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Abstract 
This paper introduces a framework for modelling and 

simulating the behaviour of distributed computing systems. 
The framework comprises both means for abstract modelling 
and an implementation that allows the evaluation of abstract 
models by means of discrete event simulation. 

The basic characteristics of distributed computing systems 
used for physics data processing at CERN are presented, 
motivating the purpose and need for modelling and simulation. 
As an example, the central data recording system of a current 
High-Energy Physics experiment is introduced. 

The modelling framework provides concepts to structure 
relevant state information of a system. The most important 
factor to set up the structure of components encapsulating state 
information is thereby given by dynamic aspects of the system, 
i.e. by identified data flows. Traditional approaches to 
modelling often tend to focus purely on static, architectural 
system aspects. 

All abstract concepts will be motivated and demonstrated 
using an example. Results of the simulation are compared to 
figures measured during real system operation, rating the 
proposed framework and its underlying modelling approach. 

I. INTRODUCTION 
Since the beginning of the 90ies, distributed computing 

systems at CERN have grown from homogeneous workstation 
clusters having tens of individual nodes to heterogeneous 
systems comprising hundreds of independent systems 
implemented by a wide variety of technologies. 

Each individual system contributes to the overall task 
performed by the distributed system. Depending on its role and 
its resource limitations, a particular subsystem may critically 
influence the overall behaviour. Given different load scenarios, 
co-operation and dependencies among subsystems, the 
identification of bottlenecks is not obvious any more. 

It is desirable to identify system components as potential 
bottlenecks already at the stage of system design. Given the 
uncertainties of system characteristics at the design stage, 
several design alternatives of the system and different load 
profiles have to be evaluated. As prototypes usually represent 
only a part of a system, the investigation of scalability to larger 
scale systems is an important issue. Modelling and simulation 
provide powerful means to meet this challenge on the basis of 
an abstract. theoretical approach 

A particular application of distributed computing at CERN 
is given by so-called Data Acquisition (DAQ) systems. DAQ 
systems collect physics data from High-Energy Physics (HEP) 
experiments, reduce the data volume and archive data to 

permanent storage. Those systems are charactesised by quasi 
seal-time constraints as follows: limited computing, 
transmission and storage resources are facing continuous high- 
bandwidth data-flows. The sole description of static system 
properties, such as the hardware configuration or steady load 
patterns is not sufficient to fully characterise the behaviour of 
such systems. Dynamic load and the distribution of data are 
important properties and dominate the overall behaviour. 

Modelling and simulation are essential methodologies to 
estimate the system behaviour already at the time of system 
design. For that purpose, an abstract state-based modelling 
paradigm is proposed which has been adopted from software 
engineering. This leads to a visual formalism characterising 
the so-called conceptual model. The efficient evaluation of a 
model is done using an operational model [ 11. The framework 
offers a C++ class library that allows the set-up of an 
operational model on the base of a conceptual model. 

11. THE MODELLING MECHANISM 
The following section will present a mechanism to set up 

conceptual models of distributed computing systems. The need 
to model different aspects of such systems separately is 
motivated and a visual formalism is introduced to denote 
conceptual models. 

A. Overview 
It is evident that a modelling mechanism has to account for 

various aspects of a system that is to be modelled. To gain 
flexibility in modelling, self-contained aspects should be 
modelled separately if possible. For the kind of systems 
concerned, two categories of system aspects have been 
identified. 

The first aspect, i.e. the modelling of components, 
addresses system properties that are determined at system 
start, such as hardware characteristics, potential system states, 
structure and algorithms. Components represent the system 
state in a structured manner and control state changes. 

Complementary to components, processes act as the second 
kind of system aspect. Processes model system dynamics, i.e. 
aspects that trigger state transitions on components. Both 
categories are modelled separately and are integrated into a 
conceptual model. Sections B and C discuss each category. 

Traditional techniques to model systems using a state- 
based paradigm, such as finite state machines enhanced by an 
event-action mechanism, tend to encounter a considerable 
complexity already for models of small systems. For 
statecharts, a hierarchical structuring of states and concepts to 
express concurrent state transitions have been added [2]. The 
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mechanisms to express causal and temporal dependencies 
between state transitions are however still integrated and hard- 
coded into the statehransition model. 

