
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 4, AUGUST 1998 1951

A Framework for Modelling and Simulating Data Flows
in Distributed Computing Systems

Christoph von Praun
CERN, 121 1 Genbve 23, Switzerland

Abstract
This paper introduces a framework for modelling and

simulating the behaviour of distributed computing systems.
The framework comprises both means for abstract modelling
and an implementation that allows the evaluation of abstract
models by means of discrete event simulation.

The basic characteristics of distributed computing systems
used for physics data processing at CERN are presented,
motivating the purpose and need for modelling and simulation.
As an example, the central data recording system of a current
High-Energy Physics experiment is introduced.

The modelling framework provides concepts to structure
relevant state information of a system. The most important
factor to set up the structure of components encapsulating state
information is thereby given by dynamic aspects of the system,
i.e. by identified data flows. Traditional approaches to
modelling often tend to focus purely on static, architectural
system aspects.

All abstract concepts will be motivated and demonstrated
using an example. Results of the simulation are compared to
figures measured during real system operation, rating the
proposed framework and its underlying modelling approach.

I. INTRODUCTION
Since the beginning of the 90ies, distributed computing

systems at CERN have grown from homogeneous workstation
clusters having tens of individual nodes to heterogeneous
systems comprising hundreds of independent systems
implemented by a wide variety of technologies.

Each individual system contributes to the overall task
performed by the distributed system. Depending on its role and
its resource limitations, a particular subsystem may critically
influence the overall behaviour. Given different load scenarios,
co-operation and dependencies among subsystems, the
identification of bottlenecks is not obvious any more.

It is desirable to identify system components as potential
bottlenecks already at the stage of system design. Given the
uncertainties of system characteristics at the design stage,
several design alternatives of the system and different load
profiles have to be evaluated. As prototypes usually represent
only a part of a system, the investigation of scalability to larger
scale systems is an important issue. Modelling and simulation
provide powerful means to meet this challenge on the basis of
an abstract. theoretical approach

A particular application of distributed computing at CERN
is given by so-called Data Acquisition (DAQ) systems. DAQ
systems collect physics data from High-Energy Physics (HEP)
experiments, reduce the data volume and archive data to

permanent storage. Those systems are charactesised by quasi
seal-time constraints as follows: limited computing,
transmission and storage resources are facing continuous high-
bandwidth data-flows. The sole description of static system
properties, such as the hardware configuration or steady load
patterns is not sufficient to fully characterise the behaviour of
such systems. Dynamic load and the distribution of data are
important properties and dominate the overall behaviour.

Modelling and simulation are essential methodologies to
estimate the system behaviour already at the time of system
design. For that purpose, an abstract state-based modelling
paradigm is proposed which has been adopted from software
engineering. This leads to a visual formalism characterising
the so-called conceptual model. The efficient evaluation of a
model is done using an operational model [11. The framework
offers a C++ class library that allows the set-up of an
operational model on the base of a conceptual model.

11. THE MODELLING MECHANISM
The following section will present a mechanism to set up

conceptual models of distributed computing systems. The need
to model different aspects of such systems separately is
motivated and a visual formalism is introduced to denote
conceptual models.

A. Overview
It is evident that a modelling mechanism has to account for

various aspects of a system that is to be modelled. To gain
flexibility in modelling, self-contained aspects should be
modelled separately if possible. For the kind of systems
concerned, two categories of system aspects have been
identified.

The first aspect, i.e. the modelling of components,
addresses system properties that are determined at system
start, such as hardware characteristics, potential system states,
structure and algorithms. Components represent the system
state in a structured manner and control state changes.

Complementary to components, processes act as the second
kind of system aspect. Processes model system dynamics, i.e.
aspects that trigger state transitions on components. Both
categories are modelled separately and are integrated into a
conceptual model. Sections B and C discuss each category.

Traditional techniques to model systems using a state-
based paradigm, such as finite state machines enhanced by an
event-action mechanism, tend to encounter a considerable
complexity already for models of small systems. For
statecharts, a hierarchical structuring of states and concepts to
express concurrent state transitions have been added [2]. The

0018-9499/98$10.00 0 1998 IEEE

1952

mechanisms to express causal and temporal dependencies
between state transitions are however still integrated and hard-
coded into the statehransition model.

