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1. Introduction

The recently proposed duality [1, 2, 3] between string theory on a space B of con-

stant negative curvature and certain gauge theories which live on the boundary of

B provides fascinating possibilities for the study of both sides of the equivalence.

The original conjecture [1] identifies type IIB string theory on AdS5 × S5 with four-
dimensional N = 4 super-Yang-Mills theory with gauge group SU(N). In gauge
theory terms, the validity of the supergravity approximation to type IIB string the-

ory depends on having both N and the ’t Hooft coupling g2YMN large.

The conjecture has been extended [4] to the spaces of the form AdS5 × X5,
where X5 = S5/Γ, with Γ being a discrete subgroup of SO(6). The corresponding

gauge theories have been described in [5]. They have N = 2, 1, or 0 superconformal
symmetry according as Γ is a subgroup of SU(2), SU(3), or SU(4) ≈ SO(6). The low-
energy dynamics of N D3-branes placed at an orbifold singularity of a Calabi-Yau

three-fold is described by one of these gauge theories.
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In general one could consider string theory on AdS5 ×M5 where M5 is an arbi-
trary Einstein manifold. This Freund-Rubin ansatz is the most general static bosonic

near-horizon geometry with only the metric and the self-dual five-form excited. Di-

mension five is the first where there are infinitely many different Einstein manifolds

which are not even locally diffeomorphic, and a natural question to ask is what all the

corresponding field theories are. The D-brane origin of the holographic conjecture

suggests a two step approach to finding the answer: first find a manifold with an

isolated singularity such that the near-horizon geometry in supergravity of a black

three-brane located on this singularity is AdS5 ×M5; then figure out the field the-
ory of D3-branes moving close to that singularity. In practice, we may start with a

known singularity, work out from supergravity the near-horizon geometry of black

three-branes on the singularity, construct a gauge theory describing D3-branes near

the singularity, and consider the result as a holographic dual pair. As a rule, the

gauge theory is worked out in the approximation that the D3-branes do not sig-

nificantly distort the geometry. This approximation is correct in the limit of weak

coupling, whereas supergravity is valid at strong coupling. If the gauge theory is

superconformal, we may feel confident in extrapolating it to strong coupling so that

the comparison with supergravity can be made directly. The “extrapolation” of su-

pergravity down to weak coupling is much harder because it requires the full type IIB

string theory in a background with Ramond-Ramond fields.

The first successful example of this approach for a manifold not locally diffeo-

morphic to S5 was [6]. There the space M5 = T
1,1 ≈ (SU(2)× SU(2)) /U(1) was

considered, which is the base of what we will call the A1 conifold:

X2 + Y 2 + Z2 + T 2 = 0 . (1.1)

N D3-branes which are placed at the conifold singularity are described by an N = 1
superconformal field theory which is a non-trivial infrared fixed point of the renor-

malization group. While this work was in progress, a further class of examples was

worked out in [7] using toric geometry.

The purpose of this paper is to construct holographic dual pairs out of an infinite

class of conical singularities. The geometry (1.1) is a fibration of a four-dimensional

ALE space of type A1 over the complex plane; our singular geometries will be fibra-

tions of ALE spaces of arbitrary ADE type, and we will call them ADE conifolds.

The field theory constructed in [6] descends by RG flow from the N = 2 S5/Z2
orbifold theory with mass terms for chiral fields added to break the supersymmetry

to N = 1; our field theories descend from mass deformations of the general A,D,E
type N = 2 orbifold theories. Unlike the A1 case there is a moduli space of such mass
deformations which is isomorphic to the projectivization of the moduli space of the

versal deformation of the corresponding singularity. In all cases we will have N = 1
superconformal symmetry, which is one quarter of maximal (eight real supercharges).
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Our ADE conifold geometries are non-compact, but they can all be realized as sin-

gularities of compact Calabi-Yau three-folds. Our results are most complete for the

Ak conifolds, but on many points we include also the analysis for the Dk and Ek
cases.

Section 2 is devoted to the study of D3-branes near the orbifold singularities from

which our conifold theories descend. If the D3-branes moving in a given singular

geometry are claimed to be described by the infrared limit of a particular gauge

theory, then the first thing that should be verified is that this gauge theory specialized

to a single D3-brane has for its moduli space precisely the singular geometry in

question. We present a formal argument why this should be so for the ADE conifold

singularities. For Γ = Ak or Dk, we present an explicit construction of the Higgs

branch, C2/Γ, in the case where the orbifold is not deformed. In the case where it is

deformed, we show how the deformation parameters are related to the periods of the

complex two-form. For Γ = Ak, we show explicitly how the conifold arises from the

solution of the F- and D-flatness conditions; for the Dk and Ek cases we fall back on

the formal argument presented earlier. Finally, we calculate for Γ = Ak the Kahler

metric from gauge theory at the classical level, exhibit its cone structure and observe

that it is not the Calabi-Yau metric. We then briefly discuss the reasons for that, in

agreement with the results of [8].

In section 3 we outline the supergravity side of the dual pair. Writing out

explicit metrics for the Einstein spaces seems impossible since Calabi-Yau metrics

are not known in closed form for the general ADE conifolds. However, we exploit a

natural action of C∗ on the conifold geometry to show that the spectrum of chiral
primary operators in the gauge theory is correctly reproduced by the holographic

mass-dimension relation. We then proceed with more detailed analysis of the blowup

modes and the corresponding AdS supergravity multiplets.

In section 4 we present the realization (in the Ak case) of our gauge theories by

using other branes as a background instead of the singular geometry.

In the section 5 we present our conclusions and some conjectures.

2. Gauge theory perspective

In this section we describe the geometry of ALE spaces and present a construction of

the CY threefold obtained by fibering ALE space over a one-dimensional base. This

construction is obtained by looking at the Higgs branch of the gauge theory on the

world-volume of a single D3-brane.

2.1 Single D-brane on ALE space

First of all we recall the construction of the gauge theory on the world-volume

of a single D-brane placed at the orbifold singularity C2/Γ, where Γ is a discrete
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subgroup of SU(2) of ADE type. The field theory has N = 2 supersymmetry. Its
gauge group is the product:

G1 = ×ri=0U(ni) , (2.1)

where i runs through the set of vertices of extended Dynkin diagram of the corre-

sponding ADE type (see figure 1), or, equivalently, through the set of irreducible

representations ri of Γ. The label i = 0 corresponds to the trivial representation.

The number ni is simply the dimension of ri. Let h =
∑
i ni. This number coincides

with the dual Coxeter number of the corresponding ADE Lie group.