Formal languages such as SDL [3] or LOTOS [4] have 
been designed to denote specifications of distributed 
concurrent information processing systems. Both formalisms 
combine the notion of processes and state in a general way. 
The languages are destined as specification mechanisms and 
allow, being formal description techniques, a specification of 
behavioural system aspects in a rigorous mathematical sense. 
The analysis of models that base on formal specification 
languages is mainly done using an algebraic foundation. This 
very general and formal nature of such modelling approaches 
results in a considerable complexity of models representing 
general purpose computing systems concerned in this paper. 

Regarding the issue of simulation, a more pragmatic 
approach was chosen in this paper targeting an event-based 
simulation mechanism. Typically, system and workload 
modelling are distinguished in the field of computer 
performance modelling and simulation [5] .  The two-fold 
modelling approach developed in this note takes up this 
philosophy of separate system and workload models and puts 
them into a more general context. Speaking in terms of SDL or 
LOTOS specification languages, the notion of processes has 
been refined and adopted to the application domain. The 
component model features processes instances that persist 
during system operation. The process model - in the sense of 
this paper - denotes process types whose instances have 
temporary existence. 

B. Component Model 
The basic means to characterise state and structure of a 

system are given through so-called components. Components 
stand for self-contained, not necessarily physical, parts of a 
system. The self-containment assumes that the characterisation 
of state can be done independently from other components. 
State information is maintained and accessed from outside the 
component through an interface. The type of a component is 
understood as the name of the component’s interface. 
Instances of component types are referred to as components. A 
component interface declares attributes and services as 
follows: 

Parameter attributes keep initialisation information of 
instances of component types. The values of parameter 
attributes are constant. The type vector of parameter 
attributes for a given type C is denoted as A,. 

of a component. The type vector of state attributes for a 
given component type C is be denoted as S,. The values of 
state attributes change over simulation time with respect 
to services executed on the component. 
Components offer services that are initiated by processes. 
Services correspond to process types, which means that 
there is a homomorphism for each component type that 
maps accepted process types to services. The precise 
mechanism of interaction between processes and 
components will be characterised in section C. The 
execution of a service will change the values of state 

State attributes represent variables that determine the state 

attributes of the component. This change happens 
instantaneously relative to simulation time. 

Figure 1 illustrates the graphical notation of components as 
ovals denoting the identifier c and the type C. a 
Figure 1: Notation of a component 

C. Process Model 
Although components are designed to be independent 

abstractions acting in different roles, they play as a team 
making up the unique overall system. This circumstance raises 
the need for communication between components. Speaking in 
terms of modelling, components have to synchronise the state 
information they embed. We have seen that the state of a 
component is maintained through services defined by the 
component type. The execution of a service is initiated by 
processes. In that sense, processes can be understood as a kind 
of glue between components characterising the way they 
depend on and interact with each other. 

The Notion of Processes 
A process is a sequence of service executions. Processes 

are modelled as objects containing information on the context 
and in particular on the progression of process execution. 
Processes are instanced from process types that declare context 
attributes. These attributes are initialised at the time of process 
creation and are updated by service executions. The domain of 
context attributes for a type P is denoted by K,. 

Besides initialisation information, the context information 
of a process comprises for example the sequence of 
components to traverse, the number of times the process has 
already initiated service execution on a particular component 
and the simulation time at which the process will initiate the 
next service. 

Figure 2 introduces the graphical notation of processes for 
a process p of type P. 

k I  m 
Figure 2: Notation of a process 

In the figure, the process p targets three components a, b 
and c. The services initiated on each component are executed 
k, I ,  and m times respectively. The variables k, 1, m are derived 
from context attributes of the process p +  If a component 1s 
targeted only once, no number is denoted. The array of targets 
indicates several slots being capable to address components of 
the types C,, C,, and C, in the given order. 

