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Two-particle like-sign and unlike-sign correlations including Coulomb final state
interactions are calculated for Gaussian wave packets emitted from a Gaussian
source. We show that the width of the wave packets can be fully absorbed into
the spatial and momentum space widths of an effective emission function for plane
wave states, and that Coulomb final state interaction effects are sensitive only
to the latter, but not to the wave packet width itself. Results from analytical
and numerical calculations are compared with recently published work by other
authors.

1. Introduction. – To analyze the geometry and dynamics of the collision
region, two-particle correlations C(q, K) of like-sign and unlike-sign hadrons
have been studied extensively in relativistic heavy ion collisions at AGS 1 and
CERN SPS 2,3 energies. They show q-dependent structures at relative pair
momenta |q| < 100 MeV. These originate mainly 4 from (i) final state inter-
actions (which for pions at |q| < 100 MeV are dominated completely by the
Coulomb force) and (ii) the quantum statistics of identical particles.

Practical attempts to reconstruct space-time information from two-pion
correlation data in momentum space so far exploit mostly the quantum statis-
tical Hanbury Brown – Twiss (HBT) effect between identical bosons3,5,6. This
requires a prior subtraction of final state Coulomb interaction effects from the
measured correlation functions, with proper account for the finite size of the
emission region 4,7−11. Up to now this is done directly in the experimental
analysis, either by taking experimental unlike-sign pion correlations to correct
the like-sign ones 3, or by a model calculation for the Coulomb effect expected
for a finite size emission region 1.

This approach was recently questioned by Merlitz and Pelte 12−14. From
a numerical analysis based on Gaussian wave packets emitted from a Gaus-
sian source, they concluded that 12 “the expected Coulomb distortion in the
momentum correlation . . . becomes unobservable” and that therefore “exper-
imental data, which are published after Coulomb correction, are wrong for
small momentum differences”. If correct, this conclusion would invalidate a
substantial part of the existing work on the analysis of two-particle correlation
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data since it implies that either (i) any attempt to base a space-time inter-
pretation of identical two-particle correlations on Coulomb corrected data is
ill-founded or that (ii) any attempt to describe the particle emitting source in
heavy ion collisions by a set of Gaussian wave packets is inconsistent.

This dramatic perspective has led us to reconsider the calculation of two-
particle correlations for Gaussian wave packets. Following Merlitz and Pelte we
describe the particle emitting source in terms of a distribution of wave packet
centers and a characteristic wave packet width σ of the emitted particles. The
emitted Gaussian wave packets are propagated into the detector under the
influence of mutual Coulomb final state interactions. We derive analytical ex-
pressions which show that the wave packet size σ can always be absorbed by a
redefinition of the model parameters characterizing the source size. For Gaus-
sian source models, two-particle correlation measurements cannot differentiate
between “source size” and “wave packet width”. In a limiting case we further
prove analytically the equivalence of the Gaussian wave packet formalism and
the usually adopted plane wave calculations irrespective of the size of the wave
packet width. These analytical calculations show quite generally that the prob-
lem pointed out by Merlitz and Pelte does not exist. Their results disagree
with our numerical calculations as well as with analytical formulae which we
derive without approximations from the same starting point as the calculation
presented in Ref. 12.

2. Unlike-sign pion correlations. – Our starting point is a set of Gaussian
one-particle wave packets 16−19

fi(x, t0) =
1

(πσ2)3/4
e−(x−ři)

2/(2σ2)+ip̌i·x , (1)

which are centered at initial time t = t0 at phase-space points (ři, p̌i). We ex-
pand the time evolution of the corresponding two-particle state Ψij(x1, x2, t0)
= fi(x1, t0) fj(x2, t0) in terms of plane waves φp1,p2 ,

Ψij(x1, x2, t) =
∫

d3p1

(2π)3
d3p2

(2π)3
Aij(p1, p2, t)φp1,p2(x1, x2, t) , (2)

φp1,p2(x1, x2, t) = e−iEt φ2K(X)φq/2(r) ≡ e−i(E1+E2)t e2iK·X e
i
2q·r,(3)

which we write in terms of center of mass coordinates X = 1
2 (x1 + x2), K =

1
2 (p1 + p2), and relative coordinates r = (x1 − x2), q = (p1 − p2). The
probability Pij for detecting at time t → ∞ the two particles prepared in the
state Ψij with momenta p1 and p2 is given by 11

