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The status of precision calculations for the processes e+e− →WW → 4 fermions is
reviewed, paying particular attention to questions of gauge invariance and recent
progress concerning photonic radiative corrections.

1 Introduction

At present, the most stringent tests of our understanding of the electroweak
interaction is obtained by confronting theoretical predictions with the experi-
mental precision data on the various Z-boson resonance observables provided
by LEP1 and the SLC, the Fermi constant Gµ, the effective electromagnetic
coupling α(M2

Z), and the masses MW and mt of the W boson and the top quark.
The agreement between the Standard-Model (SM) predictions and those ex-
perimental results, which is at the impressive level of a few per mille, can be
viewed as perfect (see Ref. [1] and references therein). Despite this success, two
cornerstones of the electroweak SM still await direct empirical confirmation:
the Higgs mechanism for the mass generation and the detailed structure of the
gauge-boson self-interactions. The investigation of W-pair production in e+e−

annihilation, as observed at LEP2 and future e+e− colliders, yields important
contributions to both aspects.

The experimental analysis of the reaction e+e− → W+W− allows for a
precise determination of MW. In the first half of 1998, the W-mass measure-
ment at LEP2[2] already reached a precision of 90 MeV. At LEP2 a final error
of 30–40 MeV[4] is aimed at, which could be further reduced to about 15 MeV
by observing W pairs at a future e+e− linear collider [5]. Such an improved
knowledge of MW will strengthen the indirect constraints on the mass MH

of the SM Higgs boson, which are obtained by fitting the SM parameters to
the electroweak precision data. In view of gauge-boson self-interactions, the
process e+e− →W+W− yields more direct information, since the non-Abelian
γWW and ZWW couplings enter the perturbative predictions already in lowest
order. It is expected that LEP2 [6] will test these triple gauge-boson couplings
(TGCs) at the level of 10% with respect to the SM coupling strength, and that
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a future linear collider [5] can even exceed the per-cent level.
The desired information on the properties of the W boson is extracted from

the cross section and the relevant angular and invariant-mass distributions for
the process e+e− →W+W−. More precisely, the W-boson mass is determined
[4] by inspecting the total cross section near threshold, where it is most sensi-
tive to MW, and, sufficiently above threshold, by reconstructing the invariant
mass of the W boson from its decay products. In the LEP2 energy range,
restrictive bounds on TGCs [6] can only be obtained by considering various
angular distributions, such as the one for the W-production angle. For higher
energies, also the total cross section becomes more and more sensitive to TGCs.

The described experimental aims require the knowledge of the SM predic-
tions for the mentioned observables to a high precision. For LEP2, the cross
section of W-pair production should be known within ∼ 0.5% [7]; future linear
colliders with higher luminosity and energy set similar requirements. The the-
oretical precision for the invariant-mass distribution of the W bosons should,
of course, exceed the expected experimental accuray given above. To achieve
this level of precision in predictions is a highly non-trivial task, since the actu-
ally relevant reaction is the four-fermion process e+e− →WW→ 4f , in which
the unstable W bosons appear as resonances. The issue of gauge invariance re-
quires particular attention, and the necessary inclusion of radiative corrections
is not straightforward. In this article, these sources of complications and their
consequences for actual calculations are discussed, and special emphasis is laid
on recent developments. More details can be found in other review articles
[7–10] and references therein.

2 The issue of gauge invariance

2.1 Finite gauge-boson widths and lowest-order predictions

At and beyond the per-cent accuracy, gauge-boson resonances cannot be
treated as on-shell states in lowest-order calculations, since the impact of a fi-
nite decay width ΓV for a gauge boson V of mass MV can be roughly estimated
to ΓV/MV, which is, for instance, ∼ 3% for the W boson. Therefore, the full set
of tree-level diagrams for a given fermionic final state has to be taken into ac-
count. For e+e− →WW→ 4f this includes graphs with two resonant W-boson
lines (“signal diagrams”) and graphs with one or no W resonance (“background
diagrams”), leading to the following structure of the amplitude [7, 8, 11]:

M =
R+−(k2

+, k2−)
(k2

+ −M2
W)(k2− −M2

W)︸ ︷︷ ︸
doubly-resonant

+
R+(k2

+, k2−)
k2
+ −M2

W

+
R−(k2

+, k2−)
k2− −M2

W︸ ︷︷ ︸
singly-resonant

+ N(k2
+, k2

−)︸ ︷︷ ︸
non-resonant

.