The flow principle of a process through components is 
similar to source routing within computer networks. The 
sequence of components to traverse can be regarded as an 
array whose slots carry references to the components. At the 
time of process creation, at least the first slot has to be 
initialised with a valid reference to a component. The routing 
array is maintained like other context attributes by the service 
a process currently executes. Service execution can shift the 
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array pointer denoting the current component one slot to the 
right causing the process to execute services on the subsequent 
component. A pointer past the routing array indicates that the 
process is completed. It is important to emphasise that process 
creation, the initiation of services and the completion of a 
process have zero duration relative to simulation time. 
Simulation time can be delayed between subsequent service 
executions. The term 'process execution' will refer to the 
sequence of service executions triggered by a particular 
process and the simulation time delayed in-between. 

Semantics of Service Execution 
Services are executed on components. The execution is 

initiated by a process and has zero duration relative to 
simulation time. Given a component of type C, the service s is 
uniquely determined by the type P of the process that initiated 
the service. The effect of execution of a service s of a 
component of type C on a particular process of type P, i.e. the 
values of its context attributes K,, is characterised by a 
functionf, having the signature: 

f, : K ,  xS, x A ,  K ,  (1) 

The effect of service execution on the executing 
component can be defined similarly. According to the 
assumption that components are self-contained with respect to 
their state and change of state, the execution of a service s on 
some component of type C is characterised as a function g,  
having the signature: 

(2) 

In addition, further processes can be created through 
service execution. Let Il be the domain of processes of any 
type. The set of processes issued by the execution of a service 
s of a component of type C is denoted as function h, having the 
signature: 

(3) 

g ,  : K ,  xS, x A, + S, 

h, : K ,  xS, x A, + ll+ 
The set of processes yielded by a function h, is never empty 

and contains at least the process of type P that initiated the 
service. 
The fact that components act as way stations and creators and 
of processes is illustrated in figure 3. 

(2) (1) 

p:P \-\+a+ p : P \ g T q  + 

q;P, i.c,r: jb 
q,:P, @ +b 

... 

Figure 3: Illustration of service execution semantics 

The numbers in the figure refer to the corresponding 
effects of service excution characterised by the formulas (1) to 
(3). Component a of type C, acts as way station for a process 
p .  The process p initiates a service on component a and is 
forwarded after service execution to some component b. The 
process may delay simulation time before service execution on 

b starts. Besides the effect on context attributes of p (1) and the 
state attributes of b (2), the service execution issues processes 
q, ...,qk (3) that are subsidiary processes ofp. As with process p ,  
the execution of the first service for ql'..,qk can be delayed 
relative to simulation time. This is indicated by truncated 

Several paradigms exist to finitely specify the infinite 
notion of semantics in this context. The definition of the 
semantic functions f, g and h can be done using arbitrary 
paradigms. In software engineering, a common approach to 
formally characterise the behaviour of components is given 
through finite state machines and their enhancements. The 
expressiveness of such an approach however limits the 
domains of the formulas (l), (2) and (3). For a deterministic 
finite state machine with output, for example, the domain S, is 
limited to a finite, non-empty set of states. The domain of 
parameter attributes A ,  would denote the initial state and K ,  
would enumerate the alphabet of input characters, i.e. a set of 
events triggering state transitions. The function f would 
characterise the transition relation of the state machine. The 
function g would be obsolete as processes are featured by input 
characters that carry no context information. The function h 
would map to the domain ll characterising sets of output 
characters tagged with a reference to the target state machine 
and the time of execution. 

Another approach to characterise the functions h, g,  and h, 
for each service s of a component, is to define each function as 
vectorial equation. At the first glance, this approach induces 
mathematical complexity, For those who aim to simulate a 
model using the simulation library, the implementation of such 
vectorial equations is done in the shape of algorithms. Given 
such an operational model, the mathematical equation might 
actually never be explicitly formalised. 