The matter content of our gauge

1 1 1 .  .  .  1 1

1 1

2

1

2 2 .  .  .  2

1

1
Ak Dk

3 2 121

2

1

1 2 3 4 3 2 1

2
E7E6

1 2 3 4 5 6 4 2

3

E8

Figure 1: The extended Dynkin diagrams of

ADE type, including the indices ni of each ver-

tex.

theory is that of aij bi-fundamental

hypermultplets in the representations

(ni, n̄j), where aij is determined from

the decomposition:

C
2 ⊗ ri = ⊕jCaijrj . (2.2)

From the N = 1 point of view each
pair i, j with aij 6= 0 gives rise to
a pair of chiral multiplets, call them

(Bij , Bji). Bij is a complex matrix,

transforming in the (ni, n̄j) of the i’th

and j’th gauge groups. The theory has a superpotential:

W =
∑
i

Trµiφi , (2.3)

where φi is the scalar of the i’th vector multiplet and µi is the complex moment

map. There is some gauge freedom in the choice of explicit expressions for µi. Let us

introduce an antisymmetric adjacency matrix sij for the extended Dynkin diagram,

such that sij = ±1 when i and j are adjacent nodes and the sign, which is part of
our gauge choice, indicates a direction on the edge between them. Then we can write

µi
αi
βi =

∑
j

sijBij
αi
γjBji

γj
βi . (2.4)

Here an upper index αi indicates a fundamental representation of U(ni), while a lower

index αj indicates an anti-fundamental representation of U(ni). We will suppress

these color indices when their contractions are clear from context. There is one

relation among the µi: ∑
i

Trµi = 0 . (2.5)
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Without breaking N = 2 supersymmetry one may introduce complex FI terms
which modify superpotential as follows:

W →W −∑
i

ζiTrφi .

The moduli space of vacua (Higgs branch) of the theory with ζi’s coincides with the

complex deformation of the orbifold C2/Γ into the (smooth for generic ζi’s) ALE

space Sζ . It can be described as a quotient of the space of solutions of the equations

µi = ζiIdni , (2.6)

by the complexification of the gauge group

Gc1 = ×iGLni(C) .
For ζ = 0 the Higgs branch becomes the singular orbifold, and at the singularity

the Coulomb branch appears. At the generic point of the Higgs branch there is one

massless vector multiplet, which corresponds to the U(1) subgroup of G1, which is

embedded diagonally into each U(ni). Since all the matter is in the bi-fundamentals,

it is neutral with respect to this U(1) subgroup.

It is important to notice that the holomorphic 2-form ωζ of Sζ has periods which

depend linearly on ζ (it follows from the complexification of Duistermaat-Heckmann

theorem [9, 10]). This observation will be used below.

We would like to list here the equations which describe S0 for various Γ as

hypersurfaces fΓ = 0 in the space C
3 with coordinates x, y, z:

Ak : fΓ = x
k+1 + y2 + z2

Dk : fΓ = x
k−1 + xy2 + z2

E6 : fΓ = x
4 + y3 + z2

E7 : fΓ = x
3y + y3 + z2

E8 : fΓ = x
5 + y3 + z2 . (2.7)

The equations fΓ = 0 are invariant under a C
∗ action, which is specified by giving

the weights α, β to the coordinates x, y and z as follows:

Γ α = [x] β = [y] [z] = h/2 h

Ak 1
k + 1

2

k + 1

2
k + 1

Dk 2 k − 2 k − 1 2(k − 1)
E6 3 4 6 12

E7 4 6 9 18

E8 6 10 15 30 (2.8)

Notice that α + β = 1 + h/2.
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The complex deformation of the surface S0 is described by the equation

f(x, y; t) + z2 = 0 ,

where t are some coordinates on the base of deformation. There are canonical for-

mulae, listed, say in [11], which represent f(x, y; t) as polynomials in x, y:

Ak : fΓ = Pk+1(x) + y
2 + z2

Dk : fΓ = x
k−1 +Qk−2(x) + t0y + xy2 + z2

E6 : fΓ = y
3 +Q2(x)y + P4(x) + z

2

E7 : fΓ = y
3 + P3(x)y +Q4(x) + z

2

E8 : fΓ = y
3 +Q3(x)y + P5(x) + z

2 , (2.9)

where Pk(x) = x
k+

∑k−1
`=1 t`x

k−`−1, Qk(x) =
∑k+1
l=1 tlx

k−l+1. We now wish to relate the
coordinates tk and ζl’s. In order to do so we study the periods of the holomorphic

two-form,

ωζ =
dx ∧ dy ∧ dz

dfΓ
.

Ak case. In this case the ALE space is a fibration over the x-plane, whose fiber is

isomorphic to C∗ for x 6= xi where xi are the roots of Pk+1(xi) = 0, i = 0, . . . , k.
The form ωζ factorizes as: ωζ =

dy
2z
∧ dx. To get a non-trivial period of it we

choose a one-dimensional contour in the x-plane which connects xi and xj for

i 6= j and doesn’t pass through other xk’s. The fiber over its generic point
contains a non-trivial one-cycle, over which the form dy/2z integrates to π

(write y2 + z2 = r2, y = rsinα, z = rcosα, 0 ≤ α < 2π, r is determined by x
hence dy/2z = 1

2
dα.) Hence we get

[ωζ]ij = π (xi − xj) = π
i−1∑
m=j

ζm , (i > j) . (2.10)

The permutations of the roots xi’s act on ζi’s as the Weyl group of the type

Ak.

Dk case. In this case the fiber over the point x is the rational curve Cx: y
2x+t0y+

Rk−1(x)+z2 = 0. Consider the discriminant ∆(x) = t20−4xRk−1(x), Rk−1(x) =
xk−1 +Qk−2(x). Let xi be its roots: ∆(xi) = 0. For x 6= xi the rational curve
Cx is isomorphic to C

∗.

The period of the one-form dy/2z is π/
√−x for such an x. The two-form is

given by: ωζ = (dx ∧ dy)/2z, hence its periods are:

[ωζ]ij = iπ
(√
xi −√xj

)
= π

i−1∑
m=j

ζm , (i > j) . (2.11)

The branching of the square roots in (2.11) and the permutations of xi’s gen-

erate the action of the Weyl group of the type Dk.
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Ek cases. In these cases the fiber over x is the elliptic curve y
3+A(x)y+B(x)+z2 =

0 and it degenerates over the roots xi of the discriminant ∆(x) = 4A
3(x) +

27B2(x). The periods are given by

∫ xj
xi

γ(x)dx ,

where γ(x) =
∮
Cx
dy
2z
, Cx is the one-cycle which vanishes both at xi and xj. So in

this case the identification between the coordinates tk and ζl requires inverting

the elliptic functions.