Formal languages such as SDL [3] or LOTOS [4] have
been designed to denote specifications of distributed
concurrent information processing systems. Both formalisms
combine the notion of processes and state in a general way.
The languages are destined as specification mechanisms and
allow, being formal description techniques, a specification of
behavioural system aspects in a rigorous mathematical sense.
The analysis of models that base on formal specification
languages is mainly done using an algebraic foundation. This
very general and formal nature of such modelling approaches
results in a considerable complexity of models representing
general purpose computing systems concerned in this paper.

Regarding the issue of simulation, a more pragmatic
approach was chosen in this paper targeting an event-based
simulation mechanism. Typically, system and workload
modelling are distinguished in the field of computer
performance modelling and simulation [5] . The two-fold
modelling approach developed in this note takes up this
philosophy of separate system and workload models and puts
them into a more general context. Speaking in terms of SDL or
LOTOS specification languages, the notion of processes has
been refined and adopted to the application domain. The
component model features processes instances that persist
during system operation. The process model - in the sense of
this paper - denotes process types whose instances have
temporary existence.

B. Component Model
The basic means to characterise state and structure of a

system are given through so-called components. Components
stand for self-contained, not necessarily physical, parts of a
system. The self-containment assumes that the characterisation
of state can be done independently from other components.
State information is maintained and accessed from outside the
component through an interface. The type of a component is
understood as the name of the component’s interface.
Instances of component types are referred to as components. A
component interface declares attributes and services as
follows:

Parameter attributes keep initialisation information of
instances of component types. The values of parameter
attributes are constant. The type vector of parameter
attributes for a given type C is denoted as A,.

of a component. The type vector of state attributes for a
given component type C is be denoted as S,. The values of
state attributes change over simulation time with respect
to services executed on the component.
Components offer services that are initiated by processes.
Services correspond to process types, which means that
there is a homomorphism for each component type that
maps accepted process types to services. The precise
mechanism of interaction between processes and
components will be characterised in section C. The
execution of a service will change the values of state

State attributes represent variables that determine the state

attributes of the component. This change happens
instantaneously relative to simulation time.

Figure 1 illustrates the graphical notation of components as
ovals denoting the identifier c and the type C. a
Figure 1: Notation of a component

C. Process Model
Although components are designed to be independent

abstractions acting in different roles, they play as a team
making up the unique overall system. This circumstance raises
the need for communication between components. Speaking in
terms of modelling, components have to synchronise the state
information they embed. We have seen that the state of a
component is maintained through services defined by the
component type. The execution of a service is initiated by
processes. In that sense, processes can be understood as a kind
of glue between components characterising the way they
depend on and interact with each other.

The Notion of Processes
A process is a sequence of service executions. Processes

are modelled as objects containing information on the context
and in particular on the progression of process execution.
Processes are instanced from process types that declare context
attributes. These attributes are initialised at the time of process
creation and are updated by service executions. The domain of
context attributes for a type P is denoted by K,.

Besides initialisation information, the context information
of a process comprises for example the sequence of
components to traverse, the number of times the process has
already initiated service execution on a particular component
and the simulation time at which the process will initiate the
next service.

Figure 2 introduces the graphical notation of processes for
a process p of type P.

k I m
Figure 2: Notation of a process

In the figure, the process p targets three components a, b
and c. The services initiated on each component are executed
k, I , and m times respectively. The variables k, 1, m are derived
from context attributes of the process p + If a component 1s
targeted only once, no number is denoted. The array of targets
indicates several slots being capable to address components of
the types C,, C,, and C, in the given order.