Summarising, the functions A, g, and hs characterise the 
semantics of a service s of a component of type C. The fact 
that semantics are defined on the basis of functions does not 
necessarily guarantee determinism. Given one execution of a 
service s, the functions A, g, and h, are evaluated using the 
same set of input parameter values. Thus, for one service 
invocation, the order of evaluation does not affect the result. If 
several processes initiate services on the same component at 
the same time in simulation, the order of evaluation of the 
semantics functions f, g and h among the processes is not 
determined. For distinct processes, the result of the functions 
can depend on common input and output attributes of the 
domain S,, i.e. the state attributes of the component. Other 
approaches to modelling timed systems, such as statecharts, 
suffer similar problems when defining deterministic behaviour 
with respect to coeval events, i.e. race conditions. This 
problem of simultaneity is a pure artefact of modelling and 
simulation and has no counterpart in real systems. There are 
techniques such as minimal random delays or priorities on 
events to overcome strict simultaneity in simulation practice. 
The issue will not be discussed further in this context. 

arrows. 

Relationships among Processes 
The concept of processes presented so far enables the 

characterisation of sequential service executions for a single 
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process. Several process instances can initiate service 
execution concurrently and independently from each other. 

In real systems however, process executions can depend on 
each other raising the need for synchronisation among 
processes. The synchronisation requires logical 
synchronisation points within the trace of execution of a 
process. These synchronisation points are naturally given 
through service executions. 

The execution of a service may involve the creation of 
further processes. Those processes are subsidiary processes, 
also called sub-processes, relative to the process that initiated 
the service, i.e. the originating process. This process - sub- 
process relationship can be regarded as a causal dependency 
between processes. Causal dependencies are phrased for 
example by “some process p will be created only if process q 
exists” or “some process r should start and run to completion 
until process s continues”. The creation, Le. the fork, of one or 
more sub-processes can happen in a blocking and non- 
blocking manner relative to the originating process. 

Blocking sub-processes stop the execution of their 
originator until all of them are finished. In the case of non- 
blocking sub-processes, the execution of the originating 
process is resumed immediately. The graphical notation is 
enhanced as follows: 

Process p P, \y\ p P, ?y\ 
Blocking Non-Blocking 

Figure 4: Notation for blocking and non-blocking sub-processes 

The left-hand side of figure 4 illustrates the notation of a 
blocking fork. The component a issues k processes of type P, 
at service execution for process p .  The new processes ql, ...,qn 
have a causal relationship to the originating process p ,  they are 
sub-processes of p .  All k sub-processes start service execution 
on the component b. The fork is, as part of the execution of a 
service, done instantaneously. The execution of p is suspended 
until all k sub-processes have run to completion. The 
procedure, i.e. the service execution for p on component a,  
repeats IZ times until the process p initiates a service on the 
component d. 

The mechanism provided for non-blocking forks, as shown 
in figure 4 on the right, is similar. At each service execution 
for process p ,  k sub-processes ql, ...,qk are forked. The 
originating process p however, immediately continues 
execution. After the Service for process p has been executed 
n times on component a, the process targets the next 
component b. 

So far, dependencies among processes were expressed in 
an originator - sub-process relationship featuring a causal 
dependency. In addition, temporal dependencies between 
processes at the same level of causality should be expressed. 
Temporal dependencies can typically be phrased as 
postulations of the shape “process p must not start before 
process q has ended” or “process r starts only after process s 

has been launched. Figure 5 illustrates the notation of 
concurrent and sequential sub-processes. 

Any temporal dependency among processes is controlled 
by a common originating process, denoted as process a in the 
figure. Two kinds of temporal relationships are foreseen, 
concurrent and sequential execution of processes. The 
initiation of concurrent processes is done by an originating 
process in either bloclung or non-blocking manner. The upper 
half of figure 5 illustrates concurrent processes that are forked 
in blocking (upper left) and non-blocking manner (upper right) 
by their common originating process. The service execution of 
process p in component a issues k and 1 instances of sub- 
processes of type P, and P, respectively. As the execution of 
the sub-processes is initiated blocking (upper left) to p ,  another 
of the rz iterations will be started only if all processes ql, ...,qk 
and rl, ..., r, have completed. Similarly, concurrent processes can 
be forked in a non-blocking manner by the originating process 
(upper right). Process execution of p resumes immediately 
after k sub-processes of type P, and 1 sub-processes of type P, 
have been forked at the same time in simulation. This 
procedure repeats n times. 

