǫ(

~V )R(~V ; ~Ω)d~V
∫

y00(~V ; α0
1, α

0
2)ǫ(~V )R(~V ; ~Ω)d~V

z2(~Ω; α0
1, α

0
2) =

∫

y10(~V ; α0
1, α

0
2)ǫ(

~V )R(~V ; ~Ω)d~V
∫

y00(~V ; α0
1, α

0
2)ǫ(~V )R(~V ; ~Ω)d~V

(2)

where the functions yκ,λ(~V ; α0
1, α

0
2) are expressed in terms of the differential cross

section coefficients as:

y00(~V ; α0
1, α

0
2) = c00(~V ) + c01(~V )α0

1 + c10(~V )α0
2 + c20(~V )α02

1 + c02(~V )α02
2 + c11(~V )α0

1α
0
2

y10(~V ; α0
1, α

0
2) = c10(~V ) + 2c20(~V )α0

1 + c11(~V )α0
2 (3)

y01(~V ; α0
1, α

0
2) = c01(~V ) + 2c02(~V )α0

2 + c11(~V )α0
1

It has also been shown that the Optimal Observables are linear functions of the cou-
plings α1 and α2 in the neighbourhood of (α0

1, α
0
2)

1 i.e.:

∫

zk(~Ω; α0
1, α

0
2)P (~Ω; α1, α2)d~Ω =

∫

zk(~Ω; α0
1, α

0
2)P (~Ω; α0

1, α
0
2)d

~Ω +

2
∑

i=1

[
∫

zi(~Ω; α0
1, α

0
2)zk(~Ω; α0

1, α
0
2)P (~Ω; α0

1, α
0
2)d

~Ω −

(
∫

zi(~Ω; α0
1, α

0
2)P (~Ω; α0

1, α
0
2)d

~Ω ·
∫

zk(~Ω; α0
1, α

0
2)P (~Ω; α0

1, α
0
2)d

~Ω)] · (αi − α0
i ) (4)

1This is easily proven by expanding (1) in a Taylor series around { α0
1, α

0
2} and evaluating the mean

values of (2) ignoring higher than first order in α1 − α0
1 and α2 − α0

2 terms.
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where k=1,2
Thus, given a set of N experimentally measured vectors ~Ωn (n=1,. . . ,N) the left hand

side of (4) can be approximated as:

∫

zk(~Ω; α0
1, α

0
2)~P (~Ω; α1, α2)d~Ω ≃ 1

N

N
∑

n=1

zk(~Ωn; α0
1, α

0
2) (5)

The right hand side of (4) can be calculated using the theoretical expression of the cross
section as a function of the couplings, provided that the resolution and efficiency func-
tions can be parametrized analytically. Then, a simple inversion of the linear system of
equations (4) results to an estimation of the coupling values with the same sensitivity as
with the maximum likelihood technique.
In practice, neither the efficiency nor the resolution function can be parametrized analyt-
ically. However, it has been shown that a very succesfull approximative way of using the
basic concepts of the Optimal Observables in one TGC parameter estimations [2] exists.
That is the Modified Observable technique, which in this paper is extended to more than
one TGC simultaneous estimations.

Following the same steps as in [2], the functional forms 2 of z1(~Ω; α0
1, α

0
2) and

z2(~Ω; α0
1, α

0
2) in (2) are approximated as:

z1,2(~Ω; α0
1, α

0
2) ≃

y01,10(~Ω; α0
1, α

0
2)

y00(~Ω; α0
1, α

0
2)

(6)

These are very good approximations, as indicated in figure 1 where the mean values

of the quantities
y01,10(~V ;α0

1
,α0

2
)

y00(~V ;α0

1
,α0

2
)

are compared with the quantities
y01,10(~Ω;α0

1
,α0

2
)

y00(~Ω;α0

1
,α0

2
)

, for several

expansion points α0
1 and α0

2. These mean values have been evaluated by using M.C. events

produced with coupling values α0
1 and α0

2 and being observed with kinematical vector ~Ω

corresponding to a bin of
y01,10(~Ω;α0

1
,α0

2
)

y00(~Ω;α0

1
,α0

2
)

.

The functional form of z1,2(~Ω; α0
1, α

0
2) in (6) is independent of phase space and other

multiplicative (e.g. Initial State Radiation) factors and it was calculated by using the
ERATO [12] four-fermion matrix element package by folding the kinematical information
corresponding to the two hadronic jets.