2.2 Single D-brane at the generalized conifold singularity

We now proceed with describing N = 1 theories whose Higgs branch coincides with
the non-compact Calabi-Yau manifold YΓ with the conifold-like singularity of the

following type:

FΓ(φ, x, y, z) ≡ φhfΓ
(
x

φα
,
y

φβ
; t

)
+ z2 = 0 . (2.12)

The equation (2.12) is homogeneous with respect to the C∗ action described in (2.8)
iff the variable φ has weight 1.

First of all we need to show that these manifolds have shrunken three-cycles. Let

us deform the equation (2.12) to

µ = φhfΓ

(
x

φα
,
y

φβ
; t

)
+ z2 .

Let us call the non-compact manifold described by this equation as YΓ(µ). By con-

struction the manifold YΓ(µ) is fibered over φ plane with fiber over given φ being a

particular ALE space Sζ(φ,µ). It is endowed with a holomorphic three-form:

Ω =
dφ ∧ dx ∧ dy ∧ dz

dFΓ
. (2.13)

We are going to show that its periods scale as µ
2
h and therefore vanish in the limit

µ → 0. Indeed, the function FΓ is homogeneous of degree h with respect to the C∗
action in (2.8). Therefore the form Ω scales as t

2
h under the action of the element

t ∈ C∗. Now let us turn to concrete examples of A,D series.
The space Sζ(φ,µ) is fibered over x-plane with the generic fibers being isomorphic

to either C∗ in the A,D cases or elliptic curves (with infinity deleted) in the E
cases. For given φ, µ let us fix a one-dimensional contour connecting xi and xj over

which the one-cycles vanish. As we vary φ these one-dimensional contours span a

two-dimensional surface. The nontrivial three-cycle is obtained if we get an interval

in φ plane which connects two points φ±ij over which the zero-cycle [xi]− [xj ] shrinks
to zero (i.e. the points collide). In the Ak and Dk cases we can be explicit:
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Ak case. The conditions on φ
±
ij are:

Pk+1

(
x

φ

)
=
µ

φk+1
, P ′k+1

(
x

φ

)
= 0 .

Let ξ = x/φ. Then the period of the three-form Ω reduces to

−2µ 2
k+1

∮
σ
ξ
dw

w3
,

where σ is a non-trivial one-cycle on the curve

wk+1 = Pk+1(ξ; t) .

As µ→ 0 all these periods clearly go to zero.
Dk case. Let ξ = x/φ

2, η = y/φ. Consider the curve:

wk−1 = Rk−1(ξ; t)− 1
4ξ
t20 .

The periods of the three-form Ω reduce to:

−µ 1
k−1

∮ √
ξ
dw

w2
,

ωζ = (dx ∧ dy)/2z, and they also vanish in the limit µ→ 0.

Now we wish to show that the manifold YΓ is nothing but the Higgs branch of

the N = 2 theory described above perturbed by the superpotential term:

W →W −∑
i

1

2
miTrφ

2
i , (2.14)

with the only condition
∑
imi = 0.

Indeed, let us look at the equations dW = 0. By varying with respect to the mat-

ter fields we get the condition that φi must generate a trivial gauge transformation

which is only possible when:

φi = φIdni . (2.15)

Then, varying with respect to φi we get:

µi = −miφIdni . (2.16)

The necessary and sufficient condition for the equations (2.16) to be solvable is

precisely
∑
i nimi = 0 (it follows from (2.5)). The space of solutions to (2.16) is

fibered over the φ 6= 0 plane with the fiber being the (generically) smooth ALE
space, corresponding to ζi = miφ. Thus the role of the mass vector is to choose the

direction in the moduli space of ALE spaces of given ADE type.
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In other words, the spaces YΓ are constructed as follows. Let f(x, y) be any iso-

lated simple singularity. Let T be the base of its versal deformation. The dimension

r of T is called the Milnor index of the singularity. It also coincides with the rank of

the corresponding ADE group. The space T has a natural action of the C∗ group,
which originates in the C∗ action described in (2.8). The space of orbits of this
action is a weighted projective space WP{ di

h
} where di are the exponents of f [11].

The space T comes with the canonical bundle Y (called Milnor bundle). Its fiber Yt
over point t ∈ T is the surface f(x, y; t) = 0.
Choose any orbit t = t(φ) of the C∗ action. Restrict Y onto this orbit. This

is our space YΓ. It depends on the choice of orbit, that is on the choice of mass

parameters mi.

2.3 Relation to the geometric invariant quotient

In this section we wish to show (in the A and D cases explicitly) that the Higgs

branch of the N = 2 theory in the case where all deformation parameters are zero
is nothing but the orbifold C2/Γ. To this end we slightly reformulate the solution

for the F -flatness conditions. Let V = CΓ - the space of C-valued functions on

the group Γ. This is naturally a representation (called regular representation) of Γ,

induced for concreteness by the left action of Γ on itself. For g ∈ Γ let γ(g) be the
corresponding element of Hom(V, V ). Consider the space of pairs Xα ∈ Hom(V, V ),
α = 1, 2 of operators in V which obey two conditions:

[X1, X2] = 0

gα
βXβ = γ(g)Xαγ(g)

−1 , (2.17)

where gα
β are the matrix elements of g in the two-dimensional representation of Γ.

Our space is the quotient of the space of these pairs (X1, X2) by the action of the

group of gauge transformations (cf. [12]). The latter are the elements of End(V )

which commute with γ(g) for all g ∈ Γ.
Now let f(z1, z2) be any Γ-invariant function on C

2. Consider the matrix

f(X1, X2). Due to invariance of f we have:

γ(g)f(X1, X2)γ(g)
−1 = f(X1, X2) , (2.18)

for any g ∈ Γ.
Now let us look at the Ak, Dk examples in some detail.

Ak case. In this case the solution for (X1, X2) is:

X1 = z1J+ , X2 = z2J− , (2.19)

9
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where

J+ =




0 1 0 . . . 0

0 0 1 . . . 0
...
...
... 1

1 0 0 . . . 0


 , J− = J t+ (2.20)

in the basis where γ(g) is diagonal matrix with entries being 1, ω, ω2, . . . , ωk,

ω = e2πi/(k+1). The basic invariants are: X = zk+11 ,Y = zk+12 ,Z = z1z2, which
obey the equation with Ak singularity:

XY = Zk+1 .
The corresponding matrix functions are clearly scalars:

Xk+11 = X · Id , Xk+12 = Y · Id, X1X2 = Z · Id .

Dk case. In this case the matrices X1, X2 have a block diagonal form:

X1 =

(
z1J+ 0

0 iz2J+

)
, X2 =

(
z2J− 0

0 iz1J−

)
, (2.21)

where the size of J± is 2(k − 2)× 2(k − 2). The basic invariants here are:
X = z2(k−2)1 + (−)kz2(k−2)2 , Y = z1z2

(
z
2(k−2)
1 − (−)kz2(k−2)2

)
, Z = z21z22 ,

(2.22)

which obey Dk-type equation:

Y2 = ZX 2 − 4(−)kZk−1 .
It is obvious that

X (X1, X2) = X · Id, Y(X1, X2) = Y · Id, Z(X1, X2) = Z · Id .

