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Abstract

The widely accepted assumption that the decay of a resonance proceeds indepen-
dently of its production, quantitatively expressed as a factorizing formula for the differ-
ential cross section in the invariant mass of unpolarized resonance debris, is put under
scrutiny. It is shown that the factorization is always valid for scalar and pseudoscalar
resonances, although the usual version of the formula is not entirely correct. For res-
onances with nonzero spins the factorization does not generally take place. We deal
in more detail with the spin-one case, where we show a condition on the decay matrix
element that ensures the validity of the same factorizing formula as in the spinless case.
This condition is satisfied for ρ → ππ but not, e.g., for K∗ → πK or a1 → πρ. The
formalism is applied also to the case when the resonance is produced not in two-body
collisions but in the decay of a heavier particle or resonance (chain decay). Applica-
tion of our formulas to the e+e− production in one-photon approximation agrees with
what is known from quantum electrodynamics and thus provides another test of their
soundness.

1 Introduction

It has been conjectured from the early sixties (see, e.g., [1, 2]) that a process in which some of
the final state particles, let us say a and b, appear as decay products of a resonance R can be
viewed as a sequence of two independent steps: (i) a reaction in which the resonance (treated
as a stable particle with mass M) together with other final-state particles is produced; (ii)
the decay of the resonance, R → a + b.1 This notion has been expressed quantitatively by
factorizing the cross section for producing the final system that includes resonance decay
products (integrated over the angles in their common rest frame) with the invariant mass
from interval (M,M + dM) as the product of the cross section for producing the resonance
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1We will consider only two-body decay modes to keep the notation transparent. Our conclusions are

valid for any decay mode.
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with a (generally “off-shell”) mass M and a function describing its decay [3]

dσab = dσR(M)

[
π−1M0ΓR→a+b(M)(

M2
0 −M2

)2 + M2
0 Γ2(M)

]
dM2 . (1)

Here, M0 is the nominal mass of the resonance, ΓR→a+b(M) is the partial decay rate, and
Γ(M) is the mass dependent total decay width.

We will argue in what follows that this formula is a little incorrect. The correct formula,
which will be derived in Sec. 2, contains M instead of M0 in the numerator.

For the one-decay-mode resonances, the numerator and denominator in (1) contain the
same Γ(M). The latter quantity was treated differently by different authors. Jackson [1]
related it to the decay rate of the resonance, which can be expressed in terms of the S-
matrix element and evaluated if the interaction Lagrangian among the resonance and its
decay products is postulated. On the contrary, Pǐsút and Roos [2], who dealt with the
ρ(770) resonance, considered Γ(M) a phenomenological object which can and should be
determined by fitting the experimental data.

The idea of the cross section factorization arose in the isobaric nucleon model [4, 5].
Although Eq. (1) has never been proven generally, it has widely been accepted and heavily
used because it matches the natural physical expectation. As far as we know, it was first
introduced in its one-mode version in [6], as a generalization based on the cross sections for
several reactions evaluated in the lowest order of the perturbation expansion using simple
Lagrangians [7, 8, 9].

An attempt to prove Eq. (1) was done in the textbook [3]. Unfortunately, as we show
below, in a not fully correct way and, because of the choice of the propagator, only for
spinless resonances.

In this paper we show that the factorization of the cross section in the sense of Eq. (1)
is not as trivial as the naive physics intuition suggests and that it is not valid generally. We
prove that for the spinless resonances the cross section really factorizes, although the correct
formula differs a little from (1). For spin-one resonances we get the factorizing formula only
if an additional assumption is made about the matrix element for the R → a + b decay.
This assumption represents a severe constraint that excludes many well-known resonances
(K∗ and a1, for example).