(1)
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Gauge invariance implies that M is independent of the gauge fixing used for
calculating Feynman graphs (gauge-parameter independence), and that gauge
cancellations between different contributions to M take place. These gauge
cancellations are ruled by Ward identities (see e.g. Refs. [9, 13, 14]), and their
violation can completely destroy the consistency of predictions [12–14].

For a physical description of the W resonances, the finite W decay width
has to be introduced in the resonance poles. However, since only the sum
in (1), but not the single contributions to M, possesses the gauge-invariance
properties, the simple replacement[

k2 −M2
V

]−1 → [
k2 −M2

V + iMVΓV(k2)
]−1

(2)

in general violates gauge invariance. We describe in more detail some methods
(see Refs. [7, 14–16] and references therein) for introducing finite gauge-boson
widths in lowest-order amplitudes.

(i) The fixed-width scheme is nothing but the naive replacement (2) for all
gauge-boson propagators where ΓV(k2) is the (constant) on-shell width
ΓV. In general, gauge dependences are introcuded, and the Ward iden-
tities are violated. For e+e− → 4f , electromagnetic gauge invariance is
maintained, and the SU(2)-violating effects are suppressed by the factor
ΓWMW/s in the high-energy limit [14].

(ii) The running-width scheme differs from the constant-width scheme only in
the form of the function ΓV(k2) in (2), which is now chosen as ΓV(k2) =
ΓV × θ(k2)k2/M2

V. Although the running width seems to describe the
propagator in a more realistic way at first sight, for e+e− → 4f not even
electromagnetic gauge invariance is retained anymore [14].

(iii) The complex-mass scheme [16]a demands the consistent replacement
M2

V →M2
V−iMVΓV for the gauge-boson masses whenever a gauge-boson

mass appears. In particular, this leads to the complex weak mixing angle
defined by

c2
W = 1− s2

W =
M2

W − iMWΓW

M2
Z − iMZΓZ

, (3)

i.e. coupling constants become complex-valued. As long as tree-level
amplitudes are parametrized by a minimal set of input parameters, al-
gebraic relations between Feynman diagrams remain unchanged so that
gauge-parameter dependences still cancel, and Ward identities still hold.

aAspects of such a scheme have already been discussed in Ref. [17] for the description of
the Z-boson resonance in e+e− → Z→ ff̄ .
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√
s/ GeV 200 500 1000 2000

Fixed width 712.8(2) 237.3(1) 60.34(4) 13.97(1)
Running width 712.7(2) 238.7(1) 65.74(4) 34.40(2)
Complex mass 712.4(2) 237.1(1) 60.31(4) 13.97(1)

Table 1: CC10 cross section in fb for various finite-width schemes (based on the results of
Ref. [16]).

√
s/ GeV 200 500 1000 2000

Fixed width 673.08(4) 224.05(3) 56.90(1) 13.19(1)
Running width 672.96(3) 225.45(3) 62.17(1) 33.06(1)

Full fermion loops 683.7(1) 227.9(2) 58.0(1) 13.57(4)
Imag. fermion loops 673.1(1) 224.5(7) 56.8(1) 13.18(4)

Table 2: CC10 cross section in fb for various finite-width schemes (taken from Ref. [14]).
The two versions for the fermion-loop scheme (numbers generated by WTO [18]) differ by
the real parts of the fermion loops, which are included in the upper row but not in the lower.

Despite the nice features of this scheme, it should be used with care, as
its full consistency is not yet clarified.

(iv) The fermion-loop scheme [14] goes beyond a pure tree-level calculation
by including and consistently Dyson-summing all closed fermion loops in
O(α). This procedure introduces the running tree-level width in gauge-
boson propagators via the imaginary parts of the fermion loops. Ward
identities are not violated, since the fermion-loop (as well as the tree-
level) contributions to vertex functions obey the simple linear (also called
“naive”) Ward identities that are related to the original gauge invariance
rather than to the more involved BRS invariance of the quantized theory.
Owing to the linearity of the crucial Ward identities for the vertex func-
tions, the fermion-loop scheme works both with the full fermion loops
and with the restriction to their imaginary parts. Simplified versions of
the scheme have been introduced in Ref. [13].

