
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - SL DIVISION

The CLASSIC library is a C++ class library which provides services 
accelerator models and algorithms for their analysis. This paper des
behind the CLASSIC library and its main features. It shows how this li
large accelerator design program like the new version 9 of MAD wr
possibilities are illustrated by presenting some new developments in
sophisticated matching features with simultaneous matching of two rin

The major part of the CLASSIC library is now implemented. Its sour
preliminary documentation are available from the author.

CERN-SL-98-068

Invited paper for the Internation Computational Accelerator Physics Conference 19
Monterey, CA, 14-18 Sept 1998

Geneva, Switzerland 

16.11.98

SL/Div Reps

Experience with the Classic Library in MAD Version 

AP

C. Iselin



EXPERIENCE WITH THE CLASSIC LIBRARY IN MAD VERSION 9

F. Christoph Iselin∗

CERN, SL/AP group, CH-1211 Geneva, Switzerland

Abstract

The CLASSIC library is aC++ class library which pro-
vides services for building portable accelerator models and
algorithms for their analysis. This paper describes the moti-
vations behind the CLASSIC library and its main features.
It shows how this library can be used in a large accelera-
tor design program like the new version 9 of MAD writ-
ten in C++. The possibilities are illustrated by presenting
some new developments in MAD version 9, like sophisti-
cated matching features with simultaneous matching of two
rings.

The major part of the CLASSIC library is now imple-
mented. Its source code and some preliminary documenta-
tion are available from the author.

1 INTRODUCTION

The complete design of an accelerator usually requires
many different problems to be solved, and to do so, sev-
eral programs to be run in succession. This implies that
accelerator description data must to be sent back and forth
between programs, which is complex and error prone due
to unnecessary differences in input formats. Data exchange
could be avoided if one could pull an algorithm out of one
program and plug it into another. However, most of the
time this is impossible, since the internal data structures
vary wildly between programs.

The format problem was partially solved in 1984, when
a “Standard Input Language” was proposed. Nevertheless
the data structure problem remained with all problems it
causes. To alleviate this problems John Irwin (SLAC) pro-
posed the development of aC++class library called CLAS-
SIC (Class Library for Accelerator System SImulation and
Control). The project was started during a workshop held
in summer 1995 at SLAC as an international collaboration.

Section 2 summarises the history of the CLASSIC
project. Section 3 describes the features and use of the
CLASSIC library, and Section 4 outlines a few new fea-
tures in MAD which became possible thanks to the CLAS-
SIC library.

2 HISTORY OF CLASSIC

The CLASSIC library was initially started by a large col-
laboration. Many persons promised to participate, but
many of them have not been able to keep their promises
due to other commitments. The most important contribu-
tions were made by (in alphabetical order)

∗email: chris.iselin@cern.ch

Scott Berg (SLAC/CERN/Indiana University),

Yunhai Cai (SLAC),

Alex Dragt (University of Maryland),

James Holt (FNAL),

John Irwin (SLAC),

Christoph Iselin (CERN),

Leo Michelotti (FNAL),

Nicolas Walker (DESY),

Yiton Yan (SLAC),

Johannes van Zeijts (TJNAF).

During the years 1995 and 1996 these persons met in sev-
eral workshops to define a structure for the CLASSIC class
library. The result was first presented in 1996 [2]. Since
then most of the library has been implemented, and is now
available from the author.

3 DESCRIPTION OF CLASSIC

3.1 Terminology

Throughout this description the following terms are used:

Component: A single object occurring in an accelerator,
like a magnet or a drift space.

Beam line: A sequence of accelerator elements. Beam
lines can be nested to any depth.

Element: Anything that can occur in an accelerator. This
can be a single component, or an arbitrary sequence
of components.

3.2 Structure of CLASSIC

The CLASSIC library consists of several groups of classes
called class categories. Each class category provides the
user with a logically distinct service. 14 class categories
are now completed:

AbsBeamline: This category contains a set of abstract
classes which define the interface of single compo-
nents, like drift spaces, magnets, electrostatic ele-
ments, RF cavities, etc. The implementations can be
found in the categoryBeamlineCore .



BeamlineCore: This category contains the classes provid-
ing concrete representations of components. The in-
stance objects of these classes contain all data needed
for performing computations on these components.
This category could easily be replaced by another
one which provides a different representation. For
example, a representation might implement a direct
interface to a data base. The separation between
AbstractBeamline andBeamlineCore makes
it possible to decouple algorithms completely from
component classes.