The motivation for this study was twofold, experimental and theoretical. On the exper-
imental side, there is a longstanding unresolved discrepancy between the parameters of the
a1 resonance determined from the τ -lepton decay on one side and from hadronic production
processes on the other, see [10], p. 380. It is true that the experimentally observed invariant
mass spectrum of the decay products may be influenced by the resonance mass dependence
of the production cross section already in the case when the factorization takes place. But
the discrepancy among the observed widths of a1 is too big, which casts doubts on the
validity of the general assumption that the decay of a resonance is independent of the way
the resonance has been produced.

Also the mass spectrum of the Kπ system resulting from the K∗ decay was found to be
process dependent (see [11] and literature cited there). But if the factorization in the sense
of (1) is correct and the smooth factor dσR(M) is properly parametrized this dependence
should not affect the values of resonance parameters M0 and Γ(M0) determined by fitting
to the experimental data. It is the very essence of the factorization hypothesis that the
resonance part of the cross section formula is process independent, and all the properties of
the resonance production mechanism are hidden in dσR(M).
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On the theoretical side, many papers have appeared that calculated the cross sections
and decay rates of the processes in which a meson resonance emerges as one of the final
state particles. What follows are a few examples rather than the complete list: φ → ρπ
[12, 13], D(1285), E(1420) → ρππ, D → a1π, Q → K∗ππ [12], η′ → ργ [14], ππ → ργ [15],
a1 → ρπ [16, 17, 18], f2 → ργ, ρππ [19], K1 → Kρ, b1 → πω [18]. In these calculations,
the outgoing resonances were treated as stable particles with sharp masses. It is not clear
to what extent such an approximation is justified. It is obvious that it cannot give reliable
results in cases when the available phase space is small due to a close proximity to the
kinematic threshold. A typical example is K1 → Kρ, where the available energy is less
than 10 MeV, much smaller than the widths of participating resonances. There is also at
least one case in which the sharp resonance mass approach is not applicable at all, namely
the K1(1270) → Kω decay. This decay has a relatively big branching ratio (11.0 ± 2.0)%
[10] although the nominal mass of the K1 resonance is less than the sum of the K and ω
masses.

In simple processes that do not suffer from severe phase space limitation there is no ob-
vious reason for disregarding the sharp resonance mass method. The question of how well
the method works under those circumstances naturally arises. Answering it by comparing
with experimental data is usually impossible not only because of nonexistent or statistically
limited data but also because additional theoretical assumptions are usually made simulta-
neously. Thus only one way remains–to compare the sharp resonance mass method with a
more complete calculation that involves also the last step–the conversion of the produced
resonance to the hadrons that are really observed experimentally. Of course, the calcula-
tion involving this step is more difficult. But if the factorization takes place there is no
need to go through the complete procedure for each process considered. We only need to
know the decay rate or cross section for producing the resonance with arbitrary mass in the
sharp mass approximation. The conversion of the resonance to its decay products is then
described by a simple universal (independent of the dynamics of the production process)
function. This simplifies the evaluation of some of the processes mentioned above greatly.

The paper is organized as follows: In Sec. 2 we present the derivation of the factorizing
relation for the cross section in the spinless case and show a sufficient condition under
which it is valid also for unit spin resonances. Processes in which a resonance itself appears
as a decay product are dealt with in Sec. 3. Sec. 4 is devoted to the connection of our
formalism with methods used in quantum electrodynamics. In Sec. 5 we investigate how is
the factorization condition for spin-one resonances fulfilled in some important cases. Our
main conclusions are summarized and commented upon in Sec. 6.

2 Derivation of the cross section formula

2.1 Generalities

Let us consider a two-body reaction (see Fig. 1)

1 + 2 → a + b + X (2)

with particles a and b originating from the decay of a resonance R and X representing the
system of n other outgoing particles. We will assume that none of the latter is identical
with either a or b. We will be interested in the cross section for producing the (a, b) system
with fixed invariant mass M , M2 = (pa +pb)2, and fixed three-momentum P = pa +pb. For
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a and b the sum over the spin states is assumed together with integration over the momenta
in their common rest frame.