Concurrent Sub-processes 

Sequential Sub-processes 

Figure 5 :  Concurrent and sequential sub-processes 

The lower part of figure 5 illustrates sequential temporal 
dependencies among processes. The processes rl, ..., r,, for 
example, are not started until k processes q,, ...,qk of type P, 
have completed execution. Similarly, the processes st, ..., s,,, will 
not be started before 1 instances of processes rl, ..., r, of type P, 
were forked. The procedure, i.e. the sequence of three service 
executions on component a, repeats n times. 

D. Hierarchical Structuring of Models 
The composition of components and processes integrated 

static and dynamic aspects of a system into a conceptual 
model. Such a self-contained model is understood as 
.S 

0 

.S 

a set of component type specifications, 

a set of process type specifications, 

a set of component instances provided with initialisation 
information for their parameter attributes. Components 
are instanced from the given component types and persist 
throughout the whole system lifetime. 

a set of initial processes featuring external stimuli. The 
processes are instanced from the given process types. 
They trigger initial service executions and their existewe 
is usually intermediate. 

* 
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The notion of a model in the given sense resembles a 
reactive system [3] similarly to components themselves. A 
generalisation of the component concept leads to so-called 
hyper-components. Contrary to ordinary components, hyper- 
components define in their scope attributes and behaviour in 
terms of further components and processes. The interaction 
between processes and hyper-components happens through an 
interface as for ordinary components. 

I_ ----- a ----___- I 

i @  I -1 I 

I 
I 0 

I .___________________----~ 
Figure 6: Notation of a hyper-component 

Figure 6 illustrates a hyper-component a having the 
interface named C,. Further components of the types C, and C, 
with identifiers b and c, are contained in the scope of the 
hyper-component. From outside the hyper-component, the 
components b and c, i.e. their services, are accessible only 
indirectly through a. This means that services of a initiate sub- 
processes on the components b and c. 

The concept of hyper-components provides a seamless 
extension of the notion of components and enables a powerful 
mechanism of hierarchical and structured modelling. 

111. THE SIMULATION LIBRARY 
Corresponding to the theory of components and processes, 

a programming library has been implemented that instruments 
the concepts presented. The library design is based on an 
object-oriented foundation, the components and processes are 
reflected by abstract base classes. For a particular model, the 
base classes are refined through inheritance and instanced to 
actual components and processes. The library implements a 
process scheduling mechanism that enables the initiation of 
services at certain points in simulation time. The library is 
implemented in C++, recent techniques such as the use of the 
Standard Template Library (STL) guarantee efficiency and a 
powerful interface to the modeller [7]. The use of the library 
requires C++ skills. Heuristics for the transition from the 
abstract conceptual model to the C++ implementation have 
been conceived. 

Iv. EXAMPLE: MODELLING A CENTRAL DATA 
RECORDING SYSTEM 

The modelling theory and the simulation library were 
applied to model the back-end of a DAQ system for one of 
CERN's experiments, namely the NA48 experiment. At first, 
the system configuration and the application requirements are 
characterised. A short sketch of relevant parts of the 
component and process model will be given. Finally, simulated 
and measured performance figures are illustrated, analysed and 
compared. 

A. Overview on the Application 
In the case of a Central Data Recording system (CDR), the 

collection, analysis and storage of physics data is done 

simultaneously to the running experiment. For the NA48 
experiment, a continuous stream of data of about 15 MB/s is at 
first stored on a large pool of parallel file systems. CPU- 
intensive processes read this data, analyse it and write results 
back to file systems. Finally, raw and analysed data are 
dumped to tape storage. The kind of application is 
characterised by high disk and network I/O and extensive 
computing demands. 

The implementation of the CDR system uses about 32 
nodes of a scalable parallel computer, namely a Meiko CS2 
system. Each node is an independent symmetric multi- 
processing unit comprising two CPUs and 128 MB of main 
memory. All nodes are interconnected by a switched high- 
speed network capable of 35 MB/s duplex speed per pair of 
nodes. Disks are attached to the system in stripes of 4 or 5 
nodes providing a logical NFS based parallel file system 
(PFS). The storage capacity spread over several of those 
logical parallel file systems amounts to approximately 1 TB. A 
more detailed report on the system configuration and the CDR 
application is given in [6] .  

