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1. Introduction

The relationship between topological gauge theories for four-manifold invariants and

physical supersymmetric theories has attracted a lot of interest. A breakthrough has

occurred through the work of Seiberg and Witten on an exact low-energy description

of the physical D = 4, N = 2 supersymmetric Yang–Mills theory [1]. This theory

can be topologically twisted in the weak coupling ultraviolet regime to produce the

integral over instanton moduli space of certain characteristic classes for the correla-

tion function of topological observables. This provides a description of four-manifold

invariants, although a precise compactification procedure of the moduli space in-

stantons is not known in each case. By going to the infrared description of the same

theory, which is an Abelian gauge theory with exact electromagnetic duality, inte-

grals over the instanton moduli space are found to equate integrals over the moduli

space of vacua [2, 3, 4, 5]. The generating function of topological correlators can be

written in terms of Seiberg–Witten monopole invariants and of the deformed holo-

morphic prepotential F(a, t). The function F(a, 0) has a description in terms of the
(holomorphic) symplectic geometry on C2r, where r is the rank of a gauge group.

Actually, F(a, 0) is a generating function of Γ-invariant submanifold in C2r, where
Γ is the finite modular subgroup (electromagnetic duality group) of SP(2r,Z). This
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submanifold is described by a function F in the following way. Denote by ω the
holomorphic symplectic form on C2r and take θ = d−1ω. Then the restriction of θ
on the lagrangean submanifold is defined by F such that θ|L=dF . The β-function
of the N=2 gauge theory provides the asymptotic behavior of the prepotential, and

the positivity of Imτ is required, with τ = ∂2F . The prepotential F(a, t), which
describes the correlators of observables from H∗(X), is defined as a solution of some
Hamiltonian evolution of F(a, 0), which is then a deformation of the lagrangean sub-
manifold.

In this paper we will demonstrate that the language of TQFTs [6, 7] is adequate

to describe the properties related to the duality symmetry, in a way that extends

refs. [8, 9]. It provides the symmetric treatment of fields and their duals, and we

will see how different formulations, and/or dual pictures, can appear in the process

of different gauge-fixings of the enlarged topological symmetry that act on all fields.

The doubling of fields, which allows various formulations, can be generalized to

other theories, in dimensions other than four, and for gauge fields that can be forms

of degrees different than 1. The naturalness of this doubling is generally dictated by

the principle of kinematical ghost and gauge field unification. We will actually study

topological theories in two and eight dimensions, for which the approach developed

for the four-dimensional case turns out to be generalizable and useful. Moreover,

dimensional reduction can be applied to our results, the most interesting case being,

in our opinion, the Yang–Mills TQFT in eight dimensions.

For eight-manifolds with Spin(7) holonomy, the moduli space of four-dimensional

instantons is replaced by that of octonionic instantons, which, unfortunately, is yet

widely unexplored. The eight-dimensional TQFT that was constructed in [7, 10] is,

however, quite an attractive theory. In particular, its dependence on an invariant

self-dual four-form Ω4 makes it very interesting, since, from a physical point of view,

such four-forms could be related to propagating four-forms in ten dimensions. The

untwisted version of this TQFT is nothing else than the ordinary eight-dimensional

Yang–Mills supersymmetric theory, i.e. the dimensional reduction to eight dimensions

of the N = 1, D = 10 super-Yang–Mills theory [7]. Such a theory also determines

the matrix string in the light-cone gauge [11, 12], after dimensional reduction to two

dimensions, and a certain form of the Seiberg–Witten theory in four dimensions.

Our treatment will clarify already known observations for the four-dimensional

case. In the eight-dimensional case, it will give interesting new features. The eight-

dimensional Yang–Mills theory is not renormalizable as such. Thus, some of the

arguments used in four dimensions cannot be applied directly. Moreover, the genuine

physical Yang–Mills theory on R8 is infrared-free, and it might be concluded that

non-trivial statements using infrared description cannot be made.1

1Notice that the eight-dimensional Yang–Mills theory is not fully topological, since it is only

independent of the metric variations which do not change the Spin(7) structure.
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We will speculate on possible resolutions of these questions. First, we will show

the possibility of a dual formulation in eight dimensions. It relies on the existence of

a Spin(7)-invariant four-form Ω4, which is already known to permit the construction

of a Yang–Mills TQFT in eight dimensions [7]. (The existence of Ω4 amounts to

that of octonionic structure coefficients in a local description.) Here, we will show

that, thanks to Ω4, duality can be established between a pair of one-forms in eight

dimension, and one finally obtains a duality in eight dimensions, which is parallel to

that of four dimensions. The argument will be that the dual in eight dimensions of

a Yang–Mills field A, which is a five-form gauge field A5, can be restricted to a dual

one-form AD, by a partial gauge-fixing of the topological gauge symmetry, which

amounts to “divide” A5 by Ω4, A5 = Ω4AD, as well as some of the ghosts.

Secondly, we will see that, by handling the duality of supersymmetric theories in

the context of TQFTs, we can accommodate the existence of higher-order interactions

in the Yang–Mills curvatures.

A natural way of thinking about such higher-order corrections, which add to

the lagrangean operators like quartic powers of the Yang–Mills curvature, is the

string theory compactification down to eight dimensions. The latter, permits the

replacement of the ultraviolet cut-off of the eight-dimensional theory by the string

tension parameter α′. This certainly modifies the infrared properties and gives a
physical content to the eight-dimensional TQFT.

A novel feature of our work is that we will introduce the O(α′) quartic inter-
actions (and possibly the higher-order ones, if we were to consider higher-order α′

corrections), by using dA+O(α′)t8dAdAdA instead of the genuine Yang–Mills two-
form curvature dA in the octonionic gauge function of the Yang–Mills TQFT. Here,

t8 is an invariant SO(8) tensor with eight indices, which is is proportional to the

trace of a product of γ matrices.

In the way we will proceed, the complete string-corrected eight-dimensional la-

grangean is still an s-exact term, with a topological gauge-function that is not in

contradiction with the notion of “holomorphicity”. Requirement of supersymmetry

and explicit one-loop-order computations provide the explicit form of t8 [13, 14]. We

suggest that t8 is a functional of Ω4. We find it appealing to believe that Ω4 is a

reminder of a propagating four-form gauge field in ten dimensions, which has been

gauge-fixed equal to a background self-dual four-form in eight dimensions, using a

ten-dimensional topological symmetry.

Another way of seeing the relevance of higher-order corrections is to compactify

the eight-dimensional theory down to a four-dimensional compact manifold, say K3.

If we integrate out all massive modes, this gives a (non-local) four-dimensional gauge

theory for which the infrared description is given by an Abelian gauge theory with

some duality group Γ. The possibility of defining the eight-dimensional theory on

the product space X×K3 in terms of the four-dimensional renormalization group
might lead us to the conclusion that there should be an analogous Abelian description
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in eight dimensions. Quartic terms contribute to the four-dimensional prepotential

upon compactification, and we conclude that the truly eight-dimensional features of

the theory cannot be captured unless these terms are included in the discussion (plus

corrections to all orders in α′).2

The paper is organized as follows. In section 2, we study in some detail the

four-dimensional situation. The formulation can be generalized to that involving a

p-form in D dimensions and its dual. Our point of view is that different gauge-fixings

of the same topological symmetry, which involve more fields, give the expression of

the supersymmetric action either in the non-Abelian (Donaldson–Witten) form or in

the Abelian (Seiberg–Witten) form, which describe the infrared behavior.

In sec. 3, we concentrate on a Yang–Mills field in the eight-dimensional case, and

show how a dual formulation can be obtained. In contrast with the four-dimensional

case, the invariants of the eight-dimensional case that can be constructed from the

quadratic action should be expressible in terms of the classical ones. However string

corrections, which regularize the ultraviolet behavior and enrich the infrared proper-

ties, can open the gates to quantum effects. Our results indicate the probable exis-

tence of a symplectic geometry description analogous to that of the four-dimensional

case. In particular, the gauge-fixing of the topological symmetry in the ghost sector

leads to a relation between scalar components (defining the “order parameters”) and

their duals, which generalizes that of four-dimensional case. However the lack of a

precise renormalization group argument (which is replaced here by topological ar-

guments), does not allow to specify what information is sufficient to determine the

“holomorphic prepotential”, although a better understanding of string corrections

could help solving this issue. We also comment on the fact that from the eight-di-

mensional TQFT point of view, the appearance of an extra monopole hypermultiplet

in the low-energy theory of Seiberg–Witten is very natural, as first noticed in [7].