ComponentWrappers: Each “Wrapper” component in-
herits its interface from the corresponding abstract el-
ement. It uses the “Decorator” pattern [3] to attach
field changes, like random field imperfections and/or
field scaling to a component.

Beamlines: The template classes in this category represent
the structure of beam lines. Some of them also allow
to store arbitrary data in all positions in a structure.
In particular they provide mechanisms for attaching
misalignments to any element (be it a component of a
beam line). They also permit to build tables such as
tables of optical functions or of survey data.

BeamlineGeometry: This category contains representa-
tions for all different geometries which may occur in
a component or in a beam line. Each element (compo-
nent or beam line) contains a geometry object, which
defines the design orbit of the accelerator. Classes
exist which model geometries comprising Cartesian
coordinates (straight geometry), mid-plane geometry
(sector bend like), and many more.

Fields: This category includes all magnetic and electric
field types which can exist in components (dipole,
multipole, RF field, etc.).

Construction: This category implements the “Factory”
pattern [3]. AElementFactory object can con-
struct components and beam lines. It can be called
directly by the user, but it is also used in the language
parser for constructing components.

Channels: A Channel implements the “Proxy” pat-
tern [3]. It controls access to arbitrary attributes of
components, and may be used in a matching process to
provide uniform access to all matching variables and
constraints.

Algorithms: The Algorithm classes implement the
“Visitor” pattern [3]. A “Visitor” can be thought of as
an algorithm object which walks through a beam line
and applies itself to each component in turn. Presently
Algorithms includes aSurveyor , which com-
putes the global geometry, and several mapper algo-
rithms which accumulate linear or non-linear transfer
maps using various algorithms.Algorithms also

contains a few special integrators which can be at-
tached to a component or beam line.

Algebra: Here one finds templates for abstract data types
like Vector , Matrix , Tps (Truncated Power Se-
ries),Vps (Vector Power Series), and maps, all with
variable dimensions. Their template parameter selects
the data type from which they are built (int , float ,
double , or evenTps .). There are also methods
for finding fixed points and non-resonant normal form
analysis. Further algorithms shall be added in future.

MemoryManagement: A pair of classes implementing
reference-counted shared objects.

Parser: This category contains a simple parser for the
Standard Input Language (SIL) [1]. It constructs an
accelerator structure from a SIL input file. For this
purpose it uses the classElementFactory from
class categoryConstruction .

Physics: The classPhysics defines a name space defin-
ing mathematical and physical constants.

Utilities: This category contains a random generator as de-
scribed by Knuth [5] and a collection of exception ob-
jects. The exception objects are used throughout the
other categories to handle errors.

3.3 Use of CLASSIC

First, an accelerator structure must be built using the parser
included with the library, or by defining accelerator com-
ponents asC++ objects and combining them by executing
a C++ program. The resulting structure may contain beam
lines and sub-lines nested to arbitrary depth. Within the
structure the magnetic and electric fields are represented by
classes all derived from a single base class. This permits to
treat them all uniformly. The geometry of each accelerator
element is described by its contained geometry object.

Next, the user may generate random or systematic mis-
alignment errors for selected elements (components or
whole beam lines). Selected components can have field
modifiers (random or systematic errors, or scaling) at-
tached.

Special integrators can be defined for any element.
When it makes sense for a given algorithm, such an in-
tegrator replaces the normal function of the algorithm. An
integrator could e. g. use a precomputed map for a complex
component or for a complete beam line. Another integrator
example automatically splits a component into several thin
lenses.

Once the structure is built, the user can apply an algo-
rithm, aC++ object which encapsulates the physics com-
putations to be done. An algorithm can perform any com-
putation on the beam line, such as tabulation of lattice func-
tions. An algorithm is sent to a beam line as a “Visitor”
pattern [3]. Both the beam line representation and the algo-
rithm are implemented by abstract classes. This efficiently



hides the implementation details and greatly reduces cou-
pling between classes.

Matching of an accelerator structure is made simple by
Channel objects. Once defined, these allow uniform di-
rect access to arbitrary attributes of components. By build-
ing an array of channels for access to the variable param-
eters, and another array of channels for access to the con-
strained values, the matching process becomes a simple al-
gebraic problem, like

// Define an algorithm object.
Mapper visitor(...);
Vector<Channel>variables;
Vector<Channel>constraints;
// Fill in the channels for
// variables and constraints.
...
// Assign new values to the variables.
variables = ...;
// Compute the new constraints.
visitor.execute();
// Extract the new constraint values.
... = constraints;

This example is by no means complete, but it should give
the flavour of the method.