Tables 1 and 2 contain some resultsbon the cross section for the “CC10
process” e+e− → ud̄µ−ν̄µ for the different finite-width schemes. The energies
are typical of LEP2 and future linear colliders, and the phase space is restricted
by the “canonical LEP2 cuts” of Ref. [19]. In the high-energy limit, SU(2)
gauge invariance implies delicate cancellations between different diagrams. The

bThe input data for the two tables are different, because the complex-mass scheme [16]
requires a minimal set of input parameters with relation (3), while sW was deduced from the
Fermi constant in the evaluation of the fermion-loop scheme in Ref. [14].
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complex-mass and the fermion-loop schemes fully respect these cancellations,
since the underlying Ward identities hold, resulting in reliable predictions for
high energies. Both the fixed and running width break SU(2) invariance so that
the gauge cancellations are disturbed. While the gauge-invariance-breaking
terms grow like s/M2

W for the running width scheme, leading to totally wrong
results already in the TeV range, those terms are suppressed for the fixed-width
scheme (see above), still yielding reasonable results for high energies.

2.2 Looking beyond lowest order

Among the methods to introduce finite gauge-boson widths in tree-level ampli-
tudes, the field-theoretically most convincing one is the fermion-loop scheme,
since the widths are consistently generated by the inclusion of the relevant
higher-order effects. It is therefore natural to worry about a generalization of
this scheme when considering higher-order corrections to amplitudes. There
are basically two sources of limitation for the fermion-loop scheme.

Firstly, the fermion-loop scheme is not applicable in the presence of reso-
nant particles that do not exclusively decay into fermions. For such particles,
parts of the decay width are contained in bosonic corrections. The Dyson sum-
mation of fermionic and bosonic O(α) corrections leads to inconsistencies in
the usual field-theoretical approach, i.e. Ward identities are broken in general.
This is due to the fact that the bosonic O(α) contributions to vertex functions
do not obey the “naive Ward identities”. The problem is circumvented by
employing the background-field formalism [20], in which these naive identities
are valid. This implies [21] that a consistent Dyson summation of fermionic
and bosonic corrections to any order in α does not disturb Ward identities.
Therefore, the background-field approach provides a natural generalization of
the fermion-loop scheme. We recall that any resummation formalism goes be-
yond a strict order-by-order calculation and necessarily involves ambiguities in
relative order αn if not all n-loop diagrams are included. This kind of scheme
dependence, which in particular concerns gauge dependences, is only resolved
by successively calculating the missing orders.

Secondly, the consistent resummation of all O(α) loop corrections does
not automatically lead to O(α) precision in the predictions if resonances are
involved. The imaginary parts of one-loop self-energies generate only tree-level
decay widths so that directly on resonance one order in α is lost. To obtain
also full O(α) precision in these cases, the imaginary parts of the two-loop self-
energies are required. However, how and whether this two-loop contribution
can be included in a practical way without violating Ward identities is still an
open problem. Taking the imaginary parts of all two-loop contributions solves
the problem in principle, at least for the background-field approach, but this
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θ range
√

s/ GeV 161 175 200 500 1000 2000
0◦<θ<180◦ (δIBA − δ)/% 1.5 1.3 1.5 3.7 6.0 9.3
10◦<θ<170◦ 1.5 1.3 1.5 4.7 11 22

Table 3: Size of “non-leading” corrections to on-shell W-pair production (δIBA and δ include
only soft-photon emission).

is certainly impractical.

3 Electroweak radiative corrections

3.1 Relevance of electroweak corrections

Present-day Monte Carlo generators for off-shell W-pair production (see e.g.
Ref. [19]) typically include only universal electroweak O(α) correctionsc, such
as the running of the electromagnetic coupling, α(q2), leading corrections en-
tering via the ρ-parameter, the Coulomb singularity [23], which is important
near threshold, and mass-singular logarithms α ln(m2

e/Q2) from initial-state
radiation. In leading order, the scale Q2 is not determined and has to be set
to a typical scale for the process; for the following we take Q2 = s.