However we don’t discuss its coupling to the genuine Yang–Mills TQFT in the four-

dimensional section, since the way to do it is obvious and doesn’t add new ingredients.

Finally, in section 4, we indicate how our point of view also applies to two-

dimensional duality, for a coupled scalar and Yang–Mills supersymmetric theory.

Obviously, the dimensional reduction to two dimensions of the eight-dimensional

theories in their various formulations might be independently interesting.

2. Four dimensions

2.1 The fields and the ungauged-fixed action

Let us consider a Yang–Mills field A in four dimensions. As explained in [8, 9], it is

natural to associate a two-form gauge field B2 with A. This relies on the unification

2We would like to thank W. Lerche, S. Stieberger and N. Warner for pointing this out to us and

for important discussions and clarifications on the above questions pointed.

4



J
H
E
P
0
3
(
1
9
9
9
)
0
1
1

between gauge fields and ghosts, for the fields as well as for their Batalin–Vilkoviski

antifields. Indeed, in four dimensions, the ghost expansion of a two-form contains

the antifields A−13 and c
−2
4 of the gauge field A and of the Faddeev-Popov ghost c,

while that of the Yang–Mills field A contains the antifields B−12 , B
−2
3 and B

−3
4 of the

two-form B2 and of its ghost and ghost of ghost Ψ
1
1 and Φ

2
0.

Our aim is to show that the pairing of A with a two-form B2 gauge field provides

an understanding of duality properties in four dimensions. Actually, to write an

lagrangean, we must introduce another pair, AD and BD2. This doubling of degrees

of freedom becomes clearer if A is replaced by a p-form gauge field in an arbitrary

dimension D, and if we generalize the idea of ghost unification, as in [9]. We will

go back to this in section 3, for the case of a Yang–Mills theory in eight dimensions,

and in section 4, which is devoted to the two-dimensional situation.

The one-form AD cannot be understood as a Yang–Mills field since the curvature

GAD of AD turns out to be its covariant derivative with respect to A, that is, GAD =

DAAD, with DA = d + [A, .], while that of A is the Yang–Mills curvature FA =

dA+ A ∧A = dA+ 1
2
[A,A].

According to [8], the following expansion determines the fields of the theory:

Ã = c+ A+B−12 +Ψ
−2
3 + Φ

−3
4

B̃2 = c−24 + A
−1
3 +B2 +Ψ

1
1 + Φ

2
0 (2.1)

ÃD = cD + AD +B
−1
D2 +Ψ

−2
D3 + Φ

−3
D4

B̃D2 = c−2D4 + A
−1
D3 +BD2 +Ψ

1
D1 + Φ

2
D0 . (2.2)

In this expansion, the forms with negative ghost number are antifields. We follow

the usual notation that the lower index is the ordinary form degree, which cannot

exceed the value of the space dimension, while the upper index is the ghost number.

The way we display the ghost expansions in (2.1) and (2.2) clearly indicates the

field-antifield pairings, as they were sketched at the beginning of this section.

The symmetry of the theory is defined by a BRST, that is, an s-symmetry

operation, where s acts as a differential operator graded by the sum of ordinary form

degree and ghost number, and s2 = 0. It turns out that s can often be related to

ordinary supersymmetry transformations by the operation of twist.

This s defines classical infinitesimal transformations governed by two one-form

parameters ρ and ρD, which correspond to the ghosts Ψ
1
1 and Ψ

1
D1, and by two zero-

form parameters ε and εD, which correspond to the ghosts c and cD. Here, ε is

the ordinary Yang–Mills transformation parameter, and c is the associated Faddeev–

Popov ghost.

In [8], a topological s-symmetry for the fields in (2.1) and (2.2) has been in-

troduced, by means of the master equation of the field-antifield dependent Batalin–

Vilkoviski lagrangean:

L = Tr
(
B̃D2 ∧ B̃2 + B̃2 ∧DÃÃD + B̃D2 ∧ FÃ

)∣∣∣0
4
. (2.3)
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We have

s
∫
L = 0 , sφ =

δ
∫ L
δψ

, sψ =
δ
∫ L
δφ

, (2.4)

where, generically, ψ is the antifield of φ. Since (2.3) is a lagrangean of the first

order, its equations of motion formally determine the BRST equations for all fields

and antifields.

A compact way of writing the action of s on all fields and antifields, which leaves

the lagrangean (2.3) invariant, is:

sÃ = −dÃ− Ã ∧ Ã + B̃ , sB̃2 = −DÃB̃2 ,
sÃD = −dÃD − [Ã, ÃD] + B̃D2 , sB̃D2 = −DÃB̃D2 − [ÃD, B̃2] . (2.5)

The s-variation of each one of the fields and antifields is then obtained by a fur-

ther expansion in ghost number. It give in particular the topological transformations

sA = Ψ11 + · · · and sAD = Ψ1D1 + · · ·
Observing the way Ã and ÃD transform, it is justified to examine if we can add

to the lagrangean (2.3) a term F = F(B̃2, B̃D2). Here, F is a group scalar. By
assumption, we chose it to be metric-independent.

The condition that we have an s-invariant action, such that s2 = 0, with a non-

Abelian symmetry, implies that F is a function of B̃2 only: F = F(B̃2). Moreover,
F must fulfil the condition: [

B̃2,
δF(B̃2)
δB̃2

]
= 0 . (2.6)

This condition holds in particular when the gauge group is SU(2). Then, the

new lagrangean is:

L = Tr
(
B̃2 ∧ B̃D2 + B̃2 ∧DÃÃD + B̃D2 ∧ FÃ + F(B̃2) + xF̃Ã ∧ F̃Ã +

+ 2yF̃Ã ∧DÃÃD + z
(
DÃÃD ∧DÃÃD + FA ∧ [ÃD, ÃD]

))∣∣∣∣0
4
. (2.7)

For completeness, we have added to the lagrangean purely topological terms,

where x, y and z are complex numbers. They can be adjusted in such a way that,

eventually, the θ parameter of the theory is defined modulo 2π. We are not interested

in this issue, so we will set x = y = z = 0 in the following.

The modified topological s-invariance for the lagrangean (2.7) is:

sÃ = −FÃ + B̃2 , sB̃2 = −DÃB̃2 ,
sÃD = −DÃÃD + B̃D2 +

δF(B̃2, B̃D2)
δB̃2

, sB̃D2 = −DÃB̃D2 + [B̃2, ÃD] . (2.8)

Obviously, the asymmetry between B̃2 and B̃D2 comes from that between Ã and ÃD
in the non-Abelian case. Since ÃD rotates under Yang–Mills symmetry and has also

its own local gauge symmetry, with ghost cD, it is not a standard Yang–Mills field.
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Provided (2.6) is verified, there is no further restriction on the B̃2 dependence of

F to have s2 = 0 on all fields. The usual physical requirement is that, after gauge-
fixing, the action contains a Gaussian part that is positive-definite. This implies

Im ∂2F̃ > 0. The choice of a given F , as in [1], is based on dynamical requirements,
which go beyond phase-space considerations.