Pij(p1, p2) = Pij(q, K) = lim
t→∞ |A

∗
ij(p1, p2, t)|2 , (4)
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lim
t→∞Aij(p1, p2, t) = lim

t→∞〈e
−iĤ0(t−t0)φp1,p2(t0) | e−iĤ(t−t0)Ψij(t0)〉

= 〈φ2K |Ψpair
ij 〉 〈Ω+ φq/2 |Ψrel

ij 〉 . (5)

Here we separated the state Ψij(x1, x2, t0) into relative and center of mass
wave functions,

Ψpair
ij (X) =

1
(πσ2)3/4

e−(X−X̌ij)
2/σ2+2iǨij ·X , (6)

Ψrel
ij (r) =

1
(πσ2)3/4

e−(r−řij)
2/(4σ2)+ i

2 q̌ij ·r , (7)

where X̌ij , Ǩij , řij , q̌ij are the corresponding center-of-mass and relative co-
ordinates constructed from the wave packet centers. In (5) we have also intro-
duced the Møller scattering operator Ω+ = limt→∞ eiĤ(t−t0) e−iĤ0(t−t0) for the
final state interaction hamiltonian Ĥ = Ĥ0+V (r), Ĥ0 = − 1

4m∆X− 1
m∆r. This

Møller operator maps the plane wave φq/2 onto the solution of the Lippmann-
Schwinger equation for the corresponding stationary scattering problem. For
two-particle Coulomb interactions this is the Coulomb scattering wave(

Ω+ φq/2

)
(r) = Φcoul

q/2 (r) = Γ(1− iη) e
1
2 πη e

i
2q·r F (iη; 1; iz−) , (8)

z± = 1
2 (qr ± q · r) , η =

me2

4πq
, (9)

where e2/4π = α = 1/137, r = |r|, q = |q|, F (iη; 1; iz−) is the confluent
hypergeometric function, and η is the Sommerfeld parameter. Eq. (8) applies
for pairs with opposite charges; for like-sign pairs one replaces η 7→ −η. With
the help of Eq. (8), the calculation of the amplitudes (5) is reduced to a six-
dimensional integral.

2.1. Gaussian source model. – We consider a toy model of simultaneous
particle emission at time t = t0 for which initially the wave packet centers are
distributed with Gaussians of widths R and ∆ in coordinate and momentum
space, respectively. It can be specified by the following normalized distributions
of relative distances and pair coordinates:

Srel(ř, q̌) =
1

(4πR∆)3
e−

ř2

4R2− q̌2

4∆2 , Spair(X̌ , Ǩ) =
1

(πR∆)3
e−

X̌2

R2 − Ǩ
2

∆2 . (10)

With the choice R2 = R2
s/2, ∆2 = m T , and σ2 = 2 σ2

0 , this model coincides
with the one considered by Merlitz and Pelte 12. We calculate the unlike-sign
two-particle correlator via the two-particle spectrum Pij(p1, p2) of Eq. (4),
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averaged over the distributions (10) and normalized to the corresponding spec-
trum for pairs of non-interacting particles:

C+−(q, K) =
I int(q, K)

Inonint(q, K)
, (11)

I(q, K) =
∫

d3řijd
3q̌ijd

3X̌ijd
3ǨijSrel(řij , p̌ij)Spair(X̌ ij , Ǩij)Pij(q, K).

