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Inter Université Mons Hainaut, UMH, Mons, Belgium

J.C. Fontaine

GRPHE, Universit´e de Haute-Alsace, Mulhouse, France

A. Morelli

Universita degli Studi and INFN, Genova, Italy

M. Loreti

Universita degli Studi and INFN, Padova, Italy

V. Chorowitz

Institut de Physique Nucl´eaire de Lyon, Villeurbanne, France

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25249471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The performance of the MicroStrip Gas Chamber (MSGC) prototypes, developed for the barrel Track-
ing Detector of the Compact Muon Solenoid (CMS) experiment at LHC, has been extensively tested
over the last years. We report the results from the most recent beam tests, illustrating the standard per-
formance of the detectors and the robustness of the MSGC technology in LHC-like beam conditions.

Presented by Elena Manola-Poggioli at Beauty ‘97, 5th International Workshop on B-physics at Hadron
Machines, UCLA, October 13-17, 1997.
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1 Introduction
The MSGC technology, suitable for building large area tracking devices, has been adopted for instrumentation of
the outer parts of the CMS tracking volume [1]. The performance of the CMS MSGC prototypes has been exten-
sively tested in the past using high momentum particles at low rates compared to the LHC conditions. The main
results obtained at the most recent test of this type are briefly reported here.
In order to verify the stability of the chambers in realistic LHC conditions, multiple tests with radioactive sources
and two beam tests have been performed recently. We report here the beam tests dedicated to investigate the be-
haviour of the MSGCs exposed to high rate of mips and heavily ionizing particles produced by nuclear interactions
with setup material.

2 Detector description
The realization of CMS MSGC is based on the following design and operation principles [2]:

1. coating the glass substrate of ionic bulk conductivity with electron conducting films that act as a shield
against bulk instabilities and make detector operation fully insensitive to any changes of electrical properties
of the glass substrate itself.

2. Providing the highest possible surface resistivity of the coating compatible with the required rate capability
of 104/mm2/sec, in order to avoid a high uniform tangential field between the anode and cathode and to
reduce an eventual streamer development across the anode-cathode gap;

3. Passivating all critical strip edges to prevent field extraction of electrons from the cathode edges.

4. Working at the lowest possible gain, with the choice of UV free gas mixture, low noise electronics, high drift
voltage, low cathode voltage and consequently narrow anode strips.

The detectors are built on a 300�m thick, industrial DESAG 263 glass, with ionic bulk conductivity. Substrates
are undercoated by Pestov glass, with a surface resistivity of 1015-1016
/square. The gold strips are 10 cm long,
0.5�m thick, and have a width of 7�m (90�m) for the anode (cathode); the strip pitch is 200�m. The passivation
in the readout plane was realized by using two techniques: the substrate edges are covered for 0.6 mm by a
polyimide film (“standard passivation”); individual cathode edges are passivated by a 3�m thick polyimide film,
4�m wide across the strip (“advanced passivation”). The drift plane is made of 500�m thick PEEK cover, closing
a drift gap of 3 mm filled by 1:2 Ne-DME mixture. The active area of a MSGC module is 10x10 cm2, with 512
anode strips.

For the MSGC prototype tests that we report here, the readout electronics consist of PREMUX chips with a shaping
time close to 50 ns [3], followed by a SIROCCO FADC1). The chips differ from the final CMS version only by
not being radiation hard and not including a deconvolution logic.

3 Standard performance of the coated detectors
Five MSGC modules were exposed to a 30 GeV/c pion beam at the CERN SPS X7 facility. Out of the five detectors,
three were coated by films of Pestov glass according to the CMS baseline specifications; two other detectors were
diamond-like coated. The standard passivation technique was used. The detectors were mounted on a two meter
long optical bench together with four double-sided microstrip silicon detectors, used as a tracking telescope. One
MSGC was installed on a movable table, to allow for uniformity studies over the whole detector surface. The
typical voltage settings were Vcathode = 530 V, Vdrift = 3000 V, with a gas mixture 25% Ne-75% DME. The
amplitude of the signal was well described by a Landau function, Figure 6. The corresponding signal to noise
ratio2) S/N of 30 allows for a hit reconstruction efficiency of 98.5� 0.2% with an occupancy of 1.20� 0.01 hits
per detector, where the errors are statistical. The average cluster size is 1.95� 0.01 strips.