If the symmetry is purely Abelian, there is a formal symmetry between A and

AD, and F can depend on B̃2 and B̃D2. However, throughout the paper, we consider
that the commuting case is a limiting case of the non-Abelian one, and we will

consider that F is a function of B̃2 only.
2.2 Non-Abelian case, with F = F(B̃2)
The lagrangean (2.7) can be considered as a rather sophisticated form of a classical

topological invariant. For a non-vanishing F , it actually depends on the fermions of
the theory, that is on the topological ghosts and on the antifields. Indeed, by Taylor

expansion, we have:

F(B̃2)
∣∣∣0
4
= Tr

(
∂F(Φ20)c−24 +

1

2
∂2F(Φ20)

(
B2 ∧ B + 2Ψ11 ∧ A−13

)
+

+
1

2
∂3F(Φ20)B2 ∧Ψ11 ∧Ψ11 +

1

24
∂4F(Φ20)Ψ11 ∧Ψ11 ∧Ψ11 ∧Ψ11

)
. (2.9)

We use the notation ∂ = ∂
∂Φ20
. The apparent complexity of this part of the la-

grangean (2.7) is quite analogous to that of consistent anomalies, prior to the under-

standing of descent equations. One sees that when ∂2F 6= 0, there are interactions
between Φ20 , B2 and Ψ, and, eventually, A. This occurs even in the commuting case.

The cohomology of s, for its part with ghost number 0, is empty. This is almost

obvious if one looks at the way A and AD transform in (2.5). Thus, we expect that

the “classical” lagrangean (2.7) is a closed-term, with a relation to a sort of super

Chern–Simons-term. We have:
(s− d)F(B̃2) = 0 . (2.10)

This can be seen from the way B̃2 transforms.

Furthermore, in the commuting limit, we have that F(B̃2)|04 is by itself the sum
of d-closed and s-exact terms. Indeed, in this case, we can get easily the above-

mentioned Chern–Simons formula. One uses B̃2 = sÃ− FÃ, and (s− d)2 = 0, and:
F(B̃2) = F((s− d)Ã)

=
∞∑
n=0

F (n)(0)
n!

((s− d)Ã)n

= (s− d)
∞∑
n=0

F (n)(0)
n!

Ã((s− d)Ã)n−1

= (s− d)
(
Ã
∞∑
n=0

F (n)(0)
n!

B̃n−12

)
. (2.11)
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Thus we have

F(B̃2)
∣∣∣0
4
= s∆−14 + d(. . .) (2.12)

and (2.11) gives

∆−14 =Tr
(
∂F(Φ20)Φ−34 +

+
1

2
∂2F(Φ20)

(
Ψ−23 ∧Ψ11 +B2 ∧B−12 + A ∧ A−13 + cc−24

)
+

+
1

6
∂3F(Φ20)

(
Ψ11 ∧Ψ11 ∧B−12 + 2A ∧B2 ∧Ψ11+ cB2 ∧ B2 + 2cΨ11∧ A−13

)
+

+
1

24
∂4F(Φ20)

(
cΨ11 ∧Ψ11 ∧Ψ11 ∧Ψ11

))
. (2.13)

This expression is quite instructive, and shows the role of antifields. Let us indi-

cate by anticipation that, after the self-dual gauge-fixing that provides, by following

the standard rules of the Batalin–Vilkoviski formalism, an action that is suitable

for path integration, the antifields will become functions of propagating antighosts.

Actually, the self-dual gauge determines values for the antifield of the following type:

Ψ−23 =
∗(DAΦ−20 )

A−13 =
∗(DA ∧∗ χ−1+2 + [Φ−20 ,Ψ

1
1] + λdc

)
Φ−34 =

∗[Φ−20 , η
−1
0 ]

B−12 = c−24 = 0 . (2.14)

Here the constant λ is the usual gauge parameter for fixing the longitudinal degrees

of freedom of A.

Finally, to directly obtain the action of s on all fields, it is convenient to decom-

pose all fields in (2.7), and to use the interpretation of the antifields as the sources

of the BRST transformation of fields as given by (2.4). This gives:

L = Tr
(
B2 ∧BD2 +B2 ∧DAAD +BD2 ∧ FA + τB2 ∧ B2 +
+ A−13 ∧ (Ψ1D1 + τΨ11 +DAcD − [c, AD]) + A−1D3 ∧ (Ψ11 +DAc) +
+ c−24 (Φ

2
D0 − ∂F(Φ20)− [c, cD]) + c−2D4

(
Φ20 −

1

2
[c, c]

)
+

+B−12 ∧ (DÃΨ1D1 − [c, BD2]) +B−1D2 ∧ (DÃΨ11 − [c, B2]) +
+ Ψ−23 ∧ (DÃΦ2D0 − [c,Ψ1D1]) + Ψ−2D3 ∧ (DÃΦ20 − [c,Ψ11])−
− Φ−34 [c,Φ2D0]− Φ−3D4[c,Φ20] +

1

2
∂3F(Φ20)FA ∧Ψ11 ∧Ψ11 +

+
1

24
∂4F(Φ20)Ψ11 ∧Ψ11 ∧Ψ11 ∧Ψ11

)
. (2.15)

We have defined the matrix:

τ =
δ2F(Φ20)
δΦ20δΦ

2
0

. (2.16)
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Up to now nothing much interesting has been done - we just have introduced F
in the action and explored some simple properties of corresponding BRST algebra.

One can’t find any interesting duality symmetries in non-Ableian theory. Intersting

properties arise only when moving to Ableian phase. As it was mentioned in the

introduction in physical theory one shall use RG arguments in order to derive low

energy effective action-SW Ableian SUSY gauge theory. In topological setup one can

try to gauge fix all fields in the Cartan subalgebra but it turnes out that corresponding

theory is related to the low energy solution mentioned above only when non-zero F
is intruduced (see footnote below).

2.3 Restriction of fields in the Cartan subalgebra

Let us now consider the possibility of using the topological symmetry to do a prior

gauge-fixing, which reduces all fields in the Cartan subalgebra of the gauge group.3

Once all fields are commuting, there is a rotational symmetry between A and AD,

when F = 0. We will see that the interpretation of Abelian duality is the freedom
in using different gauge-fixings for the topological symmetry of both A and AD.

In the physical theory, the moduli space of vacua is parametrized by order pa-

rameters. These parameters are the expectation values of invariant polynomials of

Φ; we denote the eigenvalues of the matrix Φ20 and Φ
2
0D by a and aD respectively.

The topological symmetry allows one to impose a relation cD = 0, as a gauge choice.

A simple look at the way cD transforms under s, (scD is given by the term in factor

of c4 in (2.15)), indicates that the BRST invariance implies a relation between the

ghosts of ghosts (the scalars in supersymmetry language)

aD =
∂F
∂a

. (2.17)

The choice of another combination of c and cD, which one would gauge-fix to zero

instead of cD, is also possible.

2.4 The topological invariance and the gauge-fixing freedom

We first consider the classical lagrangean Lcl, obtained by putting all ghosts and
antifields equal to zero in (2.7) and assuming that τ is constant:

Lcl = Tr
(
B2 ∧ BD2 +B2 ∧DAAD +BD2 ∧ FA + 1

2
B2 ∧ τB2

)
. (2.18)

3If the bundle is non-trivial, one must be careful in such a “brutal” gauge-fixing. Indeed, it

cannot be decomposed as the sum of line bundles, and it is not possible to globally choose the

gauge that reduces the theory to the Abelian one. What one can do, instead, is to choose the

Abelian gauge on the complement to the finite number of points (point-like instantons); later, one

needs to integrate over these points. Interestingly, it seems that for some magic reason, the gauge-

fixing in the Cartan subalgebra, together with the introduction of the monopole hypermultiplet in

our formalism, when we have a non-vanishing F , is self-consistent, and the above remark can be
ignored. We wish to understand this better and will give some hint later from the eight-dimensional

perspective.
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This lagrangean, after elimination of B2 and BD2, is d-closed. It can be called a

classical topological term, and it needs a BRST-invariant gauge-fixing.

In the case of interest, that is when τ is not a constant, (2.7) is the sum of a d-

closed and an s-exact term. The latter cannot be interpreted as part of a gauge-fixing

term, since it only involves the fields and antifields of the geometrical part of the

BRST symmetry, prior to the introduction of the cohomologically trivial antighost

sector. It follows that (2.7) extends in a supersymmetric way the definition of a

topological term. We are in a context that is slightly more general than that of the

standard Yang–Mills TQFT [6], which relies on the BRST invariant quantization of

an ordinary topological term. However, the invariance of the lagrangean (2.7) still

corresponds to the invariances under arbitrary shifts of A and AD, as can be seen

from the BRST equations (2.8). Thus as far as the gauge-fixing is concerned, we can

extend the strategy as in [6], which can be applied whether τ is field-dependent or

not. For a consistent gauge-fixing, one must use the complete action, with its full

antifield dependence, which encodes all information about the BRST symmetry.