Concerning the particles from the X-system, we will write our formulas for the cross
section integrated over their momenta and summed over their spin states. But our con-
clusions would remain unchanged if we opted for a more detailed differential cross section.
For simplicity, we will not display the dependence of matrix elements on momenta and
polarizations of particles from the X-system and will use the simplified notation λX for
the complete set of their polarization indices. For reader’s convenience we start with the
general cross section formula

dσ =
(2π)4

4F
|M|2 δ(4)(p1 + p2 −

∑
i

pi)
∏
i

d3pi

(2π)32Ei
, (3)

where the sum and product run over the final state particles and F = E1E2 |v1 − v2|.2
Using (3) and

2E δ(M2 − (pa + pb)2) δ(P− pa − pb) = δ(4)(P − pa − pb) (4)

it is easy to show that the cross section of reaction (2) we are dealing with is given by

E
dσab

dM2d3P
=

1
32π2F

∫ ∑
λX ,λa,λb

|Mab|2 δ(4)(p1 + p2 − PX − P ) (5)

× δ(4)(P − pa − pb)
d3pa

2Ea

d3pb

2Eb
dΦX ,

where

dΦX =
∏
i∈X

d3pi

(2π)32Ei
. (6)

For further considerations it is necessary to introduce the sharp mass approximation. We
define a particle R(M) with the quantum numbers identical to those of the resonance R,
but with a fixed mass M , which may be different from the nominal resonance mass M0.
The cross section of the reaction

1 + 2 → R(M) + X , (7)

in which the unpolarized R(M) with momentum P is produced (see Fig. 2), is given by

E
dσR(M)

d3P
=

π

4F

∫ ∑
λX ,λR

|MR|2 δ(4)(p1 + p2 − PX − P )dΦX (8)

Now, let us turn to the decay
R(M) → a + b , (9)

depicted in Fig. 3. The general formula for the differential decay rate of a particle with
mass M into n daughter particles reads [10]

dΓ =
(2π)4

2M
|M|2 δ(4)(P −

n∑
i=1

pi)
n∏

i=1

d3pi

(2π)32Ei
. (10)

2This formula is more general than that given in [10]. The latter applies only to head-on collisions [20],
in which F = p1cm

√
s = m2p1lab.
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On the basis of it we can write the decay rate of (9) averaged over the spin states of R(M)
and summed over the final state ones as

ΓR→a+b(M) =
1

8(2JR + 1)Mπ2

∫ ∑
λR,λa,λb

|MD|2 (11)

× δ(4)(P − pa − pb)
d3pa

2Ea

d3pb

2Eb
.

Here, JR denotes the spin of the resonance.

2.2 Formula for spinless resonances

For a scalar or pseudoscalar resonance the matrix element for reaction (2) is given by

Mab = MRP(P )MD , (12)

where the propagator of the spin-zero resonance is written in the form3

P(P ) =
i

P 2 −M2
0 + iM0Γ(P 2)

(13)

to which the bare propagator of spinless particle develops after convoluting with one-
particle-irreducible bubbles and summing over all such diagrams. Substitution of (12) into
(5) gives

E
dσab

dM2d3P
=

|P(P )|2
32π2F

∫ ∑
λX

|MR|2 δ(4)(p1 + p2 − PX − P )dΦX

×
∫ ∑

λa,λb

|MD|2 δ(4)(P − pa − pb)
d3pa

2Ea

d3pb

2Eb

The integrals can be expressed in terms of observable quantities using (8) and (11) with
JR = 0 and no summing over λR. The result is

E
dσab

dM2d3P
= E

dσR(M)
d3P

[
π−1MΓR→a+b(M)(

M2
0 −M2

)2 + M2
0 Γ2(M)

]
. (14)

Our formula (14) differs from the formula (1) used in analysing the resonance production
experiments up to now. The fixed M0 in numerator is replaced by variable M . To localize
the source of discrepancy we went through the derivation in textbook [3]. We suspect that
the factor md in the right-hand side of Eq. (8.7) on p. 166 should be replaced by s

1/2
d (there

is no other md, either explicit or hidden, in that equation). After this modification, Eq. (1)
agrees with (14).