The matrices X1, X2 provide the most efficient way of making completely explicit the

abstract construction of the spaces YΓ which we sketched at the end of section 2.1.

If we introduce a third matrix Φ with γ(g)Φγ(g)−1 = Φ, then the superpotential is

W = Tr
(
Φ[X1, X2]− 1

2
MΦ2

)
. (2.23)

The requirement of F-flatness is

[Φ, X1] = 0 , [Φ, X2] = 0 , [X1, X2] =MΦ . (2.24)

The first two expressions in (2.24) are satisfied when Φ is a trivial gauge transforma-

tion: Φ = φId|Γ| for some complex number φ. Taking the trace of the last equation
in (2.24) tells us TrM = 0. The space of solutions to this equation modded out by the

complexified gauge group (which implements D-flatness along with gauge invariance)

should be the generalized conifold.
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Ak case. Let us use the notation

diag {xi} = diag {xi}Γi=1 = diag {x1, x2, . . . , xΓ} =




x1 0 . . . 0

0 x2 . . . 0
...
...

...

0 0 . . . xΓ


 , (2.25)

for diagonal matrices. So for instanceM = diag {mi}. As a subgroup of SU(2),
Ak has as its generating element

(g1)α
β =

(
ω 0

0 ω−1

)β
α

. (2.26)

In a basis for the regular representation where γ(g1) = diag
{
1, ω, . . . , ωk

}
, the

general solution to (g1)α
βXβ = γ(g1)Xαγ(g

−1
1 ) is X1 = diag {bi,i+1} J+, X1 =

J−diag {bi+1,i}. We have X1X2 = diag {bi,i+1bi+1,i} and X2X1 = diag{bi−1,i
bi,i−1}. To satisfy [X1, X2] = MΦ we must have X1X2 = xIdΓ − Ξφ for some
complex number x and a matrix Ξ = diag {ξi} where ξi−1 − ξi = mi. By con-
vention we may take ξi = −∑ij=1mi. Defining the gauge invariant quantities
c+ = detX1, c− = detX2, we recover the Ak conifold equation from

c+c− = (detX1)(detX2) = det(X1X2) =
k+1∏
i=1

(x− ξiφ) . (2.27)

It is easy to understand this point how the F-flatness conditions eliminate what

seems a priori to be an excess of gauge-invariant products parameterizing the

moduli space. In addition to the products c± =
∏
i bi,i±1 which take us all the

way around the extended Dynkin diagram, there are k+1 products bi,i+1bi+1,i.

But these may all be expressed in terms of x and φ, with (2.27) being the only

equation among x, φ, and c±, so indeed the moduli space has three complex
dimensions.

2.4 Construction of the Kahler metric on YΓ

Gauge theory gives us an explicit construction of the Kahler metric on the space YΓ.

Of course, in the case m = 0 the metric is exact, while in the m 6= 0 case it may be
affected by the quantum corrections which lead to the renormalization of the Kahler

potential. At any rate we shall describe the metric which one gets by the Kahler

quotient construction in the Ak case.

The original space of fields is B = {(φi, bi,i+1; bi+1,i)| i = 0, . . . , r}, where all fields
are complex and we have identified r + 1 ≡ 0. We assume that the metric on B is
flat:

ds2 =
k∑
i=0

dφidφ̄i + dbi,i+1db̄i,i+1 + dbi+1,idb̄i+1,i . (2.28)
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We now impose the D- and F -flatness conditions, which means that we restrict the

metric (2.28) onto the surface of equations:

|bi,i+1|2 − |bi+1,i|2 + |bi,i−1|2 − |bi−1,i|2 = 0
bi,i+1bi+1,i − bi,i−1bi−1,i = miφi

bi,i+1(φi − φi+1) = 0
bi+1,i(φi+1 − φi) = 0 . (2.29)

It is convenient, following [13], to rewrite the flat metric on b’s in terms of the

coordinates (~ri, θi), where

~ri = (ti, xi, x̄i)

|bi,i+1|2 − |bi+1,i|2 = 2ti
bi,i+1bi+1,i = xi

bi,i+1

bi+1,i
=

∣∣∣∣∣bi,i+1bi+1,i

∣∣∣∣∣ e2iθ . (2.30)

We have:

dbi+1,idb̄i+1,i + dbi,i+1db̄i,i+1 =
1

ri
d~r2i + ri (dθi + ωi)

2 , (2.31)

where ri = |~ri|, and the Dirac connection ωi obeys:

dωi = ?d
1

ri
,

where d is three-dimensional and ? is taken with respect to the flat metric on R3.

The gauge group acts as follows:

θi 7→ θi + αi − αi+1 . (2.32)

The D,F -flatness conditions imply that:

φ0 = φ1 = · · · = φk =: φ
t0 = t1 = · · · = tk =: t
xi = x− ξiφ , (2.33)

where ξi are the complex numbers which are uniquely specified by the following

conditions:

ξi − ξi−1 = −mi ,
∑
i

ξi = 0 . (2.34)

The projection along the orbits of the gauge group is achieved by taking the orthogo-

nals to the orbit. Formally this is equivalent to the following procedure [13]: replace
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dθi by dθ+Ai−Ai+1, compute the ds2 and minimize with respect to Ai. The result
is the following metric:

ds2 = V d~r2 − Udφdx̄− Ūdφ̄dx+Wdφdφ̄+ V −1 (dθ + A)2 , (2.35)

where

V =
k∑
i=0

1√
t2 + |x− ξiφ|2

U =
k∑
i=0

ξi√
t2 + |x− ξiφ|2

W =
k∑
i=0


1 + |ξi|2√

t2 + |x− ξiφ|2




dA = ?dV , (2.36)

where in the last formula d is taken with respect to (t, x, x̄).

