
1942 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 4, AUGUST 1998

Use of ,Modem Software Technology in the Redesign of the OPAL Trigger Software

K. Ackerstaffl, A. Khodabandeh', T. Shears2
'CERN, CH1211 Geneva 23, Switzerland

2University of Manchester, Manchester, UK

Abstract

The OPAL experiment at LEP has a central trigger
system which is modular and VME based. An upgrade
of the control software was necessary to increase the
flexibility and maintainability of the system. The software
has been completely re-engineered in a project which lasted
from January until August 1997. The use and benefits
of a customised software development environment as an
instrumentation of the design process, and of the project
infrastructure, are described. The importance of this approach
for the success of the project and its suitability for use in
real-time systems is demonstrated.

I. INTRODUCTION
The LEP particle accelerator at CERN has been in operation

since 1989. With the advent of the LEP2 era in 1996, the
accelerator is continuously being upgraded to gradually reach a
maximum centre-of-mass energy of approximately 200 GeV.

The four experiments, which detect particle collisions at
LEP, must adapt to the changing accelerator conditions. This
has led to substantial increases in background in the OPAL
experiment. The planned increase in both the beam energy and
intensity is expected to degrade background conditions further.

The OPAL trigger system [l] must be able to reject this
background without losing physics events. The original system
contains considerable flexibility in programming the fast
logic used in trigger decisions. However, during the (long)
lifetime of the experiment the trigger control software has had
to adapt to changes in the detector, the trigger hardware and
the accelerator operating modes, which were not foreseen in
the original design. This resulted in a control code which was
excessively complex and difficult to maintain.

The difficulties experienced in adapting the trigger control
software to these unforeseen changes motivated the redesign
of the software. The redesign and implementation was carried
out by a small team from the OPAL experiment in close
collaboration with one member of the CERNECP Information
and Programming Technology (IPT) group. The project started
in January 1997 and finished successfully in August 1997 in
time for OPAL data taking.

The use of modern software methodologies in the high
energy physics environment, especially at CERN, is important
in view of the software demand of the Large Hadron Collider
experimental program. The OPAL trigger redesign project
shows that this is a key factor in the software development
process. The adoption of suitable methodologies ensured the

successful outcome of the project, despite the heterogeneous
and real-time environment and the strict time constraints of a
running experiment.

' 11. THE OPAL TRIGGER
The OPAL trigger system selects events according to

logic implemented in several custom made VME compatible
modules. Programmable combinations of 120 trigger signals
from 32 subdetectors are used to form the trigger decision,
made every 22ps. A positive trigger decision is sent on a
dedicated bus to the subdetector data acquisition systems. After
complete readout the subdetector and trigger data are collected
by the event builder. The complete events are sent through the
filter [2] to data storage. The entire data acquisition system' is
controlled by Runcontrol [3] using finite state machines.

The original software ran on two VME CPUs and controlled
and monitored the trigger hardware and signals. It was written
in real-time Fortran [4], consisted of approximately 60000
lines (1 1000 statements), and was implemented under the OS9
operating system. The main tasks of the trigger software are :

e to load the user defined trigger logic into the hardware;

e to read out the trigger hardware on each event upon a
positive trigger decision;

e to trigger and synchronise subdetector readout;

e to read out monitoring information asynchronously to the
event loop and send the data across the network;

e to handle exceptions generated by hardware and software.

The user interface to the trigger monitoring was a commercial
histogram presenter which ran on a Macintosh I1 [SI connected
via a VME interface card to the trigger crate.

111. THE REDESIGN
A team of six people worked full- or part-time on the

redesign of the trigger software, in a project which lasted from
January until August 1997. The project was led by a physicist
and supervised by the OPAL online coordinators. The redesign
was split into three sub-projects: the core trigger code; the
histogramming presenter; the trigger monitoring software. The
redesign of the core trigger code is used here as an example
to demonstrate the importance of the approach to software
engineering.

'Further details of the OPAL data acquisition system are given
in [3]

0018-9499/98$10.00 0 1998 IEEE

1943

4.
v1

L -
2

A. Motivation
The experience of running the trigger system in 1996 when

LEP2 started motivated the decision to redesign the software
and streamline the hardware. The main motivations were
maintainability and flexibility.

Several hardware upgrades carried out in the past could not
be fitted into the original design of the old code, which resulted
in excessive code complexity. The documentation did not
reflect many of these code changes. Further hardware upgrades
are foreseen during the remaining lifetime of the experiment,
and the manpower required for operations must be reduced.
Maintainability can be improved by moving the non real-time
functionality to a UNIX platform and thus simplifying the
VME hardware. Moving the histogram presentation to the
common UNIX platform also removes dependence on specific
hardware, and reduces the number of operating systems used.

User Requirements

Project Management & Tracking

Quality Assurance

Configuration Management

Documentation

B. Requirements & Constraints
The new system should cover the full functionality of the

old trigger system, and satisfy additional requirements in order
to implement the improvements mentioned above.