The hit residuals are measured with respect to a track found excluding the chambers under study from the fit. The
results show a standard deviation in a range of 35-45�m for the different chambers tested. If the contribution of

1) Developed by LEPSI Stasbourg and available comercially from CAEN.
2) S/N is defined as the most probable value of signal to noise ratio; N is the noise of one strip averaged on all the strips in the

cluster.
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the track error is unfolded from the residual distribution, the intrinsic hit resolution are measured to be 30-40�m.
The best resolution obtained is 30.5� 0.4�m.

To prove the good mastering of the mechanics and the assembly procedure of the final modules for the CMS
detector, we have studied the resolution and the gain uniformity near the chamber edges. A uniformity scan has
been performed across and along the strips of the detector mounted on a movable frame. The resolution is uniform
up to 2 mm from the chamber edge, corresponding to 10 readout strips, Figure 6. A good uniformity has been
measured all over the chamber surface [4].

4 Test in a high intensity hadron beam at CERN
4.1 Experimental setup

A set of 5 MSGCs were assembled according to the CMS baseline specifications and exposed to a 3 GeV/c pion
beam at the CERN PS T10 facility. The detectors were built using advanced passivation technique. One detector
was assembled with the forward CMS tracker layout and read out orthogonally to the other detectors. Two ad-
ditional MicroGap Chambers were used as a tracking telescope during the whole test. The seven detectors were
mounted on a bench and aligned upstream with 5x5 cm2 and 10x10 cm2 coincidence trigger counters. Additional
finger counters were located downstreams to be used for rate measurements. The probability of inelastic interac-
tion of a pion with the setup material, producing heavily ionizing particles, was estimated to exceed 1% [5]. No
dedicated trigger logic was set to detect hard interactions, but the candidate events have been observed in the data.

The voltage settings, Vdrift = 3500V and Vcathode = 520V, were chosen keeping in mind the working conditions
of the future CMS experiment. The signal to noise ratio at CMS is expected to be degraded by a factor 2.2 with
respect to the beam test value, at the same voltage conditions. A S/N value of 20 allows for a hit reconstruction
efficiency better than 98.5%. For this reason, the chambers were operated at S/N values of 44 or larger. A
corresponding gain of 1700 was measured. The chambers were filled with 40%Ne - 60%DME gas mixture.

4.2 Results

The T10 beam spill lasted on average 0.3 s every 7.2 s, yielding a duty cycle of 5%. The beam was operated
at the highest available intensity. The beam profiles seen by the detectors are well described by a Gaussian with
� = 2:5 cm in both directions. This allowed to deduce that the central 250 strips of each detector were illuminated
at the maximum intensity during 155 hours. Figure 6 shows the rates recorded by a 0.5x0.5 cm2 counter located a
few milimeters off the Gaussian peak, as a function of the integrated running time. The rate measurement should
be considered accurate within a factor 2 [5]. The comparison with expected LHC conditions is shown in the same
figure: considering the T10 duty cycle, the beam test amounts to about 7.7 hours of continuous beam at a rate
comparable or larger than the one expected at LHC at a radial distance of 100 cm from the beam pipe.

Several approaches were adopted to check the stability of the detector operation during the beam exposure. A tran-
sition to the streamer regime could be induced by extremely large energy deposition caused by heavily ionizing
particles produced in nuclear interactions, and in general, by a large instantaneous rate. The apparition of destruc-
tive sparks between cathodes and anodes would cause the local melting of the gold strips and thus the shortening
of the strip active length and irreversible damage in the chambers. Figure 6 shows the beam profile recorded by
one of the detectors at the beginning and at the end of the run, with three intermediate stages. The binning of the
plots corresponds to the strip pitch; a dead or shortened strip would reflect as an inefficiency. A visual inspection
of the strips through the glass substrate has confirmed the off-line analysis [5], [6]: no damage has been detected
in the MSGC. The performance of the detector has proven to be extremely stable over the whole period of data
taking, in terms of collected charge, noise, S/N ratio, cluster size and hit multiplicity; a summary of the stability
study is given in Figure 6 for a specific chamber.