The flow principle of a process through components is
similar to source routing within computer networks. The
sequence of components to traverse can be regarded as an
array whose slots carry references to the components. At the
time of process creation, at least the first slot has to be
initialised with a valid reference to a component. The routing
array is maintained like other context attributes by the service
a process currently executes. Service execution can shift the

1953

array pointer denoting the current component one slot to the
right causing the process to execute services on the subsequent
component. A pointer past the routing array indicates that the
process is completed. It is important to emphasise that process
creation, the initiation of services and the completion of a
process have zero duration relative to simulation time.
Simulation time can be delayed between subsequent service
executions. The term 'process execution' will refer to the
sequence of service executions triggered by a particular
process and the simulation time delayed in-between.

Semantics of Service Execution
Services are executed on components. The execution is

initiated by a process and has zero duration relative to
simulation time. Given a component of type C, the service s is
uniquely determined by the type P of the process that initiated
the service. The effect of execution of a service s of a
component of type C on a particular process of type P, i.e. the
values of its context attributes K,, is characterised by a
functionf, having the signature:

f, : K , xS, x A , K , (1)

The effect of service execution on the executing
component can be defined similarly. According to the
assumption that components are self-contained with respect to
their state and change of state, the execution of a service s on
some component of type C is characterised as a function g,
having the signature:

(2)

In addition, further processes can be created through
service execution. Let Il be the domain of processes of any
type. The set of processes issued by the execution of a service
s of a component of type C is denoted as function h, having the
signature:

(3)

g , : K , xS, x A, + S,

h, : K , xS, x A, + ll+
The set of processes yielded by a function h, is never empty

and contains at least the process of type P that initiated the
service.
The fact that components act as way stations and creators and
of processes is illustrated in figure 3.

(2) (1)

p:P \-\+a+ p : P \ g T q +

q;P, i.c,r: jb
q,:P, @ +b

...

Figure 3: Illustration of service execution semantics

The numbers in the figure refer to the corresponding
effects of service excution characterised by the formulas (1) to
(3). Component a of type C, acts as way station for a process
p . The process p initiates a service on component a and is
forwarded after service execution to some component b. The
process may delay simulation time before service execution on

b starts. Besides the effect on context attributes of p (1) and the
state attributes of b (2), the service execution issues processes
q, ...,qk (3) that are subsidiary processes ofp. As with process p ,
the execution of the first service for ql'..,qk can be delayed
relative to simulation time. This is indicated by truncated

Several paradigms exist to finitely specify the infinite
notion of semantics in this context. The definition of the
semantic functions f, g and h can be done using arbitrary
paradigms. In software engineering, a common approach to
formally characterise the behaviour of components is given
through finite state machines and their enhancements. The
expressiveness of such an approach however limits the
domains of the formulas (l), (2) and (3). For a deterministic
finite state machine with output, for example, the domain S, is
limited to a finite, non-empty set of states. The domain of
parameter attributes A , would denote the initial state and K ,
would enumerate the alphabet of input characters, i.e. a set of
events triggering state transitions. The function f would
characterise the transition relation of the state machine. The
function g would be obsolete as processes are featured by input
characters that carry no context information. The function h
would map to the domain ll characterising sets of output
characters tagged with a reference to the target state machine
and the time of execution.

Another approach to characterise the functions h, g, and h,
for each service s of a component, is to define each function as
vectorial equation. At the first glance, this approach induces
mathematical complexity, For those who aim to simulate a
model using the simulation library, the implementation of such
vectorial equations is done in the shape of algorithms. Given
such an operational model, the mathematical equation might
actually never be explicitly formalised.

Summarising, the functions A, g, and hs characterise the
semantics of a service s of a component of type C. The fact
that semantics are defined on the basis of functions does not
necessarily guarantee determinism. Given one execution of a
service s, the functions A, g, and h, are evaluated using the
same set of input parameter values. Thus, for one service
invocation, the order of evaluation does not affect the result. If
several processes initiate services on the same component at
the same time in simulation, the order of evaluation of the
semantics functions f, g and h among the processes is not
determined. For distinct processes, the result of the functions
can depend on common input and output attributes of the
domain S,, i.e. the state attributes of the component. Other
approaches to modelling timed systems, such as statecharts,
suffer similar problems when defining deterministic behaviour
with respect to coeval events, i.e. race conditions. This
problem of simultaneity is a pure artefact of modelling and
simulation and has no counterpart in real systems. There are
techniques such as minimal random delays or priorities on
events to overcome strict simultaneity in simulation practice.
The issue will not be discussed further in this context.

arrows.