(12)

For the non-interacting case Eq. (12) must be evaluated with Pnonint
ij which is

obtained by replacing in the amplitude (5) the relative Coulomb wave Ω+ φq/2

by the plane wave φq/2. Since the center of mass coordinate is not affected by
the two-particle final state interaction, the integrations over Spair(X̌ij , Ǩij)
drop out in the ratio (11), and the correlator C+−(q, K) becomes independent
of the pair momentum K. One finds

C+−(q) = G(−η)
(

∆̄
4πR̄

)3

e
q2

4∆̄2

∫
d3r e−

r2

8R̄2 + i
2r·q F (iη; 1; iz−)

×
∫

d3r′ e−
r′

8R̄2− i
2r

′·q [F (iη; 1; iz′−)]∗ e
−
(

∆̄2
4 − 1

16R̄2

)
(r−r′)2

, (13)

where G(η) = |Γ(1 + iη)e−
1
2 πη|2 = 2πη/(e2πη − 1) is the Gamow factor. It is

important that this correlator depends only on the parameter combinations

R̄2 = R2 + σ2

2 , ∆̄2 = ∆2 + 1
2σ2 . (14)

This shows that for Gaussian models of particle emission, the wave packet
width σ can be absorbed in a redefinition of the model parameters. There is
no measurement which allows to determine σ independent of R and ∆. Of
course, the specific σ-dependence in (14) still constrains the values which R̄
and ∆̄ can take. In particular, R̄, ∆̄ always satisfy the uncertainty relation
R̄∆̄ ≥ h̄/2, rendering the exponent of the last term in (13) always negative.

In the absence of final state interactions, the dependence of the correlator
on the parameter combinations (14) has been noted repeatedly 16,18,20. The
momentum spectra and correlations are entirely determined by the “effective”
emission function 18,20

Seff(r, p) =
∫

d3ř d3p̌ S(ř, p̌)Sw.p.(r − ř, p − p̌) , (15)

which is a folding integral between the distribution of wavepacket centers
S(ř, p̌) and the Wigner density Sw.p. of a single particle wave packet. For

4



Gaussian source models, Seff depends on R̄ and ∆̄ only 20. The same holds
true in the presence of final state interactions where the correlator can be
written for arbitrary model distributions S(ř, p̌) as a quite involved expression
depending on Seff only (see Eq. (60) in Ref. 11). Our result (13) is an explicit
representation of this general relation, obtained for the Gaussian source models
(10). It allows further analytical and numerical studies:

2.2. Limiting cases. – In two interesting limits the correlator C+−(q) can
be further simplified analytically. Using lim∆̄→∞ (∆̄2/4π)3/2 exp

[
− ∆̄2

4 (r− r′)2
]

= δ(3)(r− r′) we find

lim
∆̄→∞

C+−(q) =
1

(4πR̄2)3/2

∫
d3r e−

r2

4R̄2 |Φcoul
q/2 (r)|2 . (16)

This expression, first written down by Koonin 23, is the usually adopted start-
ing point for plane wave calculations1−3,7,8,10,21−23; it was shown by Baym and
Braun-Munzinger10 to be well approximated by a semi-classical approach. The
limit ∆̄ → ∞ can be taken for arbitrary values of the wave packet width σ
and is equivalent to the limit ∆ →∞ which describes an emission function S
without momentum dependence. In this limit, the correlator C+−(q) for simul-
taneously emitted Gaussian wave packets coincides exactly with the starting
point of conventional plane wave calculations 10,11, irrespective of the size σ of
the wave packet. Rescaling σ then simply amounts to a change of the effective
spatial size R̄ of the source.

What happens if the source size becomes large? Changing in Eq. (13)
the integration variables r →

√
R̄ r, r′ →

√
R̄ r′, and replacing the Coulomb

wave function by its leading contribution, Φcoul
q/2

(√
R̄r

)
→ exp

(
i
2

√
R̄r · q +

iη ln
(√

R
2 (qr − q · r)

))
+O

(
1√
R

)
, we find

lim
R̄→∞

C+−(q) = 1 . (17)

This is expected: as the source becomes larger, the average spatial separation
between particles increases and their Coulomb attraction decreases, leading to
a flat correlator in the limit of infinite source size.