Instead of calculating the terms of the right hand side of (4), the dependence of the

mean values of z1,2(~Ω; α0
1, α

0
2) (in the following called Modified Observables ) on the pro-

duction values of the couplings has been evaluated by reweighted M.C. [4] integration.
Figure 2 shows the surfaces f1(α1, α2; α

0
1, α

0
2) and f2(α1, α2; α

0
1, α

0
2) (in the following called

calibration surfaces), which express the dependence of the product of each Modified Ob-
servable with the number of expected events for luminosity of 50.23 pb−1, as a function
of the coupling values, for three initial parametric points. These products (instead of the
Modified Observables themselves) are going to be used as estimators of the couplings,
gaining more efficiency by including the extra information of the total number of the
observed events [1].

2z1,2(~Ω; α0
1, α

0
2) are defined in [2] as the mean values of the quantities

y01,10(~V ;α0

1
,α0

2
)

y00(~V ;α0

1
,α0

2
)

corresponding to

kinematical vectors ~V produced with coupling values α0
1 and α0

2 and being observed in the phase space

element ~Ω · d~Ω.
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The couplings are estimated by comparing the calibration surfaces to the experimental
measurements, that is to the products of the measured values of the Modified Observables
with the number of observed events, which are simply expressed as:

d1(α
0
1, α

0
2) =

N
∑

i=1

z1(~Ωi; α
0
1, α

0
2)

d2(α
0
1, α

0
2) =

N
∑

i=1

z2(~Ωi; α
0
1, α

0
2) (7)

Such comparisons are shown in figures (3) and (4) between a large independent set of M.C.
events used as a data sample and three pairs of calibration surfaces (f1(α1, α2; α

0
1, α

0
2) and

f2(α1, α2; α
0
1, α

0
2)) evaluated at three different expansion points {α0

1, α
0
2}. In these figures

the intersections of the calibration surfaces with the planes defined by the experimental
measurements, d1(α

0
1, α

0
2) and d2(α

0
1, α

0
2), are also shown. It is worth noticing that the

estimation, which is the common point of the pair of lines in figures 3c, 4c and 4f, is
independent from the expansion point. This fact reflects one of the basic properties of
the technique to be globally unbiased.
However, the evaluation of the estimation confidence intervals is more complicated, due
to the statistical correlations between the calibration surfaces as well as between the mea-
sured quantities d1(α

0
1, α

0
2) and d2(α

0
1, α

0
2).

The covariant matrices M(α1, α2; α
0
1, α

0
2) (expressing the statistical accuracy of the cali-

bration surface evaluation at the expansion point { (α0
1, α

0
2) } ) and V (α0

1, α
0
2) (which is

the covariant matrix corresponding to the measured quantities d1(α
0
1, α

0
2) and d2(α

0
1, α

0
2))

are calculated from the kinematical vectors of the reweighted M.C. and real events re-
spectively.
Then, assuming gaussian errors, the probability that the selected event sample supports
coupling values equal to α1 and α2, is given by the Likelihood function:

L =
1

2π |W | · exp[−1

2

(

~D(α0
1, α

0
2) − ~F (α1, α2; α

0
1, α

0
2)
)T ·

W−1 ·
(

~D(α0
1, α

0
2) − ~F (α1, α2; α

0
1, α

0
2)
)

] (8)

where the vector ~D(α0
1, α

0
2), the vector calibration function ~F (α1, α2; α

0
1, α

0
2) and the co-

variant matrix W (α1, α2; α
0
1, α

0
2) are defined as follows:

~D(α0
1, α

0
2) =

(

d1(α
0
1, α

0
2)

d1(α
0
1, α

0
2)

)

(9)

~F (α1, α2; α
0
1, α

0
2) =

(

f1(α1, α2; α
0
1, α

0
2)

f2(α1, α2; α
0
1, α

0
2)

)

(10)

W (α1, α2; α
0
1, α

0
2) = M(α1, α2; α

0
1, α

0
2) + V (α0

1, α
0
2) (11)

Maximization of (8), with respect to α1 and α2, provides the estimation of the coupling
values, whilst the confidence intervals are evaluated3 by the asymptotic gaussian properties

3 −(logLmax − 1.205) for 70% confidence intervals
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of the estimation distribution [13].
A set of M.C. events produced with Standard Model coupling values ( 6000 events at
{λγ = 0, ∆gz

1 = 0}), was used as data sample to demonstrate the asymptotic properties
of such estimations. The λγ, ∆gz

1 couplings were simultaneously estimated by maximizing
the likelihood function of (8) and the estimated coupling values are shown as functions
of the expansion point in figure (5). The fact that the estimations are close (within
the statistical errors) to the true coupling values, for the whole region of the expansion
points, emphasizes the optimal properties of the method. However, the optimal estimated
error is achieved [1] at expansion points close to the estimated values, where the linear
dependance of the Optimal Variables holds. This is shown in figure 5c where three 70%
confidence limit contours corresponding to different expansion points are presented for
comparison. Obviously the optimum estimated sensitivity is achieved in the case where
α0

1 = α̂1 and α0
2 = α̂2, where α̂1 and α̂2 are the estimated values. The fact that the above

condition also guarantees a correct error estimation, is demonstrated in the next section
by Monte Carlo experimentation.