2.5 Properties of the metric on YΓ

The space YΓ comes equipped with the holomorphic three-form. In the Ak case it is

given by the formula:

Ω =
dx ∧ dφ ∧ dc+

c+
, (2.37)

where c± = y ± iz. In terms of the coordinates bi,i+1 etc., the variables c± are
expressed as follows:

c± =
k∏
i=0

bi,i±1 . (2.38)

In solving the D,F -flatness conditions a choice of the gauge for the phases of bi,i±1
has to be made. We choose:

bi,i+1 =
[
t+

√
t2 + |x− ξiφ|2

] 1
2

e
iθ
k+1

bi+1,i =
[
−t+

√
t2 + |x− ξiφ|2

] 1
2 x− ξiφ
|x− ξiφ|e

− iθ
k+1 . (2.39)

With this choice of phases the Kahler form $ on YΓ is written out as follows:

$ = dt ∧ (dθ + A) + i
2
dφ ∧ dφ̄+ i

4

k∑
l=0

d(x− ξlφ) ∧ d(x− ξlφ)√
t2 + |x− ξlφ|2

, (2.40)

where

A =
1

2

∑
l


 t√
t2 + |x− ξlφ|2

− 1

 d (arg(x− ξlφ)) . (2.41)
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Of course, another choice of gauge leads to the gauge transformed A. Now, the

holomorphic three-form turns out to have rather simple form:(
i(dθ + A) +

1

2
V dt

)
∧ dx ∧ dφ . (2.42)

From this expression we get the volume form:

Ω ∧ Ω̄ = −iV dθ ∧ dt ∧ dx ∧ dx̄ ∧ dφ ∧ dφ̄ . (2.43)

For the Kahler metric to be Ricci-flat it is necessary that:

$ ∧$ ∧$ = κΩ ∧ Ω̄ (2.44)

for some constant κ. Explicit computation shows that :

$3 =
3

8

(
VW − |U |2

)
dx ∧ dx̄ ∧ dφ ∧ dφ̄ ∧ dθ ∧ dt (2.45)

and (2.44) is not obeyed. Instead, for the Ricci tensor we have:

R ≡ Rij̄dzi ∧ dzj̄ = ∂∂̄log
(
W − |U |

2

V

)
. (2.46)

The fact that the metric doesn’t come out in the Ricci-flat form may sound trou-

bling. On the other hand it seems that it does not receive quantum loop corrections.

The reason is that we study abelian gauge theory and the coupling in this theory is

weak in the infrared so all loops must go away.

Hence we are led to believe that, in contrast to N = 2 case, here the geometry as
observed by the single D3-brane and by the fundamental string is different — unless

the assumption (2.28) that the initial Kahler metric was flat is wrong. See [14] for a

thorough discussion, and also [8] for more examples of N = 1 orbifolds.
Another problem is that different terms in the formula for the metric (2.35)

and the Kahler form (2.40) scale differently under the R+ which is a part of the

R-symmetry (2.8).

2.6 Geometry of the base of the cone

Nevertheless, close to the singularity where t = |x| = |φ| = 0 the term dφ ∧ dφ̄ can
be neglected. As a result of this “RG flow” the metric on the Higgs branch becomes

invariant under “RG” action of R+. Moreover, the Higgs branch becomes a cone over

a fivefold M5 which is in turn a U(1) bundle over four dimensional Kahler manifold

B which we now describe in some detail.

Let us think of YΓ as the symplectic manifold with the two-form $. It is invariant

under the U(1) action φ 7→ φeiα, x 7→ xeiα, θ 7→ θ + k+1
2
α. This action is generated

by the Hamiltonian:

H =
1

2
|φ|2 + 1

2

∑
i

√
t2 + |x− ξiφ|2 . (2.47)
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It is easy to show using the metric (2.35) that this action is also free. So we have a

fiber bundle:
U(1) → YΓ

↓
B ,

(2.48)

where the manifold B is described as a quotient of the subvariety in YΓ defined by

the equation H = ζ > 0 by the action of the U(1). The base of the cone M5 is the

level set of the Hamiltonian: H = ζ . To be more precise, consider the following “RG

flow”: perform the simultaneous rescaling of t, |x|, |φ| and ζ by the same amount µ
and then take the limit µ → 0. As a result we get the manifold M5, defined as the
hypersurface ∑

i

√
t2 + |x− ξiφ|2 = 1 , (2.49)

in the space of t, θ, x, φ, with the metric (2.35) where W →W − (k+1). In the case
k = 1 the manifold B is the set of pairs of vectors ~x, ~y, ~y ∈ R3, ~x ∈ R2 ⊂ R3 subject
to the condition |~x−~y|+ |~x+~y| = 1. It is easy to show that this space is isomorphic
to S2× S2 in agreement with the expectations about the conifold geometry (cf. [6]).
In general the manifold B can be described as a complex hypersurface in the

weighted projective space WP3
1,α,β,h

2

defined by the equation FΓ = 0. For example,

in the A1 case we would get the hypersurface in the ordinary P
3 = {(X : Y : Z : T )}

defined by the equation X2 + Y 2 + Z2 + T 2 = 0 that is the quadric P1 ×P1.

3. Supergravity and holography

3.1 Large number N of D-branes at the singularity: Gauge theory

It is clear how to proceed with generalizations: replace the vector spaces ri by Ri =

CN ⊗ ri. The gauge group is now:

GN = ×iU(Nni) . (3.1)

The matter fields are the aij hypermultiplets in the bi-fundamental representations:

(Nni, Nnj).

This N = 2 theory describes N coincident D3-branes placed at the orbifold point
in C2/Γ. We now perturb this theory by adding the mass term:

W →W −∑
i

1

2
miTrφ

2
i . (3.2)

In the infrared limit the U(1) factors decouple and one is left with the gauge

group

G̃N = ×iSU(Nni) (3.3)

15



J
H
E
P
0
5
(
1
9
9
9
)
0
0
3

and the effective superpotential:

Weff =
∑
i:mi 6=0

1

2mi
Trµ2i +

∑
i:mi=0

Trµiφi . (3.4)

Methods described in [15] can be used to determine the possible anomalous di-

mensions at the infrared fixed point. Linear constraints on the anomalous dimensions

of chiral fields result from setting the NSVZ exact beta functions to zero and demand-

ing that the superpotential be dimension 3. These constraints can always be satisfied

in our models by giving the φi anomalous dimensions of 1/2 and the Bij anomalous

dimensions of −1/4. Typically the number of independent constraints is less than
the number of independent anomalous dimensions, so there is actually a space of

solutions. When all mi are non-zero, it is straightforward to see from the condition

on the superpotential that the dimensions of all gauge-invariant combinations of the

Bij are invariant over this space. Thus we can calculate these dimensions at the point

where all the Bij have anomalous dimension −1/4. This is the result we actually will
use in comparisons with supergravity predictions. By continuity we would expect it

to continue to hold as some of the mi are taken to zero (but not all, since the mi
are only defined up to an overall rescaling). We do not have a proof of this, but we

would be surprised to find a continuous spectrum of possible dimensions for gauge

invariant operators.

We now proceed with showing that UV superpotential yields the moduli space

of N D3-branes placed at YΓ.