As already indicated, the novelty is that (2.7) can be gauge-fixed in different

ways, which give various supersymmetric formulations that can be related by duality

transformations. This property relies on the following characteristics:

• The symmetry on the gauge fields A and AD is of the topological type, as shown
in (2.8); the dependence in the two-forms B2 and BD2 is purely algebraic, so

these fields can be eliminated from the action.

• There are several ways to gauge-fix the symmetries on A and AD, which leave
actions of the same type, but with different values of the coupling constants.

All these properties hold at the Abelian as well as at the non-Abelian levels

and give different ways of expressing the theory. We can call this property duality

covariance; however, duality invariance only holds if A and AD are valued in the

Cartan subalgebra of the gauge group, a condition that can be realized by using

only part of the freedom of the topological symmetry. In the following, we will

nevertheless write formula that accommodate the non-Abelian case.

Let us make a technical comment. There are two ways of enforcing gauge condi-

tions: either one replaces the antifields in the lagrangean (2.7) by relevant expressions

of the type ψ = δZ−1
δφ
, where the chosen gauge functions determine Z−1, according

to the standard Batalin–Vilkoviski construction; or one adds an s-exact term to the

lagrangean obtained by setting all antifields equal to zero. The latter way is consis-

tent because, for the type of symmetry that we consider, the antifield dependence is

a linear one. Furthermore it is faster, since it avoids the step of introducing the an-

tifields of antighosts. The s-exact term also depends on the chosen gauge functions.

Both procedures are actually equivalent and necessitate the definition of a given set

of antighosts and of their Lagrange multipliers. The antighost sector, which is BRST
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cohomologically trivial, must be adapted to the gauge choice. As shown in [6], free-

dom in the possibility of this sector of the theory makes the richness of TQFTs.

We will elaborate on this in the next section, since this is precisely the possibility

of having different classes of gauge-fixings for different combinations of Ã and ÃD
which, will turn out to be the key to obtain mirror-, or duality-, related formulations.

It is worth noting at this point that the Seiberg–Witten holomorphicity prop-

erties of the functional F are understood in the BRST language as follows: general
arguments indicate that the BRST cohomology cannot depend on antighosts. Thus

it is expected that any dependence of F on the antighosts Φ−20 and Φ−2D0, which we
shall shortly define, could be absorbed in an irrelevant counterterm. Since Φ−20 and
Φ−2D0 can be interpreted as the complex conjugates of Φ

2
0 and Φ

2
D0 in the language of

untwisted supersymmetry, the property that F can only depend on the latter fields
finally gives the holomorphicity property.

2.5 The gauge-fixing process

The gauge-fixing of all components in A and AD can be done in various ways, since

we have as many parameters in the symmetry as there are modes in the gauge field

(up to global excitations), see [6]. Let us now define the antighosts and Lagrange

multipliers that are needed for this purpose in the A, B2 sector. The mirror equations

for the AD, BD2 sector are obvious to deduce, and we skip writing them out.

As for the gauge-fixing of longitudinal modes in A, we have the Faddeev–Popov

antighost c̄, and its Lagrange multiplier b, and sc̄ = b. In the topological sector,

we have antighosts and Lagrange multipliers that complete the ghost spectrum as

follows:

B2
Ψ11 Ψ−11

Φ20 Φ00 Φ−20

and

H01
η10 η−10

The way s acts on the antighost sector is BRST-trivial. It is: sΨ−11 = H01 −
[c,Ψ−11 ], sH01 = −[Φ20,Ψ−11 ], sΦ−20 = η−10 − [c,Φ−20 ], sη−10 = −[Φ20,Φ−20 ], sΦ00 = η10 −
[c,Φ00] and sη

1
0 = −[Φ20,Φ00].

A detailed treatment would imply the introduction of antifields for the antighosts,

(e.g. Ψ03 for Ψ
−1
1 , and so on), such that terms can be added to (2.15), which determine

the BRST equations of the antighost sector from a master equation. It is needless

to write here such terms, which are of the type TrΨ03 ∧ (H01 − [c,Ψ−11 ]).

11
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2.6 “Trivial” gauge-fixing

The first possibility of gauge-fixing that uses the topological freedom is the “trivial”

one: we gauge-fix to zero components of A and/or AD, (which we will denote by A(w)
for notational simplicity).

This gauge-fixing is obtained by the following s-exact lagrangean, which gives

algebraic terms that automatically gauge-fix to zero relevant ghost combinations for

the A(w)-sector:

sTr
(
Ψ−1µ(w) A(w)µ+ c̄(w)Φ

0
(w)0+ Φ

−2
0 c(w)

)
=Tr

(
Hµ(w)A(w)µ + b(w)Φ

0
(w)0 + η

−1
(w)0c(w)+

+Ψ−1(w)µsA(w)µ+ η
1
(w)0c̄(w)+ Φ

−2
(w)0sc(w)

)
.

(2.19)

We will use the gauge A(w) = AD = 0 and c(w) = cD = 0. Since, from (2.15),

sAD|c=0 = Ψ1D1 + τΨ11, and scD|cD=0 = Φ2D0 − ∂F(Φ20), the integration over the
antighosts Ψ−1µ and Φ

−2
0 in (2.19) gives the standard relations Φ

2
D0 = ∂F(Φ20) and

Ψ1D1 = −τΨ11. These equations shows that, because of the trivial gauge-fixing, the
BRST symmetry relates the ghosts of dual formulations through Legendre-transform

type formula.

The gauge-fixing in the cartan subalgebra of A and AD that we already discussed

in section 2.3 is of the “trivial” type.

2.7 Self-dual gauge-fixing

After having “trivially” eliminated part of the fields, (for instance AD), we can use the

remaining freedom to impose a self-dual equation on the curvature of the remaining

ones, that we will denote as Ae. As explained in [6], the self-dual gauge-fixing must be

completed by an ordinary gauge choice for the longitudinal modes. Altogether, this

gives four conditions on Ae and exhausts all possible gauge freedom of the system.

We must now introduce, in the context of BRST invariance, the gauge functions

F+Ae = (dAe +AeAe)
+ and ∂µAeµ. For this purpose, we must define our notation for

the self-dual and anti-self-dual parts of a two-form:

B±2 =
1

2
(B2 ±∗ B2) , (2.20)

with (in Euclidian 4D-space)

∗Bµν =
√
gε

2
εµνρσBρσ ,

and thus, B+2 ∧ B−2 = 0, and

B2 ∧ ∗B2 = d4x
√
g BµνB

µν = B+2 ∧B+2 +B−2 ∧ B−2 ,
B2 ∧ B2 = d4x

√
g Bµνε

µνρσBρσ = B
+
2 ∧ B+2 − B−2 ∧B−2 . (2.21)
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The squared gauge function (dAe + AeAe)
+ provides a Yang–Mills type lagrangean

plus a topological term, since ∗∗ = 1, and

1

2
F+Ae ∧ F+Ae = FAe ∧∗FAe + FAe ∧ FAe . (2.22)

To enforce the self-duality gauge function, we only need three antighosts and

three Lagrange multipliers. We thus need some redefinitions of the degrees of freedom

in the antighost sector. (This eventually leads to the possibility of twist.) We

decompose:

Ψ−11 → (χ−1+2 ,Ψ−1)

H−11 → (H+2 , H) , (2.23)

where χ−1+2 and H+2 are self-dual two-forms, and Ψ
−1 and H are zero-forms. (From

now on we skip the subindex e for the sake of notational clarity). Changing variables

as in (2.23) amounts to decomposing a spinorial tensor of rank 2 into its trace and

its traceless parts.