3 Numerical results

A series of M.C. experiments were used to demonstrate the optimal properties of the
Modified Observable technique when two TGC’s are simultaneously estimated by fitting
finite statistical samples.

Fully reconstructed four fermion EXCALIBUR events, produced with S.M. coupling
values, were mixed with background events to form data sets corresponding to the lu-
minosity of 50.23 pb−1 accumulated by the DELPHI detector at

√
s ≃ 183 GeV. Each

set consisted of 82, 101 and 39 events in average with an electron, muon and tau lep-
ton in the final state, respectively. The average background contribution to each of the
above subsets were 8.0, 1.4 and 8.3 events. The specific event multiplicity of each data
set was chosen to follow poissonian distributions. Another set of fully four fermion and
background reconstructed events, produced and selected as described in Section 1, was
used to calculate cross sections and probabilties as well as their dependence on the TGC’s
by reweighted Monte Carlo integration. In fitting the data sets, the (λγ, ∆gZ

1 ) and the
(∆kγ, ∆gZ

1 ) TGC schemes were used [3] and a simultaneous estimation of the free cou-
plings was performed.
In order to take into account the differences in the production dynamics, the selection
efficiencies and the background contamination between the final states (ℓνjj, ℓ = µ, e, τ)

the measured vector ~D(α0
1, α

0
2) was defined as follows:

~D(α0
1, α

0
2) =

(

∑3
ℓ=1(d

ℓ
1(α

0
1, α

0
2) − Bℓ

1)
∑3

ℓ=1(d
ℓ
2(α

0
1, α

0
2) − Bℓ

2)

)

(12)

Where ℓ = 1, 2, 3 stands for the three lepton tags whilst Bℓ
1, Bℓ

2 denotes the expected
contribution of the background events to the measurement.
Similarly the calibration surface vector was defined as:

~F (α1, α2; α
0
1, α

0
2) =

(

∑3
ℓ=1 f ℓ

1(α1, α2; α
0
1, α

0
2)

∑3
ℓ=1 f ℓ

2(α1, α2; α
0
1, α

0
2)

)

(13)
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The asymptotic property of the log likelihood ratio [13] was used to demonstrate
the unbiasedness of the proposed techniques. That is, the χ2 (n.d.f.=2) probability of
obtaining the specific value of λ, where

λ = −2 · log
L(αtrue

1 , αtrue
2 )

L(α̂1, α̂2)
(14)

in fits of the data sets should follow an equiprobable distribution.
Furthermore, the consistency in evaluating the error matrix of the estimated couplings
(Ê) in every fit, is checked by using the other asymptotic property [13] of the likelihood
estimations to be gaussian distributed around the true parameter values. Thus for an
unbiased estimation of the central values and for a correct error matrix evaluation the
quantity δ:

δ =

(

â1 − atrue
1

â2 − atrue
2

)

· Ê ·
(

â1 − atrue
1 â2 − atrue

2

)

(15)

should follow a χ2(n.d.f.=2) distribution. This property is demonstrated by presenting
the χ2(n.d.f.=2) probabilities to obtain specific δ values in fitting the data sets.
The above tests of λ and δ χ2-probability distributions can be considered as extensions
of the sampling and pull distribution tests respectively, commonly used in one parameter
fits.

Due to the limited number of the available M.C. events, only sixty independent data
sets could be constructed. Although the number of the data sets is enough to show the
optimal properties of the proposed technique, the bootstrap procedure 4 [14] has been
also used to construct a large number of semicorrelated data sets.

Results of estimating the (λγ, ∆gZ
1 ) and (∆kγ , ∆gZ

1 ) couplings with the Modified Ob-
servable technique are shown in figure 6. In both TGC schemes the optimal properties
of the technique in estimating central values and error matrices are obvious. Specif-
ically the sixty completely uncorrelated samples produce χ2(n.d.f. = 2) probabilities
distributed with mean values close to 0.5 and root mean squares close to 1/

√
12, whilst

the equiprobable behaviour of the χ2(n.d.f. = 2) probabililty values obtained by fitting
the bootstrapped samples is striking.