2.3 Case of spin-one resonances

The matrix element of the decay (9) can be written as

MD(P, λR) = Bν(P )εν(P, λR) , (15)
3We will change notation of Γ(P 2) to Γ(M) later on.
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where P is the four-momentum of the resonance R(M) and ε(P, λR) is its polarization
vector. The four-vector B contains all the dynamics of the Rab interaction. We suppressed
the momenta and possible polarization indices of particles a and b. The sum of the matrix
elements squared over possible spin states of the resonance, which enters the formula for
the decay rate of unpolarized R(M)’s, yields

∑
λR

|MD(P, λR)|2 = −
(

gνν′ − P νP ν′

M2

)
Bν(P )B∗

ν′(P ) . (16)

With its help we can cast the decay rate formula (11) into

ΓR→a+b(M) =
1

24Mπ2

(
gνν′ − P νP ν′

M2

)
Tνν′(P ) , (17)

where we have defined the tensor

Tνν′(P ) =
∫ ∑

λa,λb

Bνν′(P ) δ(4)(P − pa − pb)
d3pa

2Ea

d3pb

2Eb
(18)

with
Bνν′ = −

∑
λa,λb

BνB
∗
ν′ . (19)

The tensor (18) cannot depend on anything else but four-vector P because pa and pb are
integrated out and the sum over spin states is performed.

Similarly, writing the matrix element for the reaction (7) in the form

MR(P, λR) = Aµ(P )εµ(P, λR) , (20)

we arrive at the following cross section formula

E
dσR(M)

d3P
=

π

4F

(
gµµ′ − PµPµ′

M2

)
(21)

×
∫ ∑

λX

(
−AµA∗

µ′
)

δ(4)(p1 + p2 − PX − P ) dΦX

Now we are ready to attack the formula for the cross section of the reaction (2). The matrix
element of the latter is given by

Mab = AµPµν(P )Bν , (22)

where Pµν is the propagator of the spin-one resonance. Following [21] we write it near the
resonance mass (P 2 ≈ M2

0 ) as

Pµν(P ) = −i
gµν − w(P 2)PµP ν/P 2

P 2 −M2
0 + iM0Γ(P 2)

. (23)

The scalar function w(P 2) reflects the properties of the one-particle-irreducible bubble.
Fortunately, as we will see, under the assumption that enables us to write formula (14) also
in the spin-one case, the term containing it will not contribute.
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Making use of (22) we may rewrite (5) into the form

E
dσab

dM2d3P
=

1
32π2F

Pµν(P )P∗µ′ν′ Tνν′ (24)

×
∫ ∑

λX

(
−AµA∗

µ′
)

δ(4)(p1 + p2 − PX − P )dΦX (25)

Without further assumptions, the right-hand side cannot be converted into a simple product
of two factors, one describing the production of a resonance, the other its decay.

To proceed further let us assume that, as a result of a special dynamics of the R → a+b
transition, the tensor Tνν′(P ), defined in (18), satisfies the relations

P νTνν′(P ) = Tνν′(P )P ν′ = 0 . (26)

As an immediate consequence of our assumption we can simplify (24) to

E
dσab

dM2d3P
=

1
32π2F

|P(P )|2 T µµ′ (27)

×
∫ ∑

λX

(
−AµA∗

µ′
)

δ(4)(p1 + p2 − PX − P ) dΦX ,

where P(P ) is given by Eq. (13). Condition (26) also signifies that the tensor T µµ′ can be
represented as

T µµ′(P ) =

(
gµµ′ − PµPµ′

M2

)
T (M2) , (28)

where T is a scalar function of M2 = P 2. It can be determined from

T (M2) =
1
3
gνν′Tνν′(P ) . (29)

The result is
T (M2) = 8Mπ2ΓR→a+b(M) . (30)

After inserting (28) with (30) into (27) and using (21) we complete the proof that our
central formula (14) is valid also for spin-one resonances if condition (26) is satisfied.