One can eliminate the useless antighosts Ψ−1 and Φ00 by means of the s-exact
lagrangean

sTr(Ψ−1Φ00) = Tr
(
HΦ00 + η

1Ψ−1
)
. (2.24)

The remaining part of (2.19) is:

B2
Ψ11 χ−1+2

Φ20 Φ−20

(2.25)

H+2
η−10

(2.26)

As explained in [6], the gauge-fixing also implies that of the longitudinal com-

ponents of Ψ11. The s-exact term that enforces this condition is:

sTr
(
τ(Φ20)χ

−1
µν

(
F+µνA +

1

2
H+µν

)
+ Φ−20

(
DµAΨ

1
µ +

[
Φ20, η

−1
0

]))
. (2.27)

Finally, the gauge-fixing part of the longitudinal degrees of freedom in A must be

done by using the ordinary Faddeev–Popov ghost c̄ and its Lagrange multiplier.

2.8 The elimination of B2 and BD2

The classical two-forms B2 and BD2 can be eliminated from the lagrangean (2.15) by

Gaussian integrations, for any given choice of the function F . If we put all antifields
to zero, this gives a term that is a quadratic form in the curvatures of A and AD,

plus terms depending on the fermions Ψ11 and the derivatives of τ . In what follows we

do not consider the dependence on the fermions Ψ11, although they are important as
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explained in [4], in order to completely demonstrate the mapping between the dual

formulations. We refer the reader to [2, 3, 4] for more complete elements of the proof

than the ones displayed below, which include the verification that the fermionic part

of the action, obtained in expanding the s-exact terms which enforce the self-duality

gauge-fixing, obey the equivalence between the actions.

The logic is as follows. We first perform a gauge-fixing of all fields in the Cartan-

subalgebra (the symbol Tr now means the trace in this space). After this, there are

two possibilities: either we impose the trivial gauge conditions AD = 0 and we recover

the standard topological term for A, by the elimination of the auxiliary fields B2 and

BD2; or we first integrate out A, (this is the point where it is important to have done

a prior trivial gauge-fixing of all fields in the Cartan-subalgebra). This implies that

BD2 = dΛ, for some one-form Λ, and we can set Λ = 0 by using the topological gauge

freedom on A, which is not used at the level of the equation of motion dBD2 = 0.

Doing so, A and all its ghosts disappear. This procedure gives lagrangeans that are

identical up to the change τ → −1/τ and field redefinitions.
Let us be a little bit more precise. Starting from the lagrangean (2.15), with the

above-mentioned restrictions, the integration over B2 gives:

L ∼ Tr
(
−1
2
(BD2 + dAD) ∧ τ−1(BD2 + dAD) +BD2 ∧ FA

)

= Tr
(
−1
2
BD2 ∧ τ−1BD2 +BD2 ∧ (FA − τ−1dAD)− 1

2
dAD ∧ τ−1dAD

)
. (2.28)

If we now use the topological freedom to first gauge-fix AD = 0, we obtain by

Gaussian integration:

L ∼ Tr
(
−1
2
BD2 ∧ τ−1BD2 +BD2 ∧ FA

)
∼ Tr

(
1

2
FA ∧ τFA

)
. (2.29)

This is the standard topological term which leads us directly to the τ -dependent

Yang–Mills TQFT, by self-dual gauge fixing, as in [6].

However, duality emerges because we can use in a different and more refined way

the topological freedom on A and AD, by gauge-fixing BD2 to zero after integrating

out A. Starting again from (2.15), the A-integration gives, together with summing

over its fluxes:

L ∼ Tr
(
B2 ∧ (dΛ+ dAD) + 1

2
B2 ∧ τB2

)
, (2.30)

where there is a functional integration over Λ. The latter field can be gauge-fixed

to zero, using the topological freedom on A which has yet not been used, and which

gives sΛ = Ψ11. Once Λ = 0, the integration over BD2 gives:

L ∼ Tr
(
−1
2
dAD ∧ τ−1dAD

)
. (2.31)

This lagrangean, after self-dual gauge fixing of AD, determines the dual theory, with

the symmetry τ → −1/t.
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3. Eight dimensions

In this section, we will give the description of the eight-dimensional Yang–Mills

TQFT by extending what we have done in the four-dimensional case. This TQFT

has been introduced in [7], in a non-Abelian formulation which is analogous to that

of the four-dimensional Donaldson–Witten TQFT. Here, we will investigate how to

introduce the idea of duality in this theory.

In eight dimensions, the dual of a one-form is a five-form. If one considers the

generalization of the four-dimensional case, we have a pair A,B6, instead of A,BD2,

and a pair A5,B2, instead of AD,B6, with the following ghost expansions for the fields

and antifields that are adapted to the eight-dimensional case:

Ã = c+ A+B−12 +Ψ
−2
3 + Φ

−3
4 + Φ

−4
5 + Φ

−5
6 + Φ

−6
7 + Φ

−7
8

B̃6 = c−28 + A
−1
7 +B6 +Ψ

1
5 + Φ

2
4 + Φ

3
3 + Φ

4
2 + Φ

5
1 + Φ

6
0 (3.1)

Ã5 = A50 + A
4
1 + A

3
2 + A

2
3 + A

1
4 + A5 +Ψ

−1
6 + Φ

−2
7 + Φ

−3
8

B̃2 = A−68 + A
−5
7 + A

−4
6 + A

−3
5 + A

−2
4 + A

−1
3 +B2 +B

1
1 +B

2
0 . (3.2)

The Batalin–Vilkoviski lagrangean which generalizes (2.3) is:

L = Tr
(
B̃2 ∧ B̃6 + B̃2 ∧DÃÃ5 + B̃6 ∧ FÃ

) ∣∣∣0
8
. (3.3)

As in the four-dimensional case, this lagrangean is invariant under a topological

symmetry for the Yang–Mills field A and the five-form gauge field A5, qiven by

eq. (2.4). Its classical part is equivalent to the topological density Tr
(
DAA5 ∧ FA

)
.

Moreover, it is clear that we can introduce a “prepotential” F(B̃2), add it to the
lagrangean and distort the BRST symmetry as we did in four dimensions.

It seems, however, that duality cannot hold in eight dimensions because of the

obvious off-shell asymmetry between the Yang–Mills one-form A and the five-form

A5. Actually, this difficulty can be circumvented, because of the special properties of

eight-manifolds, which have been already used in [7, 10] to make an eight-dimensional

Yang–Mills TQFT. Before introducing a prepotential, we must explain this.

Assuming that the eight-manifold has Spin(7) holonomy, there is a canonical

self-dual closed four-form Ω4(x) which is covariantly constant. It can be locally

written as follows: we choose a local vielbein such that the metric is
∑
ei⊗ εi, where

the ei’s are one-forms and i = 1, . . . , 8; then Ω4 = T ijklei ∧ εj ∧ ek ∧ el. This form
is invariant under the rotations of ei, which build the subgroup Spin(7) of SO(8).

The tensor T is self-dual, Tµνρσ = εµνρσαβγδT
αβγδ, and it can be written in terms of

the octonionic structure constants that define the G2-structure of seven-dimensional

manifolds. Such manifolds have a unique covariantly constant three-form φ3, with

its dual Ω4, which can be locally written as φ3 = cabcea ∧ eb ∧ ec, a, b, c = 1, . . . , 7,
where the cabc are octonionic structure constants. φ3 is invariant under the subgroup

G2 of SO(7), and Ω4 = e8 ∧ φ− ∗φ.
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The invariant four-form Ω4(x) can be used to decompose any given two-form B2
into two Spin(7)-irreducible components B±2 , according to 28 = 21 ⊕ 7. B+2 and
B−2 can be called self-dual and antiself-dual respectively. The generalization of the
four-dimensional decomposition (2.20) is:

B±2 =
1

2
(B2 ±† B2) , (3.4)

with (in Euclidian space):

†Bµν =
√
g

2
ΩµνρσB

ρσ . (3.5)

As in the four-dimensional case, B+2 ∧ B−2 = 0, and:

B2 ∧ ∗B2 = d8x
√
g BµνB

µν = B+2 ∧ B+2 +B−2 ∧ B−2
B2 ∧ †B2 = d8x

√
g BµνΩ

µνρσBρσ = B
+
2 ∧B+2 − B−2 ∧ B−2 . (3.6)

Obviously, the symbols ∗ now denotes the ordinary Hodge duality operation in
eight dimension.