The χ2 behaviour of the λ and δ quantities is further used to quantify the sensitivity
of this technique. Indeed such property [13] ensures that the estimated values {α̂1, α̂2}
follow a two dimensional gaussian distribution with a covariant matrix which characterises
the average sensitivity in estimating the couplings. The covariant matrix elements (i.e.
the variances and correlations of the couplings estimations) are found by fitting a 2-dim
gaussian to the estimated coupling values from the 60 independent sets. These average
sensitivities are summarized in Tables 1 and 2 for (λγ, ∆gZ

1 ) and (∆kγ, ∆gZ
1 ) estimations.

The same uncorrelated M.C. sets of events were treated as if they have been collected by a
“perfect” detector and the two pairs of couplings were estimated by an unbinned extended
likelihood fit as well as by the Modified Observable technique 5. The average sensitivities

4The bootstrap procedure advocates that one can select randomly N events to form a set from
a pool of K available events, and repeat the random selection to construct many bootstrapped sets.
The distribution of statistics evaluated from each of the bootstrapped set approximates well the true
distribution, as long as K is big enough compared to N .

5 The true kinematical vector ~V of each event was used to calculate the matrix element and the
calibration surfaces. In the following, when ~V is used, the methods and their results will be named as
“perfect”.
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obtained from these estimations (“perfect” detector extended unbinned likelihood and
“perfect” detector Modified Observables) are also shown for comparison in Tables 1 and
2 where the equivalence of the Modified Observables to the likelihood fit is obvious. The
loss of sensitivity in the case of a realistic detector is a natural consequence of the loss
of information due to the imperfect experimental resolution. However, the consistent
inclusion of the detector effects in the realistic case guaranties consistent central value
and confidence interval estimation. It is also worth noticing that in the realistic case, the
evaluated errors and correlations in every individual Modified Observable estimation are
gaussian distributed with means very close to the average sensitivities, as it is shown in
figure 7.

As a last point, figure 8 shows the sampling, the pull and the error distributions of
a single coupling (∆kγ) estimation. Similar estimations of the same coupling [2], using
172 GeV data samples, have been found to exhibit non gaussian tails. However, it was
advocated that with small event samples, where the statistical error is large compared
to the linear part of the calibration curves, the evaluated error from the fits is expected
to underestimate the sensitivity of the technique. Obviously such pathologies are absent
when the relative statistical error is smaller, as in the case of the data sample accumulated
at 183 GeV.

4 Conclusion

In this paper the Modified Observables technique [2] was generalized in order to be applied
for a simultaneous estimation of two couplings by deploying the appropriate TGC scheme
[3]. The technique,including the detector effects and the background contribution, was
demonstrated to be asymptotically a consistent estimator. This consistency was also
shown to be independent of the initial expansion values. However the optimal sensitivity
is achieved for expansion points close to the estimated values of the couplings.
The properties of the technique, when fitting finite size event samples, were investigated
by M.C. experimentation. Sets of M.C. events, of the same size as the data samples
accumulated by each of the LEP experiments at

√
s ≃ 183 GeV, were fitted to estimate

the {λγ, ∆gz
1} and {∆κγ , ∆gz

1} pairs of couplings. The distributions of these estimations
demostrated the optimal behaviour (unbiasedness, consistent error matrix evaluation) of
the technique. Moreover a comparison with the unbinned extended likelihood results
shows that the Modified Observable estimators are practically reaching the maximum
sensitivity. These two methods are completely equivalent at the “perfect” detector case
(tables 1 and 2). A deterioration of the sensitivity (up to 20%) when dealing with realistic
detectors is due to the imperfect resolution of the measuring apparatus.
A comparison [9] between the sensitivity of several multiparametric TGC estimators,
which include detector effects, shows that the Modified Observables are equivalent to
the Iterative Optimal Variables and Multidimensional Clustering techniques [15] whilst
outperform classical methods of one or two dimensional binned likelihood fits.
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Method λγ - ∆gz
1

σλγ
σ∆gz

1
ρ

“Perfect” Extended Likelihood 0.21 ± 0.01 0.20 ± 0.01 -0.73 ± 0.06
“Perfect” Modified Observables 0.22 ± 0.01 0.21 ± 0.01 -0.74 ± 0.06

Modified Observables 0.25 ± 0.01 0.23 ± 0.01 -0.74 ± 0.06

Table 1: Comparison of the statistical properties of the technique proposed in this paper
with the unbinned extended likelihood estimations.