5 Test in a high intensity hadron beam at PSI
In order to increase the total integrated rate on the chambers, a second test was performed at�M1 beam at Paul
Scherrer Institute (PSI), Villigen, Switzerland. The beam was composed of pions and protons of 400 MeV/c ;
proton contamination varied between 40% and 5% during time of exposure. A duty cycle of 100% allowed to gain
a factor 20 in the time of exposure with respect to the T10 test. At the end of a 15 days period of data taking, the
detectors had been under high voltage and exposed to high intensity beam for 161 hours.
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A set of four MSGC Pestov coated chambers were mounted on an optical bench: 3 of them had undergone the
T10 test, and the fourth had been previously used for ageing tests. Three additional diamond-coated chambers
were made available and read out orthogonally to the other detectors, in order to provide a tracking telescope.
The detectors were equipped with picoamperometers, used to monitor the beam induced current and to check
for the onset of a possible streamer regime. The chambers were operated at the standard CMS working voltages
determined at the T10 test, Vcathode = 540 V, Vdrift = 3500 V. The increase of the cathode voltage with respect
to the standard CMS working point determined at the T10 test is adjusted in order to have locally (at PSI) the
same gain as at CERN/T10. The variation of gain is due the difference in atmospheric pressure, and to the lower
pion energy at PSI which yields 30% less ionization. The gain uniformity in time was checked by splitting a run
(40 min) into 12 different periods, Figure 6: no visible fluctuation was observed.

Two 1x1 cm2 scintillator counters were installed in front of the chambers to allow for a rate measurement, and
displaced by 2 and 4 cm respectively with respect to the beam axis. The rate recorded by the two counters corre-
sponds to 10 kHz/mm2. The complementary information on the actual particle rates was provided by monitoring
the beam induced current in the detectors. The chambers were operating on beam induced currents larger than
400 nA. At a radius of 60 cm in the CMS experiment, a current of 400 nA is expected to be induced by a mip flux
of 5 kHz/mm2 distributed uniformly over the detector surface [1]. During the 161 hours of operation at the high
intensity beam, the chambers were exposed to a rate higher than the LHC rate at the innermost layer of the MSGC
tracker.

To investigate further the operational stability of the detectors, one chamber was ramped to higher voltages. The
cathode voltage was being increased by 10 V every 3 hours. The transition to the streamer regime has been
observed only at Vc = 620 V and Vd = 3700 V, 100 V above the LHC working point; about 100 streamers were
observed during two hours of operation. After the study, the detector was brought to the regular working voltage,
and continued to operate normally.

The search of the strip loss has been performed by an offline analysis similar to the one applied in the previous
test [6] and by visual inspection. Strip damage has been detected in the chamber that has been brought to the
unstable regime, 100 V above the LHC working point. Out of the 100 streamers observed online, not all of
them has been destructive: 50 “mouse bites” on the strips have been visually spotted. The loss of 3 strips is
reported for the remaining detectors; these strips belonging to the first chamber on the bench, exposed to the huge
background produced by the beam hitting the collimators. No indication of sparking activity has been detected in
the neighborouhoud of these strips; the loss is due to further hardening of the detectors.

The additional post-run verification of the stability of performance is provided by comparing the values of the gain
of the chambers, measured before and after the test [7]. No deviation from the initial value was observed.

6 Conclusions
The MSGC technology allows to build large area tracking detectors that meet the CMS requirements in terms of
resolution, signal to noise ratio, efficiency, uniformity and rate capability. A set of CMS MSGCs has been exposed
to a high rate of mips during two beam test periods. The integrated rate amounts to about 170 LHC equivalent hours
at the innermost layer of the CMS MSGC tracker. No spark-induced damage has been observed in the chambers
operated at the CMS working point. The performance of the detector is proven to be extremely stable. The results
confirm that the CMS MSGCs are well suited for operation in hostile LHC environment.
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Figure 1: Cluster charge atVcathode = 530 V , Vdrift = 3000 V, 25% Ne - 75% DME gas mixture.
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Figure 2: Standard deviation of the residual distribution as a function of the distance from the chamber edge, at
Vcathode = 540 V, 25%Ne - 75%DME gas mixture, for different conditions of the drift voltage.
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intensity as a function of the integrated running time.
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Figure 4: Beam profile seen by a MSGC detector from the beginning (1st plot) to the end (last plot) of the test. No
inefficient nor dead strip can be detected.
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Figure 5: Stability study for a MSGC chamber. All variables are plotted for 225 hours of running time (T10).
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Time stability of the Landau mean - P9

PSI test beam - High Intensity run - 13/9/97
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Figure 6: Cluster charge recorded at 12 different periods during a high intensity run, for 3 MSGC prototypes (PSI).
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