The core trigger and the monitoring code have to be
separated. The remaining core trigger code has to run on
a single VME CPU with no loss of performance.

The monitoring code has to be moved outside the real-
time system.

The histogram presenter has to be replaced and run on a
Unix platform.

All software must be documented, and designed to be
maintainable.

The design has to facilitate future hardware changes.

To achieve this an object oriented approach was chosen, using
the C++ programming language.

The redesign of a central software system within a running
experiment imposes several major constraints.

The existing interfaces between the trigger and outside
software systems must be retained, for example
databases. event structures and Runcontrol interfaces.

The new system must run with the old trigger hardware.

To ensure a smooth transition, the new system must
initially be backward compatible to avoid any loss of
data during commissioning.

Finally the new trigger system must be complete and
operational for 1997 data taking, using the manpower
available.

lDelivery)

Implementation

C. The Software Development Process
The first step in the project is the choice of methodologies in

the different activities and phases shown in figure 1. The user
requirement document (URD) and the project management
follow ESA's Software Engineering Standards (PSSOS) [6]
insofar as was appropriate to the project. For design and
implementation the object modelling technique (OMT) [7]
was used, Quality assurance was carried out by peer review
and regular analysis of the code quality according to the
IS09126 [8] standards. The project was reviewed on a weekly
basis in project meetings. The OPAL online and operations
coordinators took part in the review process to ensure that
requirements were met.

D. The Software Development Environment
In order to instrument the software development process a

software development environment (SDE) was set up at the
beginning of the project. Tools for each activity and phase
of the process were selected and customised to the specific
requirements of the project. Documentation is written using
FrameMaker [9] with templates provided by the CERN/IPT
group. These documents are hyperised using WebMaker [101
and linked to the OPAL online web. The source code is
hyperised using LIGHT [1 11. For configuration management
the CVS [121 package is used. All relevant documents, utilities
and source code are managed under the CVS repository, and
changes to the repository are logged automatically on the web.

Code is developed on Unix workstations, whereas
compilation, testing and operation take place on OS9 systems.
For file and directory transfer across these platforms a tool
has been written specifically for the project. The quality of
the code has been analysed along IS09126 quality standards
using Logiscope [13], which has been integrated to work
with the GNU-make [14] program. Thus GNU-make allows
compilation and linking on OS9 systems and automated quality
analysis on Unix platforms using the same utility.

As an instrumentation of OMT, Rose [15] is used to
produce the C++ class and inheritance as well as message trace

1944

and state diagrams. The ATLAS coding conventions [161 were
customised for the project, SNiFF+ [17] is used as the code
development environment.

The knowledge and experience of the software engineer
from the IPT group has been essential in setting up the SDE
and choosing appropriate methodologies and tools. The
project team benefited from this in terms of learning and
applying the methodologies and tools. The setup of the
SDE and the integration of the tools described above took
approximately a month at the start of the project. Analysis,
design and implementation took altogether three months, and
the integration and testing phase two months. This time could
only partly be used due to the constraints of the commissioning
of the OPAL experiment and the LEP schedule, when the
OPAL data acquisition system was often unavailable for testing
the trigger.

E. Experience with the Software Development
Environment

A detailed documentation of the project infrastructure
includes a description of all technical actions in the software
development process. This allowed all members of the project
team to rapidly learn standard actions and adapt to the SDE.
Therefore all tools could be used from the outset of the project.

A substantial amount of information on the details of the
trigger system, for example exception handling and interfaces,
had to be retrieved from the old trigger code. SNiFF+ has
been used to analyse the old software, and FrameMaker used
to document the software and hardware, which facilitated
the re-engineering process. A detailed quality analysis using
Logiscope helped determine the critical parts of the trigger
software. SNIFF+ also allows simultaneous navigation through
both the old and new software during the analysis phase.

The OMT design enables fast and efficient coding.
The models produced with Rose can be tested against the
functionality of the old code. Hence the implementation of
the models is separated from design and can be carried out
by any member of the project team. Furthermore, inheritance
allows partial testing. For example, the trigger hardware is
reflected in hardware classes inherited from a VME module
base class. This base class hides all VME specific memory
access and error handling. This class allows either direct access
to hardware registers, or else the registers are simulated in local
memory if desired. This allows the software to be run on a
test setup with only a subset of the hardware modules present.
Hardware which cannot be accessed is automatically simulated
in software.

The members of the project team were able to work
simultaneously on the code using CVS. Following the
coding conventions results in a uniform code structure which
facilitates peer review and collaborative coding. The majority
of version conflicts are resolved by the CVS merging feature.
Version tracking and logging are important also during the
implementation phase.