Now comes the new features. Using Ω4, one can decompose the gauge field A5
according to:

A5 = Ω4 ∧ AD + (A5 − Ω ∧AD) , (3.7)

where the one-form gauge field AD is defined as:

AD =
∗(Ω4 ∧ ∗A5) . (3.8)

The idea is to first use the topological symmetry to gauge-fix to zero (A5 − Ω ∧
AD), that is, to enforce the following gauge-fixing:

A5 = Ω4 ∧AD . (3.9)

Actually, a simple counting of commuting and anticommuting degrees of freedom

in Ã5 and B̃6, together with the properties that the ghosts in B̃6 are topological ghosts

for A5, indicates that one can indeed perform the following gauge fixing

Ã5 = Ω4 ∧ ÃD
B̃6 = Ω4 ∧ B̃D2 . (3.10)

The gauge-fixing of Ã5 down to a one-form ÃD, and of B̃6 down to B̃D2 means

that that, some of the ghost contained in Ã5 and B̃6 are used, after having introduced

all necessary antighosts. In the BRST framework, they disappear from the theory

because of the algebraic equations of motion stemming from the BRST invariant way

of enforcing (3.10).
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The degrees of freedom which are contained in the expansions of of Ã5 and

B̃6, and which remain ungauged-fixed after the gauge-fixing of A5 to AD, can be

effectively reorganized in the following expansions:

Ã5 = Ω4 ∧ ÃD = Ω4 ∧ (cD + AD +B−1D2 +Ψ−2D3 + Φ−3D4) , (3.11)

B̃6 = Ω4 ∧ B̃D2 = Ω4 ∧ (c−2D4 + A−1D3 +BD2 +Ψ1D1 + Φ2D0) . (3.12)

Notice that the classical forms B6 and BD2 have the same number of degrees of

freedom, but different gauge symmetries.

This gauge-fixing reduces the lagrangean to:

L = TrΩ4 ∧
(
B̃2 ∧ B̃D2 + B̃2 ∧DÃÃD + B̃D2 ∧ FÃ + F(B̃2)

)∣∣∣0
8
. (3.13)

This is a multiplication by Ω4 of a lagrangean which is very similar to that we have

studied in four dimensions. We have actually incorporated a term Ω4 ∧ F(B̃2). By
assuming the proportionality of this term to the four-form Ω4, we eliminate the

possibility that the lagrangean contains topological terms proportional to powers in

B2 higher than two. We will soon discuss the relevance of supressing this condition.

For F = 0, the classical part of L is equivalent to the topological term Ω∧TrFA∧
FA, that is, the starting point of the TQFT in [7].

For F 6= 0, the situation is analogous to that in four dimensions, but the trivial
gauge-fixings must be combined to self-dual gauge-fixings which are specific to eight

dimensions. The latter is realized by an s-exact term of the following type:

{
Q,Tr

(
τχ−1+µν

(
F+µνAe +

1

2
H+µν

)
+ Φ−20

(
DµAeΨ

1
µ + [Φ

2
0, η

−1
0 ]
))}

. (3.14)

The symbol + is now defined as in (3.4). (In fact, as explained in [7], there

are 7 independent degrees in freedom χ−1+µν and H+µν , according to the Spin(7)-

decomposition 28 = 21⊕ 7.) Using (3.6), one easily sees, by repeating the steps that
we detailed in the four-dimensional case, that the gauge-fixed action is

∫ 1
g2
(FAe ∧

∗FAe + . . .), where the value of g2 depends on the chosen combination of A and AD
for Ae. The notation . . . stands for terms that make the action identical, up to

twist, to that of the D = 8 SSYM theory, that is the dimensional reduction to eight

dimensions of N = 1 D = 10 SSYM theory.

As for the generalization of (2.17), we have exactly the same relation:

aD =
∂F
∂a

. (3.15)

This equation is consistent the fact that Ω4 ∧ F is an eight-form. Indeed, within
the BRST interpretation, the mean values of the ghosts of ghosts, aD = 〈Φ2D0〉 and
a = 〈Φ20〉 are scalars with ghost number two, that is, two-forms, and thus (3.15) is
dimensionally meaningful.
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We thus formally find that duality properties can hold in the eight-dimensional

Yang–Mills TQFT. The parallel with the four-dimensional case is of course striking.

It is due the possible proportionality of the lagrangean to Ω4. Abelian duality will

be obtained by an initial gauge-fixing of the fields in the Cartan subalgebra of the

gauge group.

However, one can go further: we have the possibility of adding to the lagran-

gean (3.13), which already includes the term Ω4 ∧ F(B̃2), an SO(8)-invariant term
G(B̃2)|08, which is not proportional to Ω4. This gives new interactions to the theory,
but no modification of the quadratic part of the action. However, the lagrangean

depend on quartic interactions in B2, and we now look how these terms can be

handled in procedures analogous to those that led us to dual lagrangeans in the four

dimensional case. The lagrangean is:

L = Tr
(
Ω4 ∧ (B̃2 ∧ B̃D2 + B̃2 ∧DAÃD + B̃D2 ∧ FÃ + F(B̃2) ) + G(B̃2)

)∣∣∣0
8
. (3.16)

As before, we gauge-fix all fields in the Cartan subalgebra, and we still do not

include the fermion terms in our discussion, which are proportional to higher deriva-

tives of F and G. Then, as a first possibility, we can set AD = 0. After elimination
of BD2, this gives a classical lagrangean :

L = Tr
(
Ω4 ∧ F(dA) + G(dA)

)
. (3.17)

The latter can be gauge-fixed in the octonionic self-dual way as in [7].

As a second possibility, we first integrate over A. This gives, by summing over

all fluxes, B6 = dΛ5 = Ω4 ∧ dΛ, and as a last step, we use the gauge freedom on AD
to set Λ = 0. (The analysis about the way to use all ghosts is as in four dimensions).

At this point, the lagrangean is:

L = Tr
(
Ω4 ∧ (B2 ∧ dAD + F(B2)) + G(B2)

)
. (3.18)

If G = 0, the discussion is exactly as in four dimensions, apart from the overall
multiplication by Ω4. If G 6= 0, we cannot perform exactly the quartic integration.
However, one can treat these term as a perturbation, and replace, in a first approxi-

mation, the argument of G by B2 = τ−1dAD.
Now comes the physically interesting question. The eight-dimensional theory is

non-renormalizable and it is infrared-free, as indicated by power counting. From the

other side, the topological theory described above is basically the same as the four-

dimensional theory: its lagrangean is the product of the Spin(7)-invariant 4-form Ω4
with a lagrangean very similar to the four-dimensional one. It is tempting to con-

clude, based on the possibility of the gauge-fixing procedure described above, that the

eight-dimensional Abelian topological theory can give an analogue to the Seiberg–

Witten “infrared description”. It should be kept in mind that our eight-dimensional

theory is not really topological from the beginning, since only the metric deformations
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that preserve the Spin(7)-structure are allowed. Thus arguments relating the ultra-

violet theory to the infrared one seem difficult to use, although an “Abelianization”

can be achieved by a gauge-fixing which take into account the delicate questions of

the treatment of pointlike instantons. At present we unfortunately lack an explicit

derivation of the infrared finite-dimensional integral from the compactification of the

instanton moduli space even in four dimensions, see for example [4].4

There is a question that we ignored in our four-dimensional discussion, and

which concerns the coupling of supersymmetric matter to the Abelian theory. An-

other interest of the eight-dimensional Yang–Mills TQFT is to enlight this coupling,

which uses a commuting spinor, and generalizes the genuine Yang–Mills TQFT by a

modification of the four dimensional self-duality gauge condition, which becomes the

equality of the self-dual part of the Yang–Mills curvature to the commuting-spinor

current [2]. As first noted in [7], the eight-dimensional Yang–Mills TQFT precisely

gives, by dimensional reduction, a TQFT using four-dimensional Seiberg–Witten

equations as topological gauge functions. The argument is as follows. By dimen-

sional reduction from eight to four dimensions, the eight-dimensional gauge field

determines a four-dimensional gauge field, (made from the first four components Aµ,