Indeed, the discussion of the section related to the geometric invariant theory

goes through with the only change that we now tensor CΓ by the dummy space CN

which is a trivial representation of the group Γ. As a consequence, the expressions

for X1,2 now have the following form:

X(N)α = diag
(
X(1)α (z

1
1 , z

1
2), . . . , X

(1)
α (z

N
1 , z

N
2 )
)

so they depend on an N -tuple of the parameters z1, z2 on which the allowed gauge

transformations act as the group Γ does. Turning on the mass matrixM makes z1, z2
live in the deformed ALE space. It means that the Higgs branch looks like the N ’th

symmetric product of the generalized conifold YΓ, which is what we expect.

3.2 The supergravity geometry and chiral primaries

Let us start by briefly reminding the reader the supergravity version of D3-branes

at an isolated singularity of a six dimensional manifold [16]. Assume the manifold is

a Calabi-Yau three-fold and that the metric near the singularity before the addition

of D3-branes can be written as

ds26 = dr
2 + r2gαβdx

αdxβ , (3.5)
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where gαβ is an Einstein metric on a five-manifold M5. When N D3-branes are

placed at the singularity r = 0, the supergravity metric is

ds2 =

(
1 +
L4

r4

)−1/2 (
−dt2 + dx21 + dx22 + dx23

)
+

(
1 +
L4

r4

)1/2
ds2C , (3.6)

where

L4 =

√
π

2

κN

VolM5
. (3.7)

Here 2κ2 = 16πG = (2π)7g2sα
′4 is the gravitational coupling. Supergravity is a good

approximation when L is much bigger than the Planck length and the string length.

This pictures applies to the conifolds (2.12) as follows. In (2.8) we specified an

action of C∗ action on the conifold geometries. The R+ part of this action is the
dilation symmetry of the cone, r → λr. The U(1) part of the action is an isometry of
M5, and in the field theory it is realized as the R-symmetry group. From the existence

of the Calabi-Yau metric on the conifolds we are learning of the existence of a class of

five-dimensional Einstein manifolds. Unlike the coset manifolds constructed in [17],

these Einstein manifolds have moduli spaces. To discuss chiral primary operators

in following [18] is impractical because we cannot write down the metric explicitly.

Fortunately there is a more efficient way, which we will now explain.

A complete set of harmonic functions on the cone can be generated from har-

monic functions f which are also eigenfunctions of the operator r∂r:

r∂rf = ∆ff

2(∂̄∂̄∗ + ∂̄∗∂̄)f = (dd∗ + d∗d)f =
[
1

r5
∂rr

5∂r +
1

r2

]
f = 0 , (3.8)

where we have reserved the symbol to denote the five-dimensional Laplacian on

the base of the cone. Together the two conditions in (3.8) imply that ( +E)f = 0

where E = ∆(∆ + 4). By considering a complete set of harmonic functions on the

cone one can extract the full spectrum of the five-dimensional scalar Laplacian.

The holographic correspondence as worked out in [2, 3] relates on-shell fields in

the bulk of spacetime to operators on the boundary. In the present context, following

the arguments used in [18], the spectrum of the scalar Laplacian relates to chiral

primary operators with dimension ∆ = −2 +√4 + E: exactly the eigenvalue under
r∂r of the harmonic extension f to the cone! To be more precise, only a subset of

the eigenfunctions of correspond to chiral primaries: these are the operators which

maximize U(1)R charge with dimension held fixed, and the eigenfunctions they are

dual to are in fact the ones which extend to holomorphic functions on the cone.

In particular, for the Ak conifolds, we can consider the complex variables c
±, x,

and Φ as holomorphic functions. Near the IR fixed point we know their dimensions

from their representations as products of the fields bi,i±1: ∆c± = 3
4
(k + 1) and ∆x =

∆Φ = 3/2. These dimensions are just 3/2 times the R-charges listed in (2.8). Since
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these R-charges are determined by the C∗ action on the conifold geometry, of which
r∂r is one generator, we have shown that the dimensions of c

±, x, and Φ agree
between gauge theory and supergravity, up to an overall normalization. The most

direct way to fix that normalization is to note that the metric (3.5) has dimension 2

under dilations of r; hence so does the Kahler form.1 The cube of the Kahler form

is proportional to Ω∧ Ω̄, where Ω is the complex three-form. So Ω has dimension 3.
Finally, writing out Ω in terms of c±, x, and Φ, one can verify that the gauge theory
dimensions indeed agree completely with supergravity. Although we have focused on

the Ak conifolds the analysis is equally straightforward for the Dk and Ek cases.

Holomorphic functions of the zi which have a definite eigenvalue under r∂r are

just polynomials in the zi which are homogeneous with respect to the weight in (2.8),

identified modulo the equation relating the zi which defines the conifold. We have

argued in section 2 that the solution of the F-flatness conditions in the gauge theory,

modulo complexified gauge invariance, results in this same conifold. The complex-

ification of the gauge invariance implemented D-flatness. Now, chiral primaries in

the gauge theory are constructed from sums of gauge invariant products of chiral

superfields, modulo F- and D-flatness conditions, and with definite conformal di-

mension. It follows that chiral primary operators are in one-to-one correspondence

with the homogeneous holomorphic functions on the conifold. This was essentially

checked in (34) of [6] for the A1 case by showing explicitly that F-flatness con-

straints allowed one to symmetrize Ai and Bj fields separately in a product of the

form Ai1Bj1Ai2Bj2 . . . AilBjl. The constraints are more complicated in the general

ADE case, but the conclusions are the same: because the moduli space (namely

the conifold) is parametrized by holomorphic gauge invariant combinations of the

matter fields modulo the F-flatness conditions, the chiral primary fields which these

combinations represent are precisely the holomorphic functions on the conifold.

It is worth emphasizing that holomorphic functions on the conifold were intro-

duced as a trick to write down efficiently the eigenfunctions of the Laplacian on M5
which minimized dimension for specified R-charge. The arguments of the previous

two paragraphs show with minimal calculation that holography predicts exactly the

right dimensions and degeneracies for chiral primary operators in the gauge theory.

There are on order ∆3 chiral primaries with dimension less than ∆. As in the A1
case [18] (but in contrast to the S5 case) supergravity predicts in addition on order of

∆5 non-chiral fields of dimension less than ∆. These come from the non-holomorphic

eigenfunctions of the Laplacian onM5. In the gauge theory they reside in long multi-

1We note in passing that an appropriately chosen Kahler potential should also have dimension

2. Written in terms of the complex variables, this amounts to the homogeneity condition

∑
i

∆i

(
∂

∂ log zi
+

∂

∂ log z̄i

)
K = 2K , (3.9)

where we collectively denote c±, x, and Φ by zi.

18



J
H
E
P
0
5
(
1
9
9
9
)
0
0
3

plets whose dimensions are not algebraically protected, and as far as we know there

is no good understanding for why the dimensions should match the supergravity

predictions.