For practical calculations it is good to notice that if the condition (26) is fulfilled then
the decay rate can be calculated from a simpler formula following from (17), namely

ΓR→a+b(M) =
1

24Mπ2

∫
gνν′Bνν′ δ(4)(P − pa − pb)

d3pa

2Ea

d3pb

2Eb
. (31)

Let us also note that it follows from (26) that

P νP ν′Tνν′ = 0 . (32)

This formula thus represents the necessary condition for (26) be fulfilled.
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3 Resonances as decay products

In this section we deal with the case when a resonance R appears itself as one of the decay
products of a heavier particle or resonance and then converts to stable particles (see Fig. 4).
We again call a and b the debris of the resonance R. On the basis of (10) and (4) we write
the following formula for the differential decay rate

E
dΓ1→a+b+X

dM2d3P
=

1
16Mπ2

∫ ∑
λX ,λa,λb

|Mab|2 δ(4)(p1 − PX − P ) (33)

× δ(4)(P − pa − pb)
d3pa

2Ea

d3pb

2Eb
dΦX ,

which is a decay analogue of Eq. (5). The rate of the decay in which the unpolarized
sharp-mass resonance R(M) is produced, see Fig. 5, reads as

E
dΓ1→R+X(M)

d3P
=

π

2M

∫ ∑
λX ,λR

|MR|2 δ(4)(p1 − PX − P )dΦX (34)

Repeating steps we have performed in Sec. 2 we can easily check that the following relation
between the decay rates of 1→ a + b + X (Fig. 4) and 1 → R(M) + X (Fig. 5) holds

E
dΓ1→a+b+X

dM2d3P
= E

dΓ1→R+X(M)
d3P

[
π−1MΓR→a+b(M)(

M2
0 −M2

)2 + M2
0 Γ2(M)

]
. (35)

This relation is valid for all scalar and pseudoscalar resonances and for such decays of
intermediate spin-one resonances that satisfy condition (26). Again, spins of the parent
particle 1, of the particles from the X system, and of particles a and b are not important,
but the sum over the a and b polarizations must be performed.

4 Application to quantum electrodynamics

Up to now we have spoken about short-lived hadronic resonances in intermediate states of
reactions and decays. But in the derivation of our key formulas (14,35) what was impor-
tant was the structure of Feynman diagrams, not the type of interactions that cause the
production and decay to happen. Our results can be applied to all strong, electromagnetic
and weak processes with the same pattern of Feynman diagrams.

In this section we are going to show that the so called invariant integration method,
which was often used for the cross section calculations in quantum electrodynamics [22],
can be regarded as a special case of our formulas.

Let us consider a reaction in which a pair of oppositely charged leptons is produced in
one-photon approximation. See Fig. 1 with R → γ, a → e+, b → e−. The reaction can be
viewed as a two step process: (i) the production of a massive photon with mass M , which
is different from its “nominal” mass M0 = 0; (ii) the decay of that massive photon, which
is described by Feynman diagram depicted in Fig. 6. The decay matrix element is given by
Eq. (15) with

Bν = euλb
(pb)γνvλa(pa) . (36)

Quantity (19) now becomes (m is the electron mass)

Bνν′ = 2e2
(
m2gνν′ − 2paνpbν′ − 2pbνpaν′

)
(37)
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and vanishes when contracted with P ν or P ν′ . This guarantees that the condition (26)
is fulfilled and we may use Eqs. (14), (35), and (31). The contraction of (37) with metric
tensor yields the constant 4(M2+2m2). What remains to calculate in (31) is the well-known
two-particle phase-space integral

∫
d3pa

2Ea

d3pb

2Eb
δ(4)(P − pa − pb) =

π

2

√
1− 4m2

M2
. (38)