1 ≤ µ ≤ 4), and a four-dimensional bosonic complex Weyl spinor κ (made from the
remaining four components 5 ≤ µ ≤ 8). Then, the seven octonionic gauge functions,
which determine the TQFT in eight dimensions, become four-dimensional:

F a+µν = f
a
bc
+κ
b
γµνκ

cγµDµκ
a = 0 . (3.19)

Here the indices µ, ν run from 1 to 4, and a, b, c are Lie algebra indices; fabc are the

Lie algebra structure constants. These equations are non-Abelian, and differ from

those given in [2] in the commuting limit. Thus, it is useful to explain in more detail

how it could allow us to obtain the Abelian Seiberg–Witten equations, for which

A is just a U(1) gauge field, rather than (3.19), where A is non-Abelian. This is

indeed quite simple, at least formally. One must do a first gauge-fixing in the eight-

dimensional theory which sets equal to zero the components of Aaµ with 1 ≤ µ ≤ 4
that are not in the Cartan subalgebra, and, for µ, ν ≥ 5, all combinations of Aaµ,
say, Aaµ =

∑
b c
a
bA
b
µ, that are such that f

a
bcAbµAc is also not valued in the Cartan

subalgebra. This algebraic, or “trivial”, gauge-fixing in the Cartan subalgebra also

eliminates the corresponding ghosts in the TQFT. Then, for the remaining fields,

one uses the octonionic gauge function. This automatically gives Abelian Seiberg–

Witten equations.
4Note that, although the ultraviolet TQFT is not Lorentz-invariant in eight dimensions, since it

explicitly depends on Ω4, its untwisting is possible and one recovers the ordinary supersymmetric

theory that is perfectly Lorentz-invariant as was shown in [7]. If our eight-dimensional is a product

of two four-manifolds, or if it is a fibration over a four-dimensional base, we can think about this

theory as a four-dimensional one, such that the integral
∫
fibre

Ω4 gives the coupling constant in four

dimensions. In this way, we can recover the four-dimensional topological gauge theory with all its

properties.
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It is best to give an example. Let us consider the SU(2) case. In the non-Abelian

phase, both A and κ are an SU(2)-triplet. The gauge-fixing sets A(1) = A(2) = 0 and

κ(3) = κ(1) − κ(2) = 0. If we define κ = κ(1) = κ(2), then the remaining topological

gauge freedom on A(3) and κ can be used, and the octonionic gauge function gives:

F+µν =
+κγµνκγµDµκ = 0 , (3.20)

where F = dA(3) as a result of the first gauge-fixing on A. This shows that the

non-Abelian eight-dimensional Yang–Mills theory formally gives the four-dimen-

sional TQFT with “Abelian” Seiberg–Witten gauge-functions, provided a prelimi-

nary gauge-fixing has been done to restrict all equations in the Cartan subalgebra of

the Yang–Mills group.

Let us return to the eight-dimensional case and see how the theory may depend

on higher derivative couplings. As an example, in the gauge-fixed theory, we may

need a non-topological quartic term:

tµ1µ2µ3µ4µ4µ5µ6µ7µ8(Φ20)Fµ1µ2Fµ3µ4Fµ5µ6Fµ7µ8 . (3.21)

Such terms were computed in [14] for string compactifications. The appearance

of the tensor t is actually well known in string theory [13]. It is made of the product

of a certain trace of γ matrices, and it is related to the four-form Ω4.

One can explain the relevance of terms as in (3.21) as follows: if one starts from

the eight-dimensional action TQFT, which can be twisted in an action with eight-

dimensional supersymmetry, one soon realizes that non-topological quartic countert-

erm such that (3.21) are needed, for instance by one-loop corrections.

From our view-point, one should be able to obtain such terms by adding an s-

exact counterterm, which was absent at the tree-level5. The way to incorporate such

terms is quite simple: we can change the definition of F µνAe in the part (3.14) of the

lagrangean, which enforces the self-duality gauge condition, as follows:

FAeµν = ∂[µAeν] → FAerµν = FAeµν + tµναβγδρσ(Φ
2
0)F

αβ
Ae F

γδ
AeF

ρσ
Ae . (3.22)

Indeed, squaring the self-dual part F+µνAer produces, in addition to the standard

Yang–Mills lagrangean, the term (3.21). Additional fermionic terms are generated:

they are very easy to find by expansion of the new s-exact term. There are of course

terms of degree F 6 that are produced. They are of order α′2, thus corresponding
string computations are required. Actually, it is a very interesting question to find

out whether all string corrections that are needed to renormalize the theory and that

can be organized as a formal series in α′ with higher powers of F , can be obtained
5An example of the necessity of improving s-exact terms is when one renormalizes the Yang–

Mills theory in a non linear gauge: higher-order ghost interactions must be introduced by mean of

a BRST-exact term, in order to compensate for the divergences in the four ghost vertex occurring

in such gauges.
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by a replacement of FA in the self-duality condition, which is analogous to (3.22).

(It is possible that the Born–Infeld type lagrangean can emerge in such a process.)

Here, we simply note that the duality considerations of this section suggest that,

when both quadratic and quartic couplings are introduced at the leading order, one

has the relation: τD = −1/τ , tD8 ∼ t8/τ
4. It would be interesting to verify if the

dual formulation that we have introduced in this section fits in the context of string

theory, together with these transformation rules (which unfortunately are not exact

since quartic interactions do not allow us to exactly integrate out the auxiliary fields).

Finally, we recognize that having the four-form Ω4 is an essential building block

of the theory. It could be the eight-dimensional projection of a self-dual propa-

gating four-form of a ten-dimensional theory. More precisely, we may think of a

ten-dimensional theory, whose action is of a Chern–Simons type, function of Ω4, and

of two two-forms gauge fields C2 and C
′
2, and has the following expression:∫

10
dΩ4 ∧ C2 ∧ dC ′2 . (3.23)

This introduces the interesting case of theories that involve a five-form curvature

dΩ4 + C2 ∧ dC ′2 − C ′2 ∧ dC2, with a non trivial dependence on consistent anomalies.
To summarize this section, we have seen that the topological freedom for the

large set of fields A,A5, B2 and B6 allows a duality picture in eight dimensions, with

a clear relationship with the case of four dimensions.

4. Two dimensions

We can dimensionally reduce to two dimensions the theories that we have introduced

in four and eight dimensions. However, we can also consider our duality machinery

directly in two dimensions.

We thus start with a two-dimensional gauge field A. Its ghost expansion is

Ã = c + A + ϕ−12 . Its dual is, formally, a form of degree −1, Z̃−1, with no classical
content. Indeed, Z̃−1 can only contains fields with negative ghost numbers, Z̃−1 =
Φ−32 +Ψ

−2
1 +W

−1
0 . These fields can be identified as the antifields of a two-form W2,

of its ghost Ψ11, and its ghost of ghost Φ
2
0. In turn, the existence of W2 implies that

of its dual, which is a scalar that we call ϕ. The existence of ϕ could have been

directly inferred from that of ϕ−12 in Ã. So, introducing a two-dimensional gauge
field A leads us to defining:

Ã = c+ A+ ϕ−12
ϕ̃ = c−22 + A

−1
1 + ϕ (4.1)

and

Z̃−1 = Φ−32 +Ψ
−2
1 +W

−1
0

W̃2 = Φ
2
0 +Ψ

1
1 +W2 . (4.2)
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Now we also want (string coordinates) scalars that we call X; we introduce their

duals, which we call Y (we could have denoted Y = XD). The additional one-forms,

which play a role analogous to that of the two-forms B2 and BD2 in four dimensions

and contain in their ghost expansion the antifields of X and Y , are called U1 and V1.