The aim of the modelling and simulation is to evaluate the 
overall performance of different configurations of the 
contingent of 32 nodes. One configuration would partition 
nodes in a disjoint manner, dedicating each node to a particular 
task like disk I/O or CPU services for physics analysis 
processes. Another feasible configuration would disperse file 
systems further and run analysis processes also on disk servers. 
For the purpose of the study, a detailed model of the overall 
system has been developed using the framework. 

B. A Partial View of the Model 
In the following, parts of the component and process model 

for the CDR system of the NA48 experiment will be 
illustrated. Due to the limited scope of this paper, the precise 
interfaces of object types will not be specified. The interaction 
between components and processes however will become 
obvious through the given figures. 

Several components have been conceived to model parallel 
file systems and computing resources. Paralleling the hardware 
configuration of the real system, the component model 
conceives one component per node. The type of component for 
nodes is NODE, instances have the identifiers cerncs2-20 and 
cerncs2-21 in figure 7. The type NODE itself is a hyper- 
component. Thus, a self-contained sub-model determines the 
behaviour of a node facing VO or CPU loads. This sub-model 
comprises instances of the component types CPU and 10. 
Moreover, the component type PARALLEL-FILE-SYSTEM, 
although physically dispersed among several nodes in the real 
system, models one parallel file system as a single logical unit. 

Figure 7: Component model for computing nodes and a parallel file 
system 
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NODE-PROCESS 

The mentioned components depend on each other for measured on the real system and served to parameterise and 
fulfilling their services. To illustrate the dependencies, calibrate the operational model. Examples of performance 
the process instances for a particular read access to the parallel figures are the required amount of server CPU system time per 
file system is sketched in figure 8. The read from the file MB read from a parallel file system or the relation of 
system is issued by a process of type READ-PROCESS that scheduling priorities between user and system tasks. In the 
initiates a service on the instance data-40 of type following, partial aspects of analysis and simulation results are 
PARA LLEL-FILE-SYSTEM. presented and compared to measured figures. 

cerncs2-12 NODE cerncs2-20 NODE cerncs2-21 NODE 

CPU-PROCESS 

C. Analysis of Simulated and Measured Figures 
Before simulation and analysis could be done, the 

conceptual model, which was partly sketched in the previous 
paragraph, has been implemented as operational model using 
the simulation library. Performance figures have been 

CpUl CPU CpUl 

The analysis presented in the context of this paper will be 
done using so-called Kiviat Graphs [5]. Kiviat Graphs 
illustrate an even number of dimensiqns in a circular graph. 
Adjacent dimensions are arranged in a way that one represents 
the figures of an HB metric (higher is better) and the other one 
an LB metric (lower is better). For the example, HB metrics 
are given as the rate of disk I/O and the share of user CPU. LB 
metrics are horizontally sketched and refer to the share of 
system CPU and the share of CPU in idle or wait I/O state. 

Related to the analysis using Kiviat Graphs is the 
calculation of a summary figure, the so-called figure of merit 
(FOM). This figure expresses the averaged LB and HB metrics 
and summarises how efficiently the capabilities of a system 
are exploited. As all dimensions are equally accounted, the 
interpretation of this metric should be done with care. The 
precise calculation is given in [5]. The FOM figure peaks at a 
value of 100, increasing values indicate a more efficient 
system usage. 

Both Kiviat Graphs and the FOM figure consider a 
snapshot or average figures of a system serving certain tasks. 
In the case of the analysis done for the computing facilities of 
the NA48 experiment, typical scenarios have been defined, 
assuming that nodes were either dedicated to act as disk server, 
CPU server or as combined CPU/disk server. For the three 
scenarios presented in the following figures, the tasks of a 
node, i.e. the demanded disk 110 rate and the number of 
physics analysis processes per node, were determined. The 
illustrated dimensions assume 100% CPU usage for two 
saturated processors on a node and 100% disk VO for a 
transfer of 8 MB/s per node. Corresponding to the conventions 
met for the dimensions of axes in terms of HB and LB metrics, 
a balanced system is considered to have a slant Kiviat Graph 
covering a wide range of the vertical axis. 