Relationships among Processes
The concept of processes presented so far enables the

characterisation of sequential service executions for a single

1954

process. Several process instances can initiate service
execution concurrently and independently from each other.

In real systems however, process executions can depend on
each other raising the need for synchronisation among
processes. The synchronisation requires logical
synchronisation points within the trace of execution of a
process. These synchronisation points are naturally given
through service executions.

The execution of a service may involve the creation of
further processes. Those processes are subsidiary processes,
also called sub-processes, relative to the process that initiated
the service, i.e. the originating process. This process - sub-
process relationship can be regarded as a causal dependency
between processes. Causal dependencies are phrased for
example by “some process p will be created only if process q
exists” or “some process r should start and run to completion
until process s continues”. The creation, Le. the fork, of one or
more sub-processes can happen in a blocking and non-
blocking manner relative to the originating process.

Blocking sub-processes stop the execution of their
originator until all of them are finished. In the case of non-
blocking sub-processes, the execution of the originating
process is resumed immediately. The graphical notation is
enhanced as follows:

Process p P, \y\ p P, ?y\
Blocking Non-Blocking

Figure 4: Notation for blocking and non-blocking sub-processes

The left-hand side of figure 4 illustrates the notation of a
blocking fork. The component a issues k processes of type P,
at service execution for process p . The new processes ql, ...,qn
have a causal relationship to the originating process p , they are
sub-processes of p . All k sub-processes start service execution
on the component b. The fork is, as part of the execution of a
service, done instantaneously. The execution of p is suspended
until all k sub-processes have run to completion. The
procedure, i.e. the service execution for p on component a,
repeats IZ times until the process p initiates a service on the
component d.

The mechanism provided for non-blocking forks, as shown
in figure 4 on the right, is similar. At each service execution
for process p , k sub-processes ql, ...,qk are forked. The
originating process p however, immediately continues
execution. After the Service for process p has been executed
n times on component a, the process targets the next
component b.

So far, dependencies among processes were expressed in
an originator - sub-process relationship featuring a causal
dependency. In addition, temporal dependencies between
processes at the same level of causality should be expressed.
Temporal dependencies can typically be phrased as
postulations of the shape “process p must not start before
process q has ended” or “process r starts only after process s

has been launched. Figure 5 illustrates the notation of
concurrent and sequential sub-processes.

Any temporal dependency among processes is controlled
by a common originating process, denoted as process a in the
figure. Two kinds of temporal relationships are foreseen,
concurrent and sequential execution of processes. The
initiation of concurrent processes is done by an originating
process in either bloclung or non-blocking manner. The upper
half of figure 5 illustrates concurrent processes that are forked
in blocking (upper left) and non-blocking manner (upper right)
by their common originating process. The service execution of
process p in component a issues k and 1 instances of sub-
processes of type P, and P, respectively. As the execution of
the sub-processes is initiated blocking (upper left) to p , another
of the rz iterations will be started only if all processes ql, ...,qk
and rl, ..., r, have completed. Similarly, concurrent processes can
be forked in a non-blocking manner by the originating process
(upper right). Process execution of p resumes immediately
after k sub-processes of type P, and 1 sub-processes of type P,
have been forked at the same time in simulation. This
procedure repeats n times.

Concurrent Sub-processes

Sequential Sub-processes

Figure 5 : Concurrent and sequential sub-processes

The lower part of figure 5 illustrates sequential temporal
dependencies among processes. The processes rl, ..., r,, for
example, are not started until k processes q,, ...,qk of type P,
have completed execution. Similarly, the processes st, ..., s,,, will
not be started before 1 instances of processes rl, ..., r, of type P,
were forked. The procedure, i.e. the sequence of three service
executions on component a, repeats n times.