3.3 Blowup Modes and RG flow

If it is indeed true that one can define string theory on a manifold which is (at least

asymptotically) AdS5 times a compact manifold through a gauge field theory which

lives on the boundary, then we would expect to see reflected in some solution of

supergravity the full renormalization group flow from an N = 2 theory, deformed by
mass terms as in (2.14), to a non-trivial infrared N = 1 fixed point with a quartic
superpotential. The simplest case would be a supergravity geometry interpolating

between S5/Z2 and T
11. We do not have a complete enough understanding of the

Lagrangian of gauged N = 4 supergravity in five dimensions to find such solutions
explicitly.2 However, we can at least describe a multiplet which plays a key role.

Blowup modes of the fixed S1 of S5/Γ were discussed in [19] (see also the ap-

pendix of [20] for a more precise discussion of Kaluza-Klein reduction). Our aim is

to indicate how this analysis feeds into the supergravity interpretation of the RG

flow. For Γ = Ak, Dk, or Ek, blowing up the S
1 introduces k independent 2-cycles.

The self-dual four-form potential A+MNPQ on one of these cycles gives rise to an

anti-self-dual two-form potential B−MN in AdS5 × S1. The Kaluza-Klein reduction
of B−MN on S

1 leads a tower of fields labelled by the Kaluza-Klein momentum `:

at ` = 0 a vector field Aµ satisfying d ∗ dA = 0; and for ` 6= 0 an antisymmetric
tensor field Aµν satisfying ∗dA = −i`A. Both these equations of motion are valid
only at the linearized level. Tensor fields which satisfy the latter equation of motion

are termed “anti-self-dual” in [21], where (among other things) the superpartners of

anti-self-dual antisymmetric tensors and of vectors are worked out using SU(2, 2|2)
group theory. The multiplet we will be particularly interested in is the ` = 1 tensor

multiplet. The bosonic components, their quantum numbers under the R-symmetry

group SU(2) × U(1), and the types of gauge theory operators they are dual to, are
as follows:

field SU(2)×U(1) operator dimension
scalar 10 F 2 4

scalar 14 X2 2

scalar 32 λλ 3

tensor 12 FµνX 3 (3.10)

The gauge theory operators we have identified schematically as X2 in (3.10) can be

written more precisely as TrΦ2i − TrΦ2j . The set of scalar mass terms corresponding
2For a globally supersymmetric conformal field theory in four dimensions, N = 2 means sixteen

real supercharges, which is the same number as in N = 4 gauged supergravity in five dimensions.
The supergroup organizing the multiplets in both cases is SU(2, 2|2).
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to all the independent 2-cycles of the blown up orbifold form a basis for the mass

perturbations introduced in (2.14). The λλ operators in (3.10) are the correspond-

ing fermion mass terms which are turned on at the same time to preserve N = 1
supersymmetry.

Part of the analysis of [19] was to determine the dimensions of these operators,

listed in (3.10), from the masses of the corresponding modes in the tensor multiplet.

The first step in finding a supergravity solution interpolating between the orbifold

and conifold geometries should be to turn on the λλ and X2 modes in (3.10) at the

linearized level. One would need a concise description of the relevant interactions to

extract a solution of the full nonlinear theory, perhaps along the lines of [22], [23].

Unlike the RG flows considered in those papers, the supergravity solution interpo-

lating between the orbifold and the conifold should preserve four real supercharges

throughout the flow. At the UV and IR endpoints one should recover sixteen and

eight supercharges, respectively.

The relevant part of the multiplet (3.10) which is turned on forms what is called

a spinor multiplet of N = 2 AdS5 supergravity [21]. It contains a pair of scalars of
U(1) charges ±1 and a spinor (left- or right- handed) of U(1) charge zero. The U(1)
charge assignments can be shifted by the Kaluza-Klein momentum ` of the highest

spin state. Thus in particular, two right-handed spinor multiplets with ` = 0 and

2, together with an anti-self-dual tensor multiplet of N = 2 with ` = 1, form the
anti-self-dual tensor multiplet of N = 4 with ` = 1 that enters into (3.10).

4. Dual constructions with branes

Most of the constructions which we were studying using the geometry or field theory

can be redone in the language of branes, along the lines of [24], [25]. The idea is

to use the T -duality between the ALE (more precisely multi-Taub-NUT) space and

fivebranes. First let us remind the reader of the realization of the N = 2 super-
conformal theories in this language. Consider N D3-branes placed at the orbifold

singularity of the ALE space. Let 0123 be the world-volume of the 3-branes, while

6789 are the coordinates of ALE space. Let 6 be the compact direction corresponding

to the U(1) isometry of the ALE space. Perform T -duality along the 6’th direction.

If the ALE singularity is of Ak−1 type then we get the Type IA theory on R1,8 × S1
with k NS5-branes, whose world-volume is 012345 (6 being the coordinate along S1)

and which are located at the same point ~r in the 789-plane. The N D3-branes are

mapped to the N D4-branes which wrap the circle S1. Their world-volume is 01236.

The NS5-branes are located at the points θ1, . . . , θk. The differences θi− θi−1 corre-
spond to the fluxes of the NSNS B-field on the Type IB side. The corresponding

RR fluxes become visible if the whole picture is lifted to M-theory, where the circle

S16 is promoted to the two-torus T
2 = S16 ×S110 and the k NS5-branes become k M5-
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branes which are located at the points z1, . . . , zk on the torus T
2. The N D4-branes

are lifted to N M5-branes which wrap the whole of the T 2.

If the ALE singularity was of D type then in addition to NS5-branes one finds

orientifold plane on Type IA side.

If the NS5- (orM5-) branes are dislocated in the 789 plane then the correspond-

ing ALE space is resolved. The parameters ~ri − ~rj describing the relative positions
of the fivebranes in the 789 plane are mapped to the hyperkahler moduli of ALE

space. The corresponding process in the field theory is described by turning on the

FI terms ~ζ.

The plane 45 transverse to theD4-branes has the meaning of the Coulomb branch

direction. Let us denote by φ = x4 + ix5 the corresponding coordinate. Then the

separation of the D4-branes in the φ direction causes the NS5-branes to be frozen

at the same point ~r in the 789 plane and vice versa. Of course, this is the familiar

picture of the transitions between the Coulomb and Higgs branch with or without

FI terms.

Now let us rotate some branes. Let x7+ ix8 = x be another holomorphic coordi-

nate. Consider tilting the NS5-branes in such a way that for i’th brane its position

in 78 plane linearly depends on φ:

xi = ξiφi . (4.1)

This configuration of fivebranes preserves supersymmetry (one can think of it as of

the fivebrane “wrapping” a holomorphic curve
∏
i(ζ − ξiφ) = 0) and leads to N = 1

gauge theory on the world-volume of D4-branes. The tilting makes the scalars in

the vector multiplets of N = 2 supersymmetry massive, since the D4-branes are no
longer free to slide along the NS5-branes in the 45 directions. Another way of seeing

this is to notice that the condition that FI term is proportional to the scalar in the

vector multiplet is identical to the equation (2.16).