2.3. Numerical results. – One may wonder whether a large but realistic
effective source size R̄ can come sufficiently close to the limiting case R̄ →∞ of
(17) to support the claim of Merlitz and Pelte12,13 that the Coulomb repulsion
becomes effectively unobservable. To study this question we have calculated
the correlator (13) numerically, after doing the azimuthal integrations (q = |q|):

C+−(q) = 4π2 G(−η)
(

∆̄
4πR̄

)3

e
q2

4∆̄2
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×
∫ ∞

0

r2 dr e−
r2

8R̄2

∫ 1

−1

dx e
i
2 qrxF (iη; 1; i

2qr(1 − x))

×
∫ ∞

0

r′2 dr′ e−
r′2
8R̄2

∫ 1

−1

dy e−
i
2 qr′y[F (iη; 1; i

2qr′(1 − y))]∗

× I0

(
2 B2 rr′

√
1− x2

√
1− y2

)
e−B2(r2−2rr′xy+r′2) . (18)

Here I0 is the modified Bessel function and B2 = ∆̄2/4 + 1/(16R̄2). The
numerical results for C+−(q) are shown in Fig. 1 for the model parameters
R = 3.5 fm, ∆ = 84 MeV and different values of the wave packet width σ. For
σ = 2.5 fm, these values correspond to the model parameters chosen in Ref. 12.
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1.1 R = 0 fm, Gamow−

R = 3.5 fm,    ∆  = 84 MeV

σ = 2.5 fm
σ = 7.5 fm

σ = 14.0 fm

−∆ → ∞ limit with radius R
calculation via  eq. (19)

Figure 1: Two-particle correlator of unlike-sign pion pairs for the Gaussian model (10).
The correlation depends only on the model parameter combinations R̄2 = R2 + σ2/2 and
∆̄2 = ∆2 + 1/(2σ2). The results for ∆ = 84 MeV agrees well with Koonin’s expression (16)
obtained in the limit ∆→∞.

One sees that, with increasing source size R̄2 = R2 + σ2/2, the resulting
Coulomb correlation indeed becomes smaller than the Gamow factor, but it
remains clearly observable even for a very large wave packet size σ = 14 fm. We
also compare in Fig. 1 the full correlator C+−(q) of Eqs. (13/18) to the limit
(16), calculated for the same value of R̄. At least for the model parameters
studied here, both expressions agree almost exactly. There seems to be no
possibility to distinguish on the basis of final state correlations between the
Gaussian wave packet formalism and the plane wave calculation based on the
approximate expression (16) which was used in other studies 1,3,10. As long
as the Gaussian wave packet width σ is included consistently in the definition
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of the source size R̄ =
√

R2 + σ2/2, both formalisms lead qualitatively and
quantitatively to the same result. We conclude that the differing results derived
in Ref. 12 with the help of a numerical simulation of the time evolution of wave
packets are incorrect.

3. Like-sign pion correlations. – For pairs of pions of identical charge
the Coulomb final state effects are superimposed on the quantum statistical
effects resulting from the symmetrization of the two-particle wave function.
Paralleling the calculation of section 2. with Bose-Einstein symmetrized Gaus-
sian wavepackets Ψij and plane waves φp1,p2 , one arrives at the symmetrized
asymptotic two-particle amplitude

lim
t→∞A

BE
ij (p1, p2, t) = 〈φK |Ψpair

ij 〉 [〈Ω+ φq/2 |Ψrel
ij 〉+ 〈Ω+ φ−q/2 |Ψrel

ij 〉
]
, (19)

from which the two-particle momentum-space probability PBE
ij (p1, p2) is again

calculated according to Eq. (4). Averaging PBE
ij according to (12) over the

model distribution gives the numerator of the two-particle correlator which
we call IBE,int(q, K). We normalize it by the method of “mixed pairs”: an
uncorrelated (mixed) pair is described by an unsymmetrized product state
without Coulomb interaction and leads, after averaging over the model distri-
bution, to Inonint(q, K) (see Eqs. (11/12)). Taking both distinguishable states
fi(x1, t0) fj(x2, t0) and fi(x2, t0) fj(x1, t0) into account we have

C++(q, K) =
IBE,int(q, K)

Inonint(q, K)+Inonint(−q, K)
= Cdir(q) + Cex(q) . (20)

For the Gaussian model (10), the center of mass coordinate is affected nei-
ther by two-particle final state interactions nor by two-particle Bose-Einstein
symmetrization. The correlator (20) hence does not depend on the pair mo-
mentum K. It splits into two contributions. The “direct term” can be obtained
from C+−(q) in Eq. (13) by changing the sign of the Sommerfeld parameter,
−η → η. The “exchange term” is given by