Putting everything together we are getting the following decay rate of the massive photon
to an e+e− pair

Γγ(M)→e+e− =
αM

12

(
1 +

2m2

M2

)√
1− 4m2

M2
, (39)

where α = e2/4π is the fine structure constant. If we now explore our factorizing formula
with the photon mass M0 = 0 we are getting the well-known QED relation [22]

E
dσe+e−

dM2d3P
= E

dσγ(M)

d3P

α

3πM2

(
1 +

2m2

M2

)√
1− 4m2

M2
. (40)

Let us note that if we had used the usual factorizing formula (1) instead of our Eq. (14)
we would not have obtained (40), but zero.

5 Spin-one resonances and their decays

In this section we are going to investigate vector and axial-vector mesons and their main
decay modes to see whether they satisfy the condition that ensures the factorization of the
cross section (14) and decay rate (35).

5.1 Vector resonance decaying to two pseudoscalar mesons

The charge-invariant interaction among a vector field and two pseudoscalar fields is de-
scribed by the Lagrangian density

LV PP =
ig

2
Tr
(
V µφ†1

↔
∂ µ φ2

)
+ h.c., (41)

where V is the matrix in isospin space of vector field operators and φ1 and φ2 are those
of pseudoscalar fields. Evaluation of the decay matrix element provides it in the form (15)
with

Bν = c (paν − pbν) , (42)

where pa and pb are the four-momenta of outgoing mesons and c includes the coupling
constant g and possible constants arising from the isospin structure of (41). Contraction of
(42) with the four-momentum of the parent vector meson gives

P νBν = c
(
m2

a −m2
b

)
. (43)

For final-state mesons with equal masses we have P νBν = 0, what immediately implies that
the factorization condition (26) is satisfied. For unequal masses we proceed further and get

P νP ν′Tνν′(P ) = −c2π |p∗a|
(
m2

a −m2
b

)2
. (44)
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The momentum in the decay rest frame was marked by asterisk. It is clear from (44)
that the factorization condition (26) cannot be fulfilled for unequal masses of pseudoscalar
mesons.

We have just shown that the factorization formula can be used for the ρ → ππ decay,
but not for decays of vector mesons to a pair of unequally heavy pseudoscalar mesons, e.g.,
K∗ → Kπ.

5.2 Axial-vector resonance decaying to vector and pseudoscalar mesons

The most general Lagrangian for interaction among the axial-vector (R), vector (a), and
pseudoscalar (b) mesons consists of three parts. For simplicity and because some authors
used simpler Lagrangians consisting of one of those terms only, we will study these parts
individually. For simplicity, we consider A, V , and φ as field operators of individual particles.
We also introduce a shorthand notation for the polarization vector of the vector particle
εa = ε(pa, λa).

In one of the first papers about the a1 resonance in the τ -lepton decay [23] the following
Lagrangian was used:

L = gA†
µVµ + h.c. (45)

Four-vector B, defined by (15), is now proportional to the polarization vector of the vector
meson

Bν = gεaν . (46)

After a little algebra we obtain

P νP ν′Bνν′ =
g2

4m2
a

λ(M2,m2
a,m

2
b) , (47)

where we have introduced the triangle function λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz.
This result implies that the expression P νP ν′Tνν′ must acquire a nonvanishing constant
value, what leads to violation of (32). Condition (26) cannot therefore be satisfied.

Another possibility of a simple Lagrangian, which corresponds to the vertex factor used,
e.g., in [16], is

L = gA†
α

(
∂V α

∂xβ
− ∂V β

∂xα

)
∂φ

∂xβ
+ h.c. (48)

It leads to
Bν = g [(papb) εaν − (pbεaν) paν ] . (49)

Because the quantity

P νP ν′Bνν′ =
g2

4
λ(M2,m2

a,m
2
b) (50)

comes out nonvanishing, we conclude, as in the previous case, that the factorization cannot
take place.