So, in the string coordinate sector, we can define two sets of “dual” coordinates:

X̃ = X + U−11 + U
−2
2 , Ũ1 = X−12 + U1 + U10

Ỹ = Y + V −11 + V
−2
2 , Ṽ1 = Y −12 + V1 + V 10 . (4.3)

We can now introduce a TQFT lagrangean density as the following two-form

with ghost number zero:

L2 = Tr
(
Ũ1 ∧ Ṽ1 + Ũ1 ∧DÃX̃ + Ṽ1 ∧DÃỸ +
+ ϕ̃ ∧ W̃2 + ϕ̃ ∧ FÃ + W̃2 ∧ (DÃZ̃−1 + [X̃, Ỹ ])

)∣∣∣0
2
. (4.4)

This lagrangean is of first order and metric-independent; its purely classical part

Lcl,2 is:
Lcl,2 = Tr

(
U1 ∧ V1 + U1 ∧DAX + V1 ∧DAY + ϕ(W2 + FA) +W2[X, Y ]

)
. (4.5)

If we eliminate X1, Y1 and ϕ by their algebraic equations of motion Y = DAX,

X = DAY and W = FA, we obtain:

Lcl,2 ∼ Tr
(
DAX ∧DAY + FA ∧ [X, Y ]

)
. (4.6)

We see that (4.6) is closed, contrary to (4.4). The integral over the two-dimen-

sional space of the density (4.6) can be considered as a topological term. This

indicates that we are dealing with the lagrangean of a TQFT, and we can repeat the

same manipulations as led us to duality in four dimensions.

The invariant Batalin–Vilkoviski-type action is:

I2 =
∫
2
L2 . (4.7)

which satisfies the master equation (2.4).

Thus (2.7) is invariant under the topological BRST symmetry:

sÃ = −FÃ + W̃2
sW̃2 = −DÃW̃2 (4.8)

sX̃ = −DÃX̃ + Ṽ1
sṼ1 = −DÃṼ1 (4.9)

sỸ = −DÃỸ + Ũ1
sŨ1 = −DÃŨ1 (4.10)

sZ̃−1 = −DÃZ̃−1 + [X̃, Ỹ ] + ϕ̃
sϕ̃ = −DÃϕ̃+ [Ũ1, X̃] + [Ṽ1, Ỹ ] + [W̃2, Z̃−1] . (4.11)
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The situation is very reminiscent of that we found earlier, but we have here a

Yang–Mills sector and a matter sector. The latter can be understood as the dimen-

sional reduction to two dimensions of, for instance, the eight-dimensional Yang–Mills

TQFT, provided one adjusts the number of scalars X and Y .

The gauge symmetry is topological for all fields A, X and Y , and is made of

arbitrary shifts defined modulo gauge transformations. The way ϕ transforms is

interesting: it undergoes ordinary gauge rotations, and also rotates proportionally

to the parameters of the shift symmetry for X and Y , according to:

sϕ = −[c, ϕ] + [U10 , X] + [V 10 , Y ] . (4.12)

This forbids adding to the lagrangean a ϕ dependent potential, except in the com-

muting limit, with a complex ϕ, in which case we may have a Higgs potential.

By applying the Batalin–Vilkoviski procedure, the antifield-dependent terms al-

low us to determine a fully gauge-fixed lagrangean. One can chose a gauge that

eliminates half of the string coordinates, while, for the remaining ones, one chooses

self-dual type ones, DAX = ∗(DAY ) + · · ·, i.e. modified holomorphicity conditions.
Here, the . . . stand for commutators, which may come from dimensional reduction

from eight to two dimensions.

We now investigate the question of having more refined gauge functions, for

obtaining theories depending on X or Y , with duality transformations between both

formulations.

We introduce arbitrary functions F(W̃2, Ũ1, Ṽ1), and we generalize the lagran-
gean (2.7) into:

L2 = Tr
(
Ũ1 ∧ Ṽ1 + Ũ1 ∧ DÃX̃ + Ṽ1 ∧ DÃỸ + ϕ̃ ∧ W̃2 +
+ ϕ̃ ∧ FÃ + W̃2 ∧ (DÃZ̃−1 + [X̃, Ỹ ]) + F(W̃2, Ũ1, Ṽ1)

)∣∣∣0
2
. (4.13)

If we write that F = τW̃2 + · · ·, we see that the remaining term at the classical
level, after the integration over W2, is:

Tr(τFA) . (4.14)

This is one way of understanding that we are considering a topological Yang–

Mills theory in two dimensions. We will shortly see this from another point of view.

In the scalar sector, we can gauge-fix the fields in various ways, and this provides

different formulations. The strength of the coupling of the resulting sigma models is

determined by the derivatives of F with respect to Ũ1 and Ṽ1.
Let us be slightly more specific. Consider the following part of the classical

lagrangean:

Tr(ϕ ∧W2 + ϕ ∧ FA +W2 ∧ [X,Y]) . (4.15)
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The classical two-form W2 = dz ∧ dz̄Wzz̄ determines its dual, the scalar W =

εzz̄Wzz̄.

The first way of fixing the gauge, using the topological symmetry, is to set

Wzz̄ = 0. This gives the ordinary topological gauge-invariant lagrangean:

Tr(ϕ ∧ FA) . (4.16)

Of course the other gauge symmetry in A must be used to gauge-fix this well-

known two-dimensional lagrangean, that one sometimes uses to define the topological

two-dimensional Yang–Mills theory. Then, the equations of motion imply that ϕ

must be constant, which gives back (4.16).

We could have first eliminated ϕ and W by their equations of motion. Then,

using the topological symmetry on A, with gauge functions Fzz̄ and ∂ ·A, we would
have again directly obtained the two-dimensional Yang–Mills TQFT, with its BRST-

invariant gauge-fixing.

The other way of expressing the theory, in a dual formulation, is to gauge-fix A

as follows:

Az = g
−1∂zg , Az̄ = h

−1∂z̄h . (4.17)

The gauge group elements g and h are defined from the Lie algebra-valued scalars

W and ϕ as:

g = exp(ϕ+W ) , h = exp(ϕ−W ) . (4.18)

This gauge is obtained adding to the lagrangean the BRST-exact term s(Ψ̄z̄(Az−
g−1∂zg) + Ψ̄z(Az̄ − h−1∂z̄h)). The bosonic part of the lagrangean has a simple ex-
pression if one restricts W and ϕ in the Cartan Lie algebra:

Tr
(
ϕWzz̄ + ϕ∆Wzz̄ +Wzz̄[X,Y]

)
. (4.19)

The BRST invariance implies the following ghost terms:

Tr
(
Ψ̄z(Ψz − s(g−1∂zg)) + Ψ̄z̄(Ψz̄ − s(h−1∂z̄h))

)
. (4.20)

Another gauge-fixing term for the topological ghost is necessary:

sTr
(
Φ−20 (DzΨz̄ +Dz̄Ψz)

)
. (4.21)

We have a massive fermionic lagrangean, which is the supersymmetric counterpart

of (4.19). The term in (4.21) ensures the inversibility of the fermionic propagator,

as well as the propagation of the ghost of ghost Φ20 and its antighost Φ
−2
0 . Moreover

a term s(c̄Φ00) must be added to algebraically eliminate the n unnecessary antighost

sector. Of course, terms of the form F(W̃ )02 can be added. Then, non-trivial interac-
tions occurs between W and the field Φ20. We also have the option of having a Higgs

potential, by having the choice F(W̃ , ϕ)02 in the commuting limit, with a rotational

symmetry between W and ϕ.
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We actually see that the two-form W and the zero-form ϕ, which we introduced

from the general considerations as in [8], have a natural interpretation: they can be

used to express the decomposition of the gauge field in longitudinal and transverse

parts, which are specific to two dimensions, and the duality transformation exchanges

W and ϕ. In the gauge W = 0, ϕ has also the interpretation of the Lagrange

multiplier of the vanishing curvature condition, which is usually interpreted as the

characteristic of a Yang–MIlls TQFT in two dimensions.
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