Finally, let us consider what happens when we add D5-branes to the stack of

N D3-branes on an orbifold singularity. For simplicity we will restrict our attention

to an Ak−1 orbifold singularity which has been resolved by FI terms: the geometry
is a direct product of the 4-dimensional ALE space (dimensions 6789), the complex

plane (dimensions 45), and flat Minkowski space (dimensions 0123). As remarked

above, there are k 2-cycles which sum to zero in homology and through which there

are fluxes θi − θi−1 of the NS B-field. Consider wrapping a D5-brane around one of
these cycles, with its other dimensions in the directions 0123. The term linear in

BNS in the Wess-Zumino part of the D5-brane action [26],

iµ5

∫
e2πα

′F+BNSC

gives this wrapped D5-brane precisely (θi − θi−1)/2π of a D3-brane charge. This is
a special case of the phenomenon of fractional branes and wrapped branes discussed

in [12, 27, 28], only here we are allowing arbitrary θj rather than taking θj = 2πj/k.

21



J
H
E
P
0
5
(
1
9
9
9
)
0
0
3

Upon T-dualizing, the D5-brane becomes an extra D4-brane stretched between the

i−1’st and i’th NS5-branes.3 This has the effect of changing the gauge group: it was
SU(N)× · · · × SU(N), with k factors of SU(N); now the i’th gauge group becomes
SU(N + 1). The supersymmetry is still N = 2, and the hypermultiplets are still
in bifundamental representations. The interpretation of D5-branes wrapped on a

2-cycle as modifying a gauge theory by incrementing the rank of one gauge group

was suggested in [30] based on evidence from anomalous brane creation. The use of

T-duality in a perturbative D-brane setting reinforces that interpretation.

It would be nice to T-dualize back from brane realizations of gauge theories to

obtain the exact supergravity/string background which are dual to them, similarly

to the construction for A1 case in [25]. Unfortunately, at the moment it does not

seem to be very practical.

5. Conclusions and conjectures

So far we described a class of complex threefolds which generalize the ordinary coni-

fold. Our construction is most easily described in the language of the gauge theory

on the world-volume of the probe D3-brane placed at the singularity of the threefold.

We start with the quiver N = 2 gauge theory of the ADE type which corresponds
to the manifold which locally looks like YΓ,UV = C

2/Γ×C. The manifold YΓ,UV is a
cone over the base M5UV = S

5/Γ. When the large N number of D3-branes are placed

at the singularity they can no longer be treated as probes. Instead, they change the

space-time geometry from that of R1,3× YΓ,UV to AdS5×M5UV and there is a flux of
RR five-form field through M5UV which is equal to N . The properties of the string

theory propagating in this background are believed to be reflected in those of the

superconformal gauge theory which occurs at the origin of the space YΓ,UV considered

as a Higgs branch of the gauge theory on branes.

The N = 2 superconformal theory has a number of interesting deformations.
It is known that it has exactly r + 1 complex marginal deformations corresponding

to the couplings of various gauge factors. Their space-time counterparts are the

space-time dilaton+axion τ and the fluxes of the RR and NSNS B-fields through

the collapsed two-cycles which are fibered over the fixed circle in S5/Γ [5]. The six-

dimensional tensor multiplet which contains these fluxes also contains the parameters

of the deformations of the two-cycles themselves (three parameters per cycle). These

would correspond to the FI terms in the gauge theory. The N = 2 gauge theory
deformed by the generic FI terms flows to the trivial IR fixed point. The space-time

interpretation of this fact is that if one first resolves the orbifold C2/Γ into a smooth

space and then places the large number of threebranes at the generic point of it then

the near-horizon geometry will be AdS5 × S5 as in the absence of any orbifold.
3We thank A. Karch for bringing to our attention the reference [29], which includes a similar

discussion of this construction.
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There are two distinct claims one could make regarding D3-branes located at

the Calabi-Yau singularities we have described. The first and simplest is as follows:

given a conifold singularity of a particular ADE type, the low-energy theory of D3-

branes located at that singularity is the IR fixed point arising from an N = 2

theory deformed by giving masses to the N = 1 chiral multiplets within the N = 2
vector multiplets, as described in section 2 and 3.1. The N = 2 origin of the gauge
theory begs the question in what sense one can start with D3-branes at an ADE

orbifold singularity and “flow” to the conifold geometry. It was argued in the A1
case in [6] that there is no topological obstruction to the flow (more specifically that

a resolution of S5/Z2 has the same topology as T
11). We have taken one more step

toward describing such a flow by identifying the multiplet of AdS5 supergravity which

includes the blowup modes and observing that in AdS5 some fields in this multiplet

have just the right tachyonic masses to correspond to the scalar and fermion masses

involved in deforming the gauge theory. The states in this multiplet arose in the

analysis of [19] from the twisted sector localized at the circle on S5/Γ fixed by the

action of Γ. In a nutshell the second claim is that starting with D3-branes at an

ADE orbifold singularity, one can turn on fields which in the gauge theory are the

mass deformations and in the string theory are twisted sector modes, and obtain a

string theory background which tracks the RG flow which takes the gauge theory

from its UV fixed point (with N = 2 supersymmetry) to its IR fixed point (with
N = 1).
Assuming such a string background exists, what are its properties? It should have

the rotational and translational symmetries of four-dimensional Minkowski space,

and it should preserve four real supercharges. Five-dimensional supergravity is a

valid description of the low-energy dynamics of both ends of the flow (provided we

take N sufficiently large and include the matter multiplets arising from the twisted

sector of the orbifold), so it seems likely that it is in fact valid throughout the

flow. It is not clear whether truncating the theory to a small number of multiplets

(as was done in effect in [23] and [22]) is a controlled approximation far from the

fixed points. The AdS5 metric should be recovered at either end of the flow (al-

though with different radii, related to the central charges as in [18]), and in the

full ten-dimensional string theory description we expect to see the metric smoothly

approach the factorized form AdS5 × M5UV in the ultraviolet and AdS5 × M5IR in
the infrared. M5UV = S

5/Γ as above, and M5IR is the base of the cone described

in section 2.6. The total space of the cone is the Calabi-Yau manifold, whose

complex structure we described in the previous sections. It is not clear to us

what on this cone should play the role of a radial coordinate, dual to scale in the

RG flow.

To put it in a single phrase, the two ends of the RG group flow correspond to

the two Einstein manifolds, M5UV and M
5
IR.
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