D. Hierarchical Structuring of Models
The composition of components and processes integrated

static and dynamic aspects of a system into a conceptual
model. Such a self-contained model is understood as
.S

0

.S

a set of component type specifications,

a set of process type specifications,

a set of component instances provided with initialisation
information for their parameter attributes. Components
are instanced from the given component types and persist
throughout the whole system lifetime.

a set of initial processes featuring external stimuli. The
processes are instanced from the given process types.
They trigger initial service executions and their existewe
is usually intermediate.

*

1955

The notion of a model in the given sense resembles a
reactive system [3] similarly to components themselves. A
generalisation of the component concept leads to so-called
hyper-components. Contrary to ordinary components, hyper-
components define in their scope attributes and behaviour in
terms of further components and processes. The interaction
between processes and hyper-components happens through an
interface as for ordinary components.

I_ ----- a ----___- I

i @ I -1 I

I
I 0

I .___________________----~
Figure 6: Notation of a hyper-component

Figure 6 illustrates a hyper-component a having the
interface named C,. Further components of the types C, and C,
with identifiers b and c, are contained in the scope of the
hyper-component. From outside the hyper-component, the
components b and c, i.e. their services, are accessible only
indirectly through a. This means that services of a initiate sub-
processes on the components b and c.

The concept of hyper-components provides a seamless
extension of the notion of components and enables a powerful
mechanism of hierarchical and structured modelling.

111. THE SIMULATION LIBRARY
Corresponding to the theory of components and processes,

a programming library has been implemented that instruments
the concepts presented. The library design is based on an
object-oriented foundation, the components and processes are
reflected by abstract base classes. For a particular model, the
base classes are refined through inheritance and instanced to
actual components and processes. The library implements a
process scheduling mechanism that enables the initiation of
services at certain points in simulation time. The library is
implemented in C++, recent techniques such as the use of the
Standard Template Library (STL) guarantee efficiency and a
powerful interface to the modeller [7]. The use of the library
requires C++ skills. Heuristics for the transition from the
abstract conceptual model to the C++ implementation have
been conceived.

Iv. EXAMPLE: MODELLING A CENTRAL DATA
RECORDING SYSTEM

The modelling theory and the simulation library were
applied to model the back-end of a DAQ system for one of
CERN's experiments, namely the NA48 experiment. At first,
the system configuration and the application requirements are
characterised. A short sketch of relevant parts of the
component and process model will be given. Finally, simulated
and measured performance figures are illustrated, analysed and
compared.

A. Overview on the Application
In the case of a Central Data Recording system (CDR), the

collection, analysis and storage of physics data is done

simultaneously to the running experiment. For the NA48
experiment, a continuous stream of data of about 15 MB/s is at
first stored on a large pool of parallel file systems. CPU-
intensive processes read this data, analyse it and write results
back to file systems. Finally, raw and analysed data are
dumped to tape storage. The kind of application is
characterised by high disk and network I/O and extensive
computing demands.

The implementation of the CDR system uses about 32
nodes of a scalable parallel computer, namely a Meiko CS2
system. Each node is an independent symmetric multi-
processing unit comprising two CPUs and 128 MB of main
memory. All nodes are interconnected by a switched high-
speed network capable of 35 MB/s duplex speed per pair of
nodes. Disks are attached to the system in stripes of 4 or 5
nodes providing a logical NFS based parallel file system
(PFS). The storage capacity spread over several of those
logical parallel file systems amounts to approximately 1 TB. A
more detailed report on the system configuration and the CDR
application is given in [6] .

The aim of the modelling and simulation is to evaluate the
overall performance of different configurations of the
contingent of 32 nodes. One configuration would partition
nodes in a disjoint manner, dedicating each node to a particular
task like disk I/O or CPU services for physics analysis
processes. Another feasible configuration would disperse file
systems further and run analysis processes also on disk servers.
For the purpose of the study, a detailed model of the overall
system has been developed using the framework.

B. A Partial View of the Model
In the following, parts of the component and process model

for the CDR system of the NA48 experiment will be
illustrated. Due to the limited scope of this paper, the precise
interfaces of object types will not be specified. The interaction
between components and processes however will become
obvious through the given figures.