CPU Server Node 
Simulation Real 

CPU User 

CPU 
System 

3% 

CPU User 
97% (2 Processes) 

~ 7% Disk (0 6 I/O MB/s) 

CPU 
IdleiWalt 

0% 

FOM = 71 FOM = 71 

Figure 9: Kiviat Graphs for a CPU server node 

On CPU server nodes, typically two single-threaded user 
processes are executed. Those physics analysis processes are 
CPU-intensive and have a working set of 35 MB of main 
memory. Each analysis process requires disk VO at a rate of 
0.3 MB/s. This scenario is illustrated in figure 9. 
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DiskStripe Server Node resulting CPU utilisation. One CPU-intensive physics analysis 
process was permanently executing on the node, while the rate 
of disk YO was varied. The figure indicates that simulated 
figures deviate less than 15 % from real figures. 

Real Simulation 

CPU User CPU User 
1% 0% 

CPU CPU CPU CPU 
System IdleWalt System IdleWalt 
65% 34% 65% 35% V. CONCLUSION 

The proposed approach faces the requirements of 
modelling and simulating distributed computing systems by 

Disk 110 Disk i/O conceiving a theoretical concept for modelling and a 
FOM = 45 corresponding implementation part that allows the simulation 

79% (6 3 MBls) 79% (6 3 MB/s) 
FOM = 44 

Figure 10: Kiviat Graphs for a disk server node 

A common scenario on disk servers in a configuration of 
separated disk and CPU servers is given in figure 10. The UO 
rate demanded per server node of a file system stripe is 
assumed 6.3 MB/s. 

CPUlDisk Sewer Node 
Real Simulation 

CPU 
System 

53% 

CPU User 
33% (I Process) 

Disks I/O 
66% ( 5  3 ME/$) 

CPU 
Idlemait 

14% 

CPU 
System 

55% 

CPU User 
27% (1 Process) 

I/O Local Disks 
66% (5 3 MBk) 

FOM = 57 FOM = 54 

Figure 11: Kiviat Graphs for a CPU/disk server node 

CPU 
IdleWalt 

18% 

For the combined CPU/disk server scenario sketched in 
figure 11, a single physics analysis process and a demanded 
UO rate 5.3 MB/s have been assumed. 

The result of the analysis showed that additional user 
processes on disk servers could increase the overall usage of 
resources on the server without compromising the overall disk 
UO performance. 

CPU [%I  

80 

70 

60 ,,,,,/,’*. 

50 System CPU .... ~ ..............- - .. .. - -& 

40 30 t 
y ,  ’ Ditk[MB/s] 

I O  2 0  3 0  4 0  5 0  6 0  7 0  80 

Figure 12: Comparison of simulated and real figures on a CPU/disk 
server configuration 

For the three scenarios illustrated, the processes i.e. the 
demanded disk I/O rate and the number of user processes per 
node were fixed. The comparison between real and simulated 
figures however has to consider a variation in the demands of 
tasks scheduled on a node. Figure 12 illustrates a variation of 
disk I/O demands for a combined CPU/disk server and the 

of models. 
One of the important characteristics of the framework is to 

separate static and dynamic aspects of a system. Static issues 
address qualities of a system that remain invariant during its 
operation. Dynamic characteristics of a system relate to 
processes that perform the actual evolution of the system 
during its operation. The general concept of state is split up 
into component state and process context. Several techniques 
have been developed to relate processes regarding their causal 
and temporal dependencies. 

A part of the data acquisition system of the NA48 physics 
experiment has been modelled using the theory of components 
and processes. The precise results yielded by the simulation of 
the operational model helped to tune the final system 
configuration. Following up this positive experience further 
development and application of the framework is foreseen in 
the field of modelling and simulation of large-scale PC farm 
architectures. 
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