Since the full O(α) correction is not known for off-shell W pairs, the size
of the neglected O(α) contributions is estimated by inspecting on-shell W-pair
production, for which the exact O(α) correction and the leading contribu-
tions were given in Refs. [24] and [25], respectively. Table 3 shows the differ-
ence between an “improved Born approximation” δIBA, which is based on the
above-mentioned universal corrections, and the corresponding full O(α) cor-
rection δ to the Born cross-section integrated over the W-production angle θ
for some centre-of-mass energies

√
s. More details and results can be found in

Refs. [7, 9]. The quantity δIBA − δ corresponds to the neglected non-leading
corrections and amounts to ∼ 1–2% for LEP2 energies, but to ∼ 10–20% in
the TeV range. Thus, in view of the needed 0.5% level of accuracy for LEP2
and all the more for energies of future linear colliders, the inclusion of non-
leading corrections is indispensable. The large contributions in δIBA − δ at
high energies are due to terms such as α ln2(s/M2

W), which arise from vertex
and box corrections and can be read off from the high-energy expansion [26] of
the virtual and soft-photonic O(α) corrections.

A first step of including electroweak corrections in an event generator was
made by Jadach et al. [27], who took into account the full virtual [24] and real-
photonic [28] O(α) corrections to the on-shell W-pair production process, but
neglected the corrections associated with the decay of the W bosons. In order

cThe QCD corrections for hadronic final states are discussed in Ref. [22].
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Figure 1: Diagrammatic structure of factorizable corrections to e+e− →WW → 4f .

to gain an accuracy of 0.5–1% for realistic observables, it is, however, necessary
to develop a more complete strategy for the full process e+e− →WW→ 4f .

3.2 Double-pole approximation

Fortunately, the full off-shell calculation for the process e+e− → WW → 4f
in O(α) is not needed for most applications. Sufficiently above the W-pair
threshold a good approximation should be obtained by taking into account
only the doubly-resonant part of the amplitude (1), leading to an error of the
order of αΓW/(πMW) <∼ 0.1%. In such a “pole scheme” calculation [11, 29],
also called double-pole approximation (DPA), the numerator R+−(k2

+, k2
−) has

to be replaced by the gauge-independent residue R+−(M2
W, M2

W).
Doubly-resonant corrections to e+e− → WW → 4f can be classified into

two types [7, 8, 11]: factorizable and non-factorizable corrections. The former
are those that correspond either to W-pair production or to W decay. They
are represented by the schematic diagram of Fig. 1, in which the shaded blobs
contain all one-loop corrections to the production and decay processes, and
the open blobs include the corrections to the W propagators. The remaining
corrections are called non-factorizable, since they do not contain the product
of two independent Breit–Wigner-type resonances for the W bosons, i.e. the
production and decay subprocesses are not independent in this case. Non-
factorizable corrections include all diagrams involving particle exchange be-
tween these subprocesses. Simple power-counting arguments reveal that such
diagrams only lead to doubly-resonant contributions if the exchanged particle
is a photon with energy Eγ

<∼ ΓW; all other non-factorizable diagrams are
negligible in DPA. Two relevant diagrams are shown in Fig. 2, where the full
blobs represent tree-level subgraphs. We note that diagrams involving photon
exchange between the W bosons (see Fig. 3) contribute both to factorizable
and non-factorizable corrections; otherwise the splitting into those parts is not
gauge-invariant. The non-factorizable corrections to e+e− → WW → 4f will
be discussed in Sect. 3.5 in more detail.
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Figure 2: Examples of virtual and real non-factorizable corrections to e+e− →WW → 4f .

γ
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Figure 3: Feynman graph contributing to both factorizable and non-factorizable corrections.

The factorizable corrections consist of contributions from virtual correc-
tions and real-photon bremsstrahlung. The known results on the virtual cor-
rections to the pair production [24] and the decay [30] of on-shell W bosons can
be used as building blocks for the DPA. Because of the complex structure of the
virtual corrections to the production process, simple approximations are desir-
able. In the LEP2 energy range, approximations [25, 31] that are mainly based
on universal corrections describe the total cross section within ∼ 0.5% and
the angular distribution within 1–2% relative to the lowest order. For energies
above 500 GeV, a consistent high-energy expansion [26, 32] reaches per-cent
accuracy whenever the cross section is sizeable. However, a satisfying, simple
approximation for all relevant energies is not available.

The formulation of a consistent DPA for the bremsstrahlung corrections
is non-trivial. The main complication originates from the emission of photons
from the resonant W bosons. A radiating W boson involves two propagators
whose momenta differ by the momentum of the emitted photon. If the photon
momentum is large (Eγ � ΓW), the resonances of these two propagators are
well separated in phase space, and their contributions can be associated with
photon radiation from exactly one of the production or decay subprocesses.
For soft photons (Eγ � ΓW) a similar splitting is possible. However, for
Eγ ∼ ΓW the two resonance factors for the radiating W boson overlap so that
a simple decomposition into contributions associated with the subprocesses is
not obvious.
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Figure 4: Illustration of photon radiation in e+e− → Z→ ff̄ and e+e− →WW → 4f .

