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1 Introduction: What is the problem?

Weyl spinors (Ws) are used in very powerful algorithms to calculate multiple-particle
and in particular multiple-photon spin amplitudes [1,2]. In Ws calculations the complete
control of the spin-dependent complex phase, i.e. of spin quantization frames, is usually
neglected. This is not a problem, when one is interested in cross sections for stable
particles, but it becomes a crucial limitation if one needs to combine them with the spin
amplitudes for the decay of an almost stable (narrow resonance) fermion.

The complete spin amplitude for production and decay is given by the formula:

M =
∑

λ=±1/2

Mprod.
λ Mdecay

λ , (1)

where λ is the projection of the intrinsic spin on the z-axis in a certain fermion rest frame
(see discussion in the appendix of ref. [3], and also ref. [4]). Let us call this particular
fermion rest frame the spin quantization reference frame, SQRF. When, in the above
formula, both production and decay spin amplitudes are obtained from Feynman rules in
the same calculation, with the same intermediate fermion states u(p, λ), the situation is
simple – we even do not need to know very precisely the SQRFs. The above is not true
in the many important practical cases such as the production of the τ lepton, t-quark
and hypothetical supersymmetric particles. The reason is the following: the fermion may
have many decay modes, with complicated multiparticle final states, and complicated
half-phenomenological decay matrix elements, calculated and implemented separately.
For instance in the case of τ decay, the TAUOLA Monte Carlo [5] represents by itself
an independent computational project. In fact every one out of more than twenty decay
modes of the τ represents an independent project both from the computational and from
the theoretical perspective.

For these practical reasons, combining production and decay at the density matrix
level, even if it seems at first more complicated, is worth an effort, because formula (1)
would lead to independent sets of spin amplitudes for distinct combinations of decay
modes of unstable final-state fermions. The density matrix formalism allows for clean
modularity in the calculations and in the architecture of the corresponding Monte Carlo
event generators.

The price one has to pay (for spin effects not to be destroyed) is that the complete
combined density matrix for all final-state unstable particles must be provided by the pro-
duction program with the careful definition of the corresponding SQRFs. That requires,
in particular, full control of the relative phases of all production spin amplitudes.

In our paper we shall rely on massless and massive Weyl spinors defined in two papers
of Kleiss and Stirling (KS) [6, 7]. An analogous set of massless spinors is also defined
in Ref. [8]. By supplementing these techniques with rules for complete control of spin
quantization axes (complex phases) we turn them into a powerful tool for calculations of
unstable half-spin fermions, useful for a Monte Carlo simulation of production and decay.
The aim of the present work is to adapt the spin amplitude techniques to the framework
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established in the works [9,10,5], see also [11,12]. We shall use it in the forthcoming work
on exclusive coherent exponentiation [13].

Let us start with the fundamental question of defining properly the spin quantization
axes (and complex phases) for half-spin Weyl spinors. We present details of the lowest-
order τ -pair production process

e−(p1, λ1) + e+(p2, λ2) → τ−(q1, µ1) + τ+(q2, µ2) (2)

with spin amplitudes Mprod
λ1λ2µ1µ2

where µ1, µ2 = ±1 denote twice the spin z-projection of
the corresponding τ lepton in its rest frame, and λi are analogous spin indices of e±. To be
clear, we will not necessarily always restrict ourselves to λi and µi being the conventional
Jacob-Wick helicities [14].

The full differential cross section for the combined τ -pair production and decay reads
as follows

dσ = dσprod(q1, q2) dΓdecay
1 (τ− → X1)Γ

decay
1 dΓdecay

2 (τ+ → X2)Γ
decay
2

(
3∑

a,b=0

εa
1ε

b
2Rabcd hc

1h
d
2

)
(3)

where dσprod is the unpolarized differential cross section for the production process only,
and dΓdecay

i are unpolarized differential partial widths for decays of the τ±. The polarime-
ter vectors ha

i are related to the τ decay matrix element (see eq. (2.18) of ref. [15] for its
precise definition)1, and εi are conventional spin polarization vectors of e± parametrizing
their spin density matrices ρλ,λ̄ = (1 + ~σ · ~ε)λ,λ̄/2.

All spin effects are embodied in the last term, which includes the full spin density
matrix related to the production spin amplitudes as follows:

Rabcd = N−1
∑

λi,µi,λ̄i,µ̄i

Mλ1λ2µ1µ2(Mλ̄1λ̄2µ̄1µ̄2
)?σa

λ1λ̄1
σb

λ2λ̄2
σc

µ̄1µ1
σd

µ̄2µ2
,

N =
∑
λi,µi

|Mλ1λ2µ1µ2 |2, a, b, c, d = 0, 1, 2, 3,
(4)

where σk for k = 1, 2, 3 are Pauli matrices and σ0
λ,µ = δλ,µ is just the unit matrix.

The translation in eq. (4) from spin amplitudes to Rabcd, and the analogous translation
from decay spin amplitudes to the vectors hc and hd, occurs in the SQRF of τ− for indices
c, µ1, µ̄1 and in the SQRF of τ+ for indices d, µ2, µ̄2. Let us stress again that this
translation occurs not in some arbitrary τ± rest frame but in precisely the same SQRF
of τ±, where µi was originally defined as a spin projection on the z-axis! Not only the
z-axis has to be known, but also the x- and y-axes2. Being in the SQRF makes it also

1The vectors ha
i depend, in general, on momenta of all τ decay products.

2The change of SQRF by a rotation around the spin quantization z-axis by an angle φ introduces
the factor exp((iφ/2)µ1) (rotation in spinor representation) in the spin amplitudes and consequently an
R3(φ) rotation in normal space (i.e. adjoint to spinor representation) acting on the index c in Rabcd.
N.B. a simplest example of Wick rotation is actually R3(φ).
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legitimate to use Pauli matrices for the translation of spin indices into vector indices in
eq. (4) 3.

In the practical calculations that implement the above methodology, see KORALB
[10] and KORALZ [16], a special subprogram TraLor is available, which implements the
Lorentz transformation from the SQRF4 of each τ± down to the laboratory system. It
is used to transform the momenta of all τ± decay products into the laboratory frame.
This arrangement fully guarantees that all spin effects, including spin correlations, are
properly reproduced in the Monte Carlo event generation.