Several components have been conceived to model parallel
file systems and computing resources. Paralleling the hardware
configuration of the real system, the component model
conceives one component per node. The type of component for
nodes is NODE, instances have the identifiers cerncs2-20 and
cerncs2-21 in figure 7. The type NODE itself is a hyper-
component. Thus, a self-contained sub-model determines the
behaviour of a node facing VO or CPU loads. This sub-model
comprises instances of the component types CPU and 10.
Moreover, the component type PARALLEL-FILE-SYSTEM,
although physically dispersed among several nodes in the real
system, models one parallel file system as a single logical unit.

Figure 7: Component model for computing nodes and a parallel file
system

1956

NODE-PROCESS

The mentioned components depend on each other for measured on the real system and served to parameterise and
fulfilling their services. To illustrate the dependencies, calibrate the operational model. Examples of performance
the process instances for a particular read access to the parallel figures are the required amount of server CPU system time per
file system is sketched in figure 8. The read from the file MB read from a parallel file system or the relation of
system is issued by a process of type READ-PROCESS that scheduling priorities between user and system tasks. In the
initiates a service on the instance data-40 of type following, partial aspects of analysis and simulation results are
PARA LLEL-FILE-SYSTEM. presented and compared to measured figures.

cerncs2-12 NODE cerncs2-20 NODE cerncs2-21 NODE

CPU-PROCESS

C. Analysis of Simulated and Measured Figures
Before simulation and analysis could be done, the

conceptual model, which was partly sketched in the previous
paragraph, has been implemented as operational model using
the simulation library. Performance figures have been

CpUl CPU CpUl

The analysis presented in the context of this paper will be
done using so-called Kiviat Graphs [5]. Kiviat Graphs
illustrate an even number of dimensiqns in a circular graph.
Adjacent dimensions are arranged in a way that one represents
the figures of an HB metric (higher is better) and the other one
an LB metric (lower is better). For the example, HB metrics
are given as the rate of disk I/O and the share of user CPU. LB
metrics are horizontally sketched and refer to the share of
system CPU and the share of CPU in idle or wait I/O state.

Related to the analysis using Kiviat Graphs is the
calculation of a summary figure, the so-called figure of merit
(FOM). This figure expresses the averaged LB and HB metrics
and summarises how efficiently the capabilities of a system
are exploited. As all dimensions are equally accounted, the
interpretation of this metric should be done with care. The
precise calculation is given in [5]. The FOM figure peaks at a
value of 100, increasing values indicate a more efficient
system usage.

Both Kiviat Graphs and the FOM figure consider a
snapshot or average figures of a system serving certain tasks.
In the case of the analysis done for the computing facilities of
the NA48 experiment, typical scenarios have been defined,
assuming that nodes were either dedicated to act as disk server,
CPU server or as combined CPU/disk server. For the three
scenarios presented in the following figures, the tasks of a
node, i.e. the demanded disk 110 rate and the number of
physics analysis processes per node, were determined. The
illustrated dimensions assume 100% CPU usage for two
saturated processors on a node and 100% disk VO for a
transfer of 8 MB/s per node. Corresponding to the conventions
met for the dimensions of axes in terms of HB and LB metrics,
a balanced system is considered to have a slant Kiviat Graph
covering a wide range of the vertical axis.

CPU Server Node
Simulation Real

CPU User

CPU
System

3%

CPU User
97% (2 Processes)

~ 7% Disk (0 6 I/O MB/s)

CPU
IdleiWalt

0%

FOM = 71 FOM = 71

Figure 9: Kiviat Graphs for a CPU server node

On CPU server nodes, typically two single-threaded user
processes are executed. Those physics analysis processes are
CPU-intensive and have a working set of 35 MB of main
memory. Each analysis process requires disk VO at a rate of
0.3 MB/s. This scenario is illustrated in figure 9.

1957

DiskStripe Server Node resulting CPU utilisation. One CPU-intensive physics analysis
process was permanently executing on the node, while the rate
of disk YO was varied. The figure indicates that simulated
figures deviate less than 15 % from real figures.

Real Simulation

CPU User CPU User
1% 0%

CPU CPU CPU CPU
System IdleWalt System IdleWalt
65% 34% 65% 35% V. CONCLUSION

The proposed approach faces the requirements of
modelling and simulating distributed computing systems by

Disk 110 Disk i/O conceiving a theoretical concept for modelling and a
FOM = 45 corresponding implementation part that allows the simulation

79% (6 3 MBls) 79% (6 3 MB/s)
FOM = 44

Figure 10: Kiviat Graphs for a disk server node

A common scenario on disk servers in a configuration of
separated disk and CPU servers is given in figure 10. The UO
rate demanded per server node of a file system stripe is
assumed 6.3 MB/s.

CPUlDisk Sewer Node
Real Simulation

CPU
System

53%

CPU User
33% (I Process)

Disks I/O
66% (5 3 ME/$)

CPU
Idlemait

14%

CPU
System

55%

CPU User
27% (1 Process)

I/O Local Disks
66% (5 3 MBk)

FOM = 57 FOM = 54

Figure 11: Kiviat Graphs for a CPU/disk server node

CPU
IdleWalt

18%

For the combined CPU/disk server scenario sketched in
figure 11, a single physics analysis process and a demanded
UO rate 5.3 MB/s have been assumed.

The result of the analysis showed that additional user
processes on disk servers could increase the overall usage of
resources on the server without compromising the overall disk
UO performance.

CPU [%I

80

70

60 ,,,,,/,’*.

50 System CPU ~- - - -&

40 30 t
y , ’ Ditk[MB/s]

I O 2 0 3 0 4 0 5 0 6 0 7 0 80

Figure 12: Comparison of simulated and real figures on a CPU/disk
server configuration

For the three scenarios illustrated, the processes i.e. the
demanded disk I/O rate and the number of user processes per
node were fixed. The comparison between real and simulated
figures however has to consider a variation in the demands of
tasks scheduled on a node. Figure 12 illustrates a variation of
disk I/O demands for a combined CPU/disk server and the

of models.
One of the important characteristics of the framework is to

separate static and dynamic aspects of a system. Static issues
address qualities of a system that remain invariant during its
operation. Dynamic characteristics of a system relate to
processes that perform the actual evolution of the system
during its operation. The general concept of state is split up
into component state and process context. Several techniques
have been developed to relate processes regarding their causal
and temporal dependencies.

A part of the data acquisition system of the NA48 physics
experiment has been modelled using the theory of components
and processes. The precise results yielded by the simulation of
the operational model helped to tune the final system
configuration. Following up this positive experience further
development and application of the framework is foreseen in
the field of modelling and simulation of large-scale PC farm
architectures.

VI. ACKNOWLEDGEMENT
For various discussions, their advice and practical

experience, I especially thank Les Robertson and Frederic
Hemmer.

VII. REFERENCES
[11 J. Banks, J.S. Carson, B.L. Nelson, “Discrete-Event

System Simulation”, New Jersey: Prentice Hall, 1996.
[2] D. Harel, “Statecharts: A Visual Formalism for Complex

Systems”, Science of Computer Programming 8, Elsevier
Science Publishers B.V., 1987.

[31 CCITT, Recommendation Z. 100, “Functional
Specification and Description Language (SDL)”, Blue
Book, 1988.

[4] ISO, International Standard IS0 8807, “Information
Processing Systems - Open Systems Interconnection -
LOTOS - A formal description technique based on the
temporal ordering of observational behaviour”, 1989.

[5] R. Jain, “The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modelling”, John Wiley &
Sons, 1991.

[6] E. Mdntoah, B I Panzor-Steindel, “Paralld ProGmsing at
CERN’, HEPIX Caspur Rome, CERN, October 1996.

[7] D.R. Musser, A. Saini, “STL Tutorial and Reference
Guide: C++ Programming with the Standard Template
Library”, Addison Wesley, 1996.