A full application of the DPA to e+e− → WW → 4f has not yet been
presented in the literature, but first preliminary results have been shown by
Berends [33] at this conference.

3.3 Photon radiation and W line shape

A thorough description of real-photon emission is of particular importance for
the realistic prediction of the W line shape, which is the basic observable for
the reconstruction of the W-boson mass from the W-decay products. This
fact can be easily understood by comparing the impact of photon radiation
on the line shape of the W boson with the one of the Z boson, observed in
e+e− → Z→ f f̄ at LEP1 and the SLC (see Fig. 4).

The Z line shape is defined as a function of s, which is fully determined by
the initial state, by the cross section σ(s). Photon radiation from the initial
state effectively reduces the value of s that is “seen” by the Z boson so that
σ(s) also receives resonant contributions for s > M2

Z, induced by this radiative
return to the Z resonance and known as radiative tail. Final-state radiation is
not enhanced by such kinematical effects, thus yielding moderate corrections.

The W line shape is reconstructed from the kinematical variables in the
final state. More precisely, it is defined by the distributions dσ/dM2±, where
M2
± are the reconstructed invariant masses of the W± bosons. We now consider

the fermion pair f1(k1)f̄2(k2) produced by a nearly resonant W boson with
momentum k+, i.e. k2

+ ∼ M2
W. In this case, photon radiation from the final

state decreases the invariant mass of this fermion pair, i.e. (k1 + k2)2 < k2
+ =

(k1 + k2 + kγ)2, while initial-state radiation leads to (k1 + k2)2 = k2
+ < (k1 +

k2 + kγ)2. Thus, a consistent identification of M2
+ = (k1 + k2)2 also leads to

a radiative tail, but now induced by final-state radiation and for M2
+ < M2

W.
However, such an identification is experimentally not possible for almost all
casesd, since nearly collinear and soft photons in the final state cannot be fully

dSemi-leptonic final states with a muon may be an exception, where (kµ + kνµ )2 could
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separated from the outgoing fermions (except for muons). A realistic definition
of M2± necessarily depends on the details of the experimental treatment of
photons in the final state, underlining the importance of a careful investigation
of the W line shape in the presence of photon radiation.

The line-shape distortion by photon emission was discussed in Ref. [34]
also quantitatively. Based on an exact treatment of the Z boson line shape
in νµν̄µ → ZZ → e−e+ντ ν̄τ , an estimate for the process e+e− → WW → 4f
could be obtained by an analysis in leading-logarithmic accuracy. Assuming the
idealized definition M2

+ = (k1 + k2)2, the authors of Ref. [34] find shifts in the
peak position of dσ/dM2

+ of several times −10 MeV and peak reduction factors
in the range 0.95–0.75. The maximal effect was obtained for W+ → e+νe,
leading to ∆M+ ∼ −45 MeV. Note, however, that these large corrections
are formally due to mass-singular logarithms such as α ln(me/MW), which are
effectively replaced by logarithms of a minimum opening angle for collinear
photon emission in more realistic definitions of M2

+. Therefore, it is expected
that the corrections are somewhat weakened in realistic situations.

3.4 The process e+e− → 4f + γ

The process e+e− → 4f + γ does not only yield important corrections to
e+e− → 4f , as explained above, it is also interesting in its own right, since it
involves both triple and quartic gauge-boson couplings. Most of the existing
work on hard-photon radiation in W-pair production is based on the approx-
imation of stable W bosons (see Ref. [28] and references in Refs. [7, 16]). A
first step of including the off-shellness of W bosons in e+e− →WW→ 4f + γ
was done in Ref. [35], where only photon emission from the signal diagrams of
W-pair production was taken into account. However, it is desirable to have a
full lowest-order calculation for e+e− → 4f + γ for two reasons. As described
above, the definition of the DPA for e+e− → WW → 4f + γ is non-trivial
so that possible versions of DPAs should be carefully compared to the full
result. Secondly, one expects a similar impact of off-shell effects, for instance
induced by background diagrams, on e+e− → 4f + γ as in the case without
photon, where such effects can reach a significant fraction of the full cross sec-
tion. Therefore, they should be included at least in predictions for detectable
photons, which define their own class of processes. The first full lowest-order
calculation of e+e− → 4f + γ was performed in Ref. [36] for a definite final
state, and a fully numerical treatment of all possible final states was presented
in Ref. [37]. In the following we focus on the recent calculation of Ref. [16],
where an event generator for all final states 4f + γ is described.