Method ∆kγ - ∆gz
1

σ∆kγ
σ∆gz

1
ρ

“Perfect” Extended Likelihood 0.35 ± 0.03 0.14 ± 0.01 -0.22 ± 0.08
“Perfect” Modified Observables 0.38 ± 0.03 0.13 ± 0.01 -0.25 ± 0.09

Modified Observables 0.44 ± 0.03 0.15 ± 0.01 -0.28 ± 0.10

Table 2: Comparison of the statistical properties of the techniques proposed in this paper
with the unbinned extended likelihood estimations.
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Figure 1: The mean values (see text) of the quantities
y10(~V ;α0

1
,α0
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)

[(a),(c),(e)] and

y01(~V ;α0

1
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2
)
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)

[(b),(d),(f)] as functions of the
y10(~Ω;α0

1
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)

y00(~Ω;α0
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,α0
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)

and
y01(~Ω;α0

1
,α0

2
)

y00(~Ω;α0

1
,α0

2
)

respectively. These

mean values correspond to kinematical vectors produced with couplings:
α1(≡ ∆gz

1) = 0, α2(≡ λγ) = 0 in (a) and (b)
α1(≡ ∆gz

1) = 0, α2(≡ λγ) = −1 in (c) and (d)
α1(≡ ∆gz

1) = 0, α2(≡ λγ) = +1 in (e) and (f)
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Figure 2: The f1(α1, α2; α
0
1, α

0
2), f2(α1, α2; α

0
1, α

0
2) calibration surfaces for several expan-

sion points α0
1(≡ ∆gz

1) = 0 , α0
2(≡ λγ) = 0 in (a) and (b), α0

1(≡ ∆gz
1) = 0, α0

2(≡ λγ) = +1
in (c) and (d), α0

1(≡ ∆gz
1) = 0, α0

2(≡ λγ) = −1 in (e) and (f).
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Figure 3: The calibration surfaces f1(α1, α2; α
0
1, α

0
2), f2(α1, α2; α

0
1, α

0
2) as functions of

the couplings α1 = ∆gz
1 , α2 = λγ at the expansion point {α0

1 = 0, α0
2 = 0}. The

horizontal shadowed planes correspond to the experimental measurements. The two lines
representing the intersection of the calibration surfaces with the measured values are
shown in (c).
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Figure 4: The calibration surfaces f1(α1, α2; α
0
1, α

0
2), f2(α1, α2; α

0
1, α

0
2) as functions of the

couplings α1 = ∆gz
1, α2 = λγ at the expansion points {α0

1 = 0, α0
2 = −1} in [(a),(b)]

and {α0
1 = 0, α0

2 = +1} in [(d),(e)]. The horizontal shadowed planes correspond to the
experimental measurements. The two lines representing the intersection of the calibration
surfaces with the measured values are shown in (c) and (f) for the two pairs of expansion
points, respectively.
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Figure 5: In [(a) and (b)] the estimated α1 = ∆gz
1 and α2 = λγ coupling values as

functions of the expansion points are shown. In (c) the evaluated 70% C.L. contours for
α0

1 = 0, α0
2 = 0 (solid points), α0

1 = 0.2, α0
2 = −0.6 (squares) and α0

1 = −0.2, α0
2 = 0.6

(stars) are compared.
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Figure 6: The distributions of χ2 (n.d.f.=2) probabilities in obtaining λ [(a),(b),(e),(f)]
and δ [(c),(d),(g),(h)] values in {λγ,∆gz

1} [(a),(b),(c),(d)] and {∆κγ ,∆gz
1} [(e),(f),(g),(h)]

estimations by the Modified Observables technique. The lines with slopes consistent with
zero in (b),(d),(f) and (h) are first degree polynomial fits to the bootstrap results.
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Figure 7: Confidence interval estimations with the Modified Observables technique. The
distributions of errors [(a),(b),(d),(e)] and correlations [(c),(f)] in estimating the {λγ, ∆gz

1}
[(a),(b),(c)] and {∆κγ , ∆gz

1} [(d),(e),(f)] pair of couplings. The data points correspond to
the 60 independent data sets whilst the histograms to the bootstrap results. The arrows
indicate the average sensitivities summarized in Tables 1 and Table 2.
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Figure 8: The sampling, pull and error distribution of ∆κγ estimation with the Modified
Observable technique.

17