Cex(q) = Re
{

G(η)
(

∆̄
4πR̄

)3

e
q2

4∆̄2

∫
d3r e−

r2

8R̄2 + i
2r·q F (−iη; 1; iz−)

×
∫

d3r′ e−
r′2
8R̄2 + i

2 r
′·q [F (−iη; 1; iz′+)]∗ e

−
(

∆̄2
4 − 1

16R̄2

)
(r−r′)2

}
. (21)

This integral can be simplified to a 4-dimensional expression similar to (18).
The limits ∆̄ → ∞ and R̄ → ∞ of the first term Cdir(q) are obtained from
(16/17) by replacing −η → η. The corresponding limits for the exchange term
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are given by

lim
∆̄→∞

Cex(q) =
1

(4πR̄2)3/2

∫
d3r e−

r2

4R̄2 cos(r · q) |Φcoul
q/2 (r)|2 , (22)

lim
R̄→∞

Cex(q) = 0 . (23)

As in the case of unlike-sign correlations, the correlator C++(q) depends only
on the parameter combinations R̄ and ∆̄, but not explicitly on the wave packet
width σ. In the limit ∆̄ → ∞, the Gaussian wave packet formalism again
coincides with the Koonin formula 23 (now with the additional symmetrization
factor 1 + cos(q · r) under the integral) which is the starting point of most
conventional plane wave calculations.
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∆ → ∞ limit with R - 1/4∆
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Figure 2: Two-particle correlator of like-sign pion pairs for the Gaussian model (10). The
correlation depends only on the model parameter combinations R̄2 = R2 + σ2/2 and ∆̄2 =
∆2 + 1/(2σ2). The full correlator is well approximated by the standard Koonin expression
for a static momentum-independent source of radius squared R̄2 − 1/(4∆̄2).

In Fig. 2 we compare numerically the full correlator C++(q) from Eq. (20),
for ∆ = 84 MeV, with the limit ∆ → ∞, both calculated for the same value
of R̄2 = R2 + σ2/2. (Due to spherical symmetry of the source the correlator
depends only on q = |q|.) For small values of σ one observes a small, but
significant difference. The reason is that even in the absence of Coulomb final
state interactions, the HBT radius parameter (which gives the q-width of the
correlator) is not exactly given by the source size R̄2 but rather by 18

R2
HBT = R̄2 − 1

4∆̄2
. (24)
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For large values of R or σ, the term R̄2 dominates this expression, and the
difference between R2

HBT and R̄2 disappears (see Fig. 2). In fact, when com-
puting the limit ∆ →∞ of C++(q) using R2

HBT instead of R̄2, the agreement
with the full correlator C++(q) becomes almost exact even for small values of
σ (see inset in Fig. 2). We note that even for the smallest value studied here,
σ = 2.5 fm, the term 1/(4∆̄2) contributes only ≈ 5% to R2

HBT. This small
difference is clearly visible in the exchange term (21) of C++(q), whereas its
influence on the direct term Cdir (and hence on the correlator C+−) is found
numerically to be an order of magnitude smaller. This illustrates that the
two-particle correlator C++ of identical pions is more sensitive than C+− to a
small change in the Gaussian width of the phase space density.

The modification (24) of the radius parameter to be used as input in the
plane wave calculation can also be obtained from the Koonin expression 23 or,
most explicitly, from Eq. (65) of Ref.11. The consistency of Koonin’s expression
with the full correlator in the present model calculation is a non-trivial check
of the so-called smoothness approximation used in Ref. 11 to derive Koonin’s
expression from a general treatment of two-body final state interactions.

To sum up: as long as the Gaussian wave packet width σ is included
consistently in the definition of the source size, both the plane wave calcu-
lations 1−3,7,8,10,21−23 and the Gaussian wave packet formalism 16−19 lead to
qualitatively and quantitatively equivalent results. While the present study
proved this only for Gaussian source models, we expect it to be true quite
generally since we know that 11 the relation (15) between the effective emission
function and the Wigner density of single particle wave packets holds for arbi-
trary model distributions and that 15 two-particle momentum correlations are
mostly sensitive to the Gaussian characteristics of the source in space-time.
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