be determined from all detected final-state particles other than the muon.
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√
s/ GeV 200 500 1000 2000

Fixed width 82.3(3) 26.3(1) 7.29(2) 2.17(1)
Running width 82.5(3) 26.8(1) 8.29(2) 6.29(2)
Complex mass 82.0(3) 26.4(1) 7.26(2) 2.17(1)

Table 4: Cross section for e+e− → νµµ+τ−ν̄τ + γ in fb for various finite-width schemes
(based on the results of Ref. [16]).
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Figure 5: The photon-energy spectrum (dσ/dEγ )/(fb/GeV) of e+e− → 4f + γ for two
different leptonic final states and for the approximation of including only photon emission

from W-pair signal diagrams (based on the results of Ref. [16]).

In the event generator of Ref. [16] the matrix elements are constructed
from simple generic functions, similar to the approach pursued in Excalibur
[38] for 4f final states. Moreover, different schemes for treating gauge-boson
widths are implemented, namely the ones for constant and running widths, as
well as the complex-mass scheme (see Sect. 2.1). Table 4 contains some sample
results on the total cross section (applying the canonical cuts of Ref. [19]) for a
final state of four leptons and a photon, evaluated for LEP2 and linear-collider
energies with different finite-width treatments. Similar to the case without
photon emission, the SU(2)-breaking effects induced by a running width render
the predictions totally wrong in the TeV range. For a constant width such
effects are suppressed, as can be seen from a comparison with the results of the
complex-mass scheme, which exactly preserves gauge invariance. The influence
of background diagrams on predictions for e+e− →WW→ 4f +γ is illustrated
in Fig. 5, where the photon-energy distribution is shown for the final states
νee+µ−ν̄µγ and νµµ+τ−ν̄τγ. The prediction that is based on photon emission
from signal diagrams only is also included for comparison. While the impact
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of background diagrams is small at the LEP2 energy of 200 GeV, there is a
large background contribution already at 500 GeV for final states with e±. The
main effect is due to forward-scattered e±, which is familiar from the results on
e+e− → 4f . More numerical results on e+e− → 4f+γ can be found in Ref. [16].

The results on e+e− → 4f + γ with detectable photons can be used as
building block for four-fermion production with and without photon emission,
e+e− →WW→ 4f(+γ). To this end, contributions of soft and collinear pho-
ton emission as well as virtual corrections have to be added. If a DPA is applied,
care has to be taken to avoid mismatch between IR and mass singularities in
virtual and real corrections. The handling of such contributions strongly de-
pends on the details of the adopted approximations, i.e. on how the off-shellness
of the W bosons is introduced, and whether background diagrams are included.
Moreover, one has to make sure to avoid double-counting of real corrections
when adding the non-factorizable corrections, which are described next.

3.5 Non-factorizable corrections

As already explained in Sect. 3.2, non-factorizable corrections account for the
exchange of photons with Eγ

<∼ ΓW between the W-pair production and W de-
cay subprocesses (see Figs. 2,3). Already before their explicit calculation, it
was shown [39] that such corrections vanish if the invariant masses of both
W bosons are integrated over. Thus, they do not influence pure angular dis-
tributions, which are of particular importance for the analysis of gauge-boson
couplings. For exclusive quantities the non-factorizable corrections are non-
vanishing. A first hint on their actual size was obtained by investigating the
non-factorizable correction that is contained in the Coulomb singularity [40].

The explicit analytical calculation of the non-factorizable corrections was
performed by different groups [41–43]e. In these studies, the photon momentum
was integrated over, resulting in a correction factor to the differential Born
cross section for the process without photon emission. This correction factor
is non-universal [43] in the sense that it depends on the parametrization of
phase space. This is due to the problem of defining the invariant masses
of the W bosons in the presence of real photon emission, which has already
been described in Sect. 3.3. In Refs. [41–43] the invariant masses M± of the
W± bosons are identified with the invariant masses of the corresponding final-
state fermion pairs. The analytical results show that all effects from the initial
e+e− state cancel so that the correction factor does not depend on the W-
production angle and is also applicable to processes such as γγ →WW→ 4f .

eThe original result of the older calculation [41] does not agree with the two more recent
results [42, 43], which are in mutual agreement. As known from the authors of Ref. [41], their
corrected results also agree with the ones of Refs. [42, 43].
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Figure 6: Relative non-factorizable corrections to single-invariant-mass distributions for
e+e− →WW → 4f with purely leptonic and hadronic final states (taken from Ref. [43]).