3.4 State of CLASSIC

Since CLASSIC was presented in 1996 as a project [2], the
major parts of the library have been completed. The library
has been used successfully in a new version of the MAD
program, and many minor changes were made to make its
use easier. The library compiles cleanly with the latest ver-
sion of theegcs compiler (1.1b). It does however not yet
compile with a purely standard-conforming compiler, since
for the namespace features have been omitted. This point
will be corrected soon. The CLASSIC source code is avail-
able from the author [6] under the same conditions as the
CERN program library.

Even though the majority of the library is now complete,
some important algorithms, as well as the planned interface
to the control system are still missing. Development goes
onto fill these gaps.

For the time being the documentation usesdoc++ -like
comments [4]. The resulting documentation is available on
the world-wide web [7].

3.5 Timing Benchmarks

Most of the CPU time is usually spent for handling trun-
cated power series. Benchmarks have shown that for mod-
erately high orders (about 6) the methods of CLASSIC are
comparable in CPU time usage to Berz’s FORTRAN rou-
tines [8].

For linear maps it turns out that a large fraction of the
CPU time is used for memory allocation and deallocation,
but studies are under way to overcome this problem. A

linear algebra package and a differential algebra package
with fixed dimensions will possibly be added for speed.

3.6 Future Plans

In near future, many more algorithms will be defined and
added to the library. Some of these will be lifted from
MAD, once they are sufficiently tested.

Normal form analysis is now only possible in the non-
resonant case. The resonant case will be added shortly.

The CLASSIC structure is now more or less frozen. The
documentation can thus be rewritten in a more digestible
form. It will include a user’s guide and a reference manual.

4 ADVANCED FEATURES IN MAD

The CLASSIC library made it possible to implement sev-
eral advanced features in the newC++ version of MAD.
These features are mainly aimed at the design of a collider
with two separate rings with two-in-one magnets like the
LHC machine, for which many particular problems arise.

• The machine has a global coordinate system, whose
arc lengths coincides for both rings, even though one
of the beam runs in opposite direction towards de-
creasings.

• Many components in an interaction region are com-
mon to both rings. Obviously for physical consistency
their order must agree for both rings. This suggests
that they are defined by the same sequence definition.
The common parts are however traversed in opposite
sense by the two beams. This changes the sign of the
magnetic forces.

• The layout of the two rings are strongly coupled to
each other due to the two-in-one design of the mag-
nets.

• The twin-bore magnets cause strong correlations be-
tween the field imperfection in either aperture.

• The small apertures and the lack of space impose very
tight matching conditions.

• For the LHC machine, the two rings must fit the ex-
isting LEP tunnel. Many present-day accelerators are
constrained by similar types of constraints.

• When matching parts of the machine, e. g. interaction
regions or arc cells, all algorithms should see con-
sistent imperfections whenever the same accelerator
components are seen in different operations using dif-
ferent ranges of the machine.

• Interaction regions must be adjusted to match arc cells
at either end, the most efficient method requires back-
ward tracking of lattice functions in the downstream
cells. This implies sign changes in the algorithms,
which are different from those induced by a beam run-
ning in backward direction.



• In order to fulfil all constraints in an optimal way, it
is desirable to match both rings in the same time, to-
gether with their geometric layout.

4.1 Optical Tables

For efficient matching MAD-9 implements the concept
of tables. Their interaction with other objects is shown
schematically in Fig. 1. These tables can be used for match-
ing as described below.

Generator

Beam

Use

Line or Sequence

Use Command

Use Object

Table Object

Output

Error Command

Table Command

Match Command

List Command

Table

List

Error

Match

Generator

Module

Generator

Module

Figure 1: Schematic view of the Interaction between Ob-
jects in MAD

The use generator creates a use object; this is a fully in-
stantiated copy of the input beam line, where all compo-
nents are made unique. The use object also has an attached
beam, defining the particles running through the line and
their reference energy. The error generator generates mis-
alignment and multipole field errors as desired and attaches
them to the use object. The table generator pulls out a flat
representation of a selected range of the use object and fills
the attached data slots with data such as lattice functions
or survey data. The match module interacts with one or
more table objects and adjusts their parameters to obey the
matching constraints. Finally the list module extracts a for-
mated listing from the table object.

At the time of writing the following tables are available:

• Periodic linear lattice functions.

• Linear lattice functions with initial values.

• Geometric layout.

A table containing the transfer maps accumulated from its
beginning to the current position is being implemented.

4.2 Matching

In a matching process all global variables and all object
attributes can be made variable.

Matching constraints can be arbitrary expressions con-
taining:

• Object attributes (e. g. the field strength in a magnet),

• Global Variables (e. g. the global reference momen-
tum),

• Summary values from a table (e. g. the machine tune),

• Entries from tables (e. g. theβx value in a selected
position),

• Vectors built from the above (e. g. the r.m.s. value of
dispersion over a selected range in a table).

Very general matching constraints can be constructed. Sev-
eral tables can be used in the same matching process.
By default they are all recomputed whenever a parameter
changes, such as to keep all constraints up to date. If a ta-
ble is known to remain constant, it can be declared as static.
It is then not recomputed to save CPU time.

4.3 Status of MAD-9

A beta test version is completed. It is being used to test the
early stages of LHC version 6. Its features include:

• Input of the machine structure in a much more flexible
way than in MAD version 8.

• Definition of misalignments and/or field imperfec-
tions. The program now accepts all order of multi-
poles, even for elements which are by definition single
multipoles.

• Computation of linear lattice functions.

• Computation of geometric layout.

• Computation of arbitrary order maps with normal
form analysis. So far only the non-resonant case can
be handled.

• Matching of lattice functions or layout.

• Simultaneous matching of lattice functions and lay-
out.

• Simple tracking of particles.

• Interaction with the DOOM data base [10].



4.4 Future Plans for MAD

Plans for near future include:

• The beam line structures of CLASSIC are set up such
as to make it easy to run through a beam line in ei-
ther direction. TheVisitor pattern encapsulates the
complete state of an algorithm. This makes it easy to
keep track of the proper sign changes for all four in-
teresting cases:

1. Run beam forward and track in the same direc-
tion.

2. Run beam backward and track in the same direc-
tion.

3. Run beam forward and track in the opposite di-
rection.

4. Run beam backward and track in the opposite
direction.

The case (1) is complete, the three other cases are be-
ing implemented.

• Beams running in reverse direction through a lattice.

• Tracking of particles or lattice functions in the same
direction or in the direction opposite to the beam.

• Tables of accumulated maps.

• The documentation [11] must be completed.

5 CONCLUSION

It has been shown that the CLASSIC library design is vi-
able, and that it provides the flexibility needed for imple-
menting very sophisticated features in an accelerator de-
sign program. Some research is still needed to make the
library more efficient, and more algorithms should be im-
plemented based on CLASSIC. The control system inter-
face, as well as a data base interface should be defined and
written. For the latter the CORBA specification might be
helpful.

6 REFERENCES

[1] D. C. Carey and F. C. Iselin: ‘A Standard Input Language for
Particle Beam and Accelerator Computer Programs’. 1984
Snowmass Summer Study.

[2] F. C. Iselin: ‘The CLASSIC Project’. Computational Accel-
erator Physics Conference 1996, Williamsburg, VA.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
‘Design Patterns’, New York, Addison-Wesley 1995.

[4] Malte Zöckler, Roland Wunderling: ‘DOC++’.
URL: http://www.zib.de/
Visual/software/doc++/index.html .

[5] D. Knuth: ‘The Art of Computer Programming’,
Vol. 2 ‘Semi-numerical Algorithms’, 2nd edition,
Addison-Wesley, 1973.

[6] F. C. Iselin: ‘Classic source code’. URL:
http://wwwslap.cern.ch/˜fci/classic/2.0 .

[7] F. C. Iselin: ‘Classic Reference’. URL:
http://wwwslap.cern.ch/˜fci/classic/doc .

[8] M. Berz: ‘Differential Algebra Package’. FORTRAN pack-
age available from: Department of Physics and Astron-
omy and National Super-conducting Cyclotron Laboratory,
Michigan State University, MI.

[9] J. Chen, W. Akers, G. Heyes, D. Wu, and C. Watson:
An Object-Oriented Class Library for Developing Device
Control Application, Proceedings ICALEPCS 1995.

[10] H. Grote: ‘The DOOM Project’.
URL: http://wwwslap.cern.ch/
˜hansg/doom/ap doom.html .

[11] F. C. Iselin: ‘The MAD Program, Version 9.01 (Methodical
Accelerator Design) User’s Reference Manual’.
URL: http://wwwslap.cern.ch/
˜fci/mad/mad9/user guide.html .