I;: Product Assessment

Figure 2 shows the overall quality of the new code against
time compared to the old code. The percentage of code rated
as fair or poor according to the IS09126 standards is below
2%, compared to above 30% for the old code. The improved
code quality is maintained throughout the implementation and
integration phases. The new code contains approximately 6000
statements, as opposed to about 11000 statements in the old
code. This is due to the increased reusability of the object
oriented code and the removal of the monitoring to outside the
core code.

The improved quality is reflected in the performance of the
new code. It has been operational since the beginning of August

"7 O l d p d e NewCo.de ,
Good "t +

'I.. .. ,,,, ~ . . I Excellent , .->._. .. .__

~ Fair& Poor
0 A

Dec 96 ~lmpIementation---(CIntegration-----I' Sep $7

Fig. 2: IS09126 quality of the old and new code. The percentage of
the code in three quality categories is shown. The values for the new
code are shown over the duration of the project.

1997, and satisfies all requirements. Unlike the old system no
expert intervention has been required during data taking.

The control cycle and exception handler synchronisation is
carried out by OS9 signals rather than by introducing artificial
delays, as was the case beforehand. As a consequence the
software is much more stable. A recent hardware upgrade and
associated software changes were completed in one afternoon
rather than several weeks needed for the previous upgrade. This
is due to the built in flexibility inherent in the design. Moving
the monitoring software outside the real-time system protects
the core control code from frequent intrusion. Monitoring tasks
are automated and data driven from configuration files, thus
allowing changes by the user without modifying the code. Due
to this and the full documentation maintainability is improved.

IV. CONCLUSIONS

The OPAL trigger software has been redesigned. The
project was completed on schedule and met all requirements,
despite the constraints imposed by the timelines and existing
interfaces of a running experiment. The successful outcome is
a direct consequence of using modern software engineering
methodologies.

http://NewCo.de

1945

V. ACKNOWLEDGEMENTS
The successful completion of the project would not have

been possible without the active support of the OPAL online
coordinators, Per Scharff-Hansen and Frans Meijers, the OPAL
trigger coordinator Graham Wilson, and the CERNECP
IPT group. In addition we wish to thank Denice Deatrich
for writing the new histogram display, and Frans Meijers
and Christoph Schwick for their contribution to the trigger
monitoring. We gratefully acknowledge the financial support
of the Particle Physics and Astronomy Research Council, U.K.

VI. REFERENCES
M.Arignon et al. “The trigger system of the OPAL
experiment at LEP,” Nucl. Instl: andMeth. A313 (1992) pp.

D.G.Charlton et al. “The on-line event filter of the OPAL
experiment at LEP,” Nucl. Instl: and Meth. A325 (1993) pp.

J.T.M.Baines et al. “The data acquisition system of the
OPAL detector at LEP,” Nucl. Instr and Meth. A325 (1993)

“RTF; Real-Time Fortran-77 for 68K Processors”, H. von
der Schmitt, available from the OPAL Secretariat, CERN,
121 1 Geneva, Switzerland.
Macintosh I1 and AppleTalk are trademarks of Apple
Computer Inc., Cupertino, CA 9501 4, California, USA.
“Software Engineering Guides”, C.Mazza et al. Prentice
Hall, London 1996.
“Object Oriented Modelling and Design”, J. Rumbaugh et
al., Prentice Hall 1991.
ISOAEC 9 126, “Information technology - Software product
evaluation - Quality characteristics and guidelines for
their use,” International Organization for Standardization
and International Electrotechnical Commission, December
1991.
FrameMaker, available from Adobe Systems, Adobe
House, West One Business Park, 5 Mid New Cultins,
Edinburgh EHI 1 4DU, Scotland, United Kingdom.

103- 125.

129- 141.

pp. 271-293.

[IO] WebMaker, available from Harlequin Limited, Barrington
Hall, Barrington, Cambridge (GB), CB2 5RG.

[1 I] LIGHT, available from CERN/ECP/IT,
http://www. cern. chLLIGHT/.

[12] “Version management with CVS, CVS 1.9”, Per
Cederqvist et al., available from Signum Support SA, Box
2044, S-580 02 Linkoping, Sweden.

1131 Logiscope, available from Verilog SA, 150 rue Nicolas
Vauquelin, P.O. Box 1310, F-31106 Toulouse Cedex,
France.

[141 “GNU make, A program for directing recompilation,
edition 0.5 for V. 3.75 Beta” R. M. Stallmann and
R. McGrath, Free Software Foundation 1996.

[151 Rose, available from Rational Sol tware Corporation,
Immeuble de la gare, 1,place Charles de Gaulle, f-78180
Montigny le Bretonneux, France.

[16] “C++ coding standards for ATLAS”, S. M. Fisher
and L. Tuura, CERN Atlas Software Note 29 (1996).

http://atlasinfo. cern. cWAtlas/documentation/notes/
SOFTWARE/note29/cxx- rules. html

Haringer-Strasse 8, A-5020 Salzburg, Austria.
[171 SNiFF+, available from TakeFive Software GmbH, Jakob-

http://www
http://atlasinfo