Fermion-mass singularities appear in individual contributions, but cancel in the
sum of virtual and real corrections. Moreover, the correction factor vanishes
like (M2

± −M2
W)/(ΓWMW) on resonance and tends to zero in the high-energy

limit, both leading to a suppression of the non-factorizable corrections with
respect to the factorizable ones.

The non-factorizable corrections to e+e− →WW→ 4 leptons were numer-
ically evaluated in Ref. [42] and for all final states in Ref. [43]. The corrections
to single-invariant-mass distributions (see Fig. 6) turn out to be qualitatively
similar for all final states and are of the order of ∼ 1% for LEP2 energies,
shifting the maximum of the distributions by 1–2 MeV, which is small with
respect to LEP2 accuracy [4]. Multiple distributions in angular or energy vari-
ables and in at least one of the invariant masses of the W bosons receive larger
corrections, of a few per cent.

The non-factorizable corrections to e+e− → ZZ → 4f are discussed in
Ref. [43], too. In this case, the corrections to the invariant-mass distributions
are further suppressed and of the order of ∼ 0.1%, which is phenomenologi-
cally negligible. The suppression is due to an antisymmetry of the dominant
parts of the differential cross sections in the angular integrations. Combined
angular and invariant-mass distributions that break this antisymmetry in the
integration get large corrections of several per cent. However, since the cross
section for Z-pair production is, by an order of magnitude, smaller than the
one for W pairs, these corrections are still not significant at LEP2.

Although non-factorizable corrections to four-fermion production turn out
to be small with respect to LEP2 accuracy, they can be of relevance at future
e+e− colliders with higher luminosity.
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25. M. Böhm, A. Denner and S. Dittmaier, Nucl. Phys. B376 (1992) 29; E:
B391 (1993) 483.

26. W. Beenakker et al., Phys. Lett. B317 (1993) 622 and Nucl. Phys. B410
(1993) 245.

27. S. Jadach et al., Phys. Lett. B417 (1998) 326.
28. W. Beenakker, K. Kolodziej and T. Sack, Phys. Lett. B258 (1991) 469;

W. Beenakker, F.A. Berends and T. Sack, Nucl. Phys. B367 (1991) 287;
K. Kolodziej and M. Zralek, Phys. Rev. D43 (1991) 3619.

29. R.G. Stuart, Phys. Lett. B262 (1991) 113.
30. D.Yu. Bardin, S. Riemann and T. Riemann, Z. Phys. C32 (1986) 121;

F. Jegerlehner, Z. Phys. C32 (1986) 425;
A. Denner and T. Sack, Z. Phys. C46 (1990) 653.

31. M. Kuroda, I. Kuss and D. Schildknecht, Phys. Lett. B409 (1997) 405.
32. M. Kuroda and D. Schildknecht, Nucl. Phys. B531 (1998) 24.
33. F.A. Berends, these proceedings.
34. W. Beenakker, F.A. Berends and A.P. Chapovsky, Phys. Lett. B435

(1998) 233.
35. A. Aeppli and D. Wyler, Phys. Lett. B262 (1991) 125;

G.J. van Oldenborgh, P.J. Franzini and A. Borrelli, Comput. Phys. Com-
mun. 83 (1994) 14;
G.J. van Oldenborgh, Nucl. Phys. B470 (1996) 71.

36. J. Fujimoto et al., Nucl. Phys. (Proc. Suppl.) 37B (1994) 169.
37. F. Caravaglios and M. Moretti, Z. Phys. C74 (1997) 291.
38. F.A. Berends, R. Kleiss and R. Pittau, Nucl. Phys. B424 (1994) 308

and Comput. Phys. Commun. 85 (1995) 437.
39. V.S. Fadin, V.A. Khoze and A.D. Martin, Phys. Rev. D49 (1994) 2247;

K. Melnikov and O. Yakovlev, Phys. Lett. B324 (1994) 217.
40. V.A. Khoze and W.J. Stirling, Phys. Lett. B356 (1995) 373;
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