Finally, from the Lagrangian

L = g
∂A†

α

∂xβ

(
∂V α

∂xβ
− ∂V β

∂xα

)
φ + h.c. (51)

it follows that
Bν = g [(paP ) εaν − (Pεa) paν ] . (52)
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Now we have P νBν = 0 and the condition (26) for formula (14) being valid is satisfied.
Lagrangian (51), which is the only Lagrangian leading to factorizing cross section for

the production of an axial-vector resonance decaying to a vector meson and a pseudoscalar
meson, was utilized, for example, in meson exchange model for πρ scattering [24].

Unfortunately, there is strong theoretical [12, 25] and phenomenological [26] evidence
that the correct Lagrangian for the a1ρπ system must contain at least two terms of those
we have studied. This hampers the factorization of the cross section and makes the use of
formulas (14) and (35) impossible.

6 Comments and conclusions

We have shown that the usual phenomenological way of describing the invariant mass spec-
trum of the resonance decay products is not fully correct in two respects.

Firstly, the field theory derivation leads to a factorizing formula for the cross section that
is a little different from that used so far. The difference may not be very important from the
pragmatic point of view because in the close vicinity of the resonant mass the corrections are
small. For masses far from the resonant mass both formulas lose validity anyhow because so
do the expressions for resonance propagators [Eqs.(13) and (23)]. The validity of our formula
has been confirmed independently by applying it to a class of electromagnetic processes in
which a pair of oppositely charged leptons (or quarks) is produced.

The second aspect is more important. We have argued that in some cases one cannot
use a factorizing formula at all. A sufficient condition for the factorization taking place was
shown (26) for vector and axial-vector resonances. This condition is not satisfied, e.g., for
K∗ → K + π and a1 → ρ + π decays.

In this connection a more general question arises how to define the mass and width of a
resonance in the situation when a factorizing formula cannot be used. The usual procedure
of choosing the resonance production cross section as a few-parameter smooth formula and
fitting the mass and width entering the resonance decay part of (14) is not applicable any
longer. We must use a more complete model for the matrix element of the whole process
spanning from the initial state to the final state containing stable hadrons which are directly
observed in the experiment. The mass and width of a resonance thus enter the final mass
spectrum formula in a way that is both different from Eq. (14) and model dependent. In
simple cases, when partial wave amplitudes can be determined, one may certainly turn for
help to analytic methods and define the resonance parameters by means of the position of a
pole in the complex s = M2 plane. But this can be done very rarely due to the complexity
of final states in contemporary high energy experiments.

In addition to these two problems, which we addressed in this paper in some detail,
there is another one, more general, but also ignored very often. It is the problem of the
interference of diagrams when a particle is produced both in the resonance decay and
by other mechanisms. Its effect may be disastrous and it would be very useful to study
the justification of the resonance formula in such an environment at least in some simple
examples. One study of this kind was done a long time ago [5] and showed that the
interference modified radically the mass spectrum in isobaric nucleon model.

All this puts forward a question whether it has sense to define the mass and width of
some resonances (a1, for example) as unique parameters, independently of the process the
resonance takes part in. We suspect that the parameters of the resonance which does not
satisfy the factorizing condition have a well-defined meaning only if accompanied by the
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specification of the production process in which they were measured and by the formula
which was used to fit the experimental data.
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Figure 1: Feynman diagram of the reaction 1 + 2 → a + b + X under t he assumptions
stated in Sec. 2.1. Symbols A and B are used in Sec. 2.3.

Figure 2: Feynman diagram of the reaction 1 + 2 → R(M) + X. Symbol A is used in
Sec. 2.3.

Figure 3: Feynman diagram of the decay 1→ a + b. Symbol B is used in Sec. 2.3.
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Figure 4: Feynman diagram of the decay 1→ a + b + X.

Figure 5: Feynman diagram of the decay 1 → R(M) + X.

Figure 6: Feynman diagram of the “massive” photon decay to an e+e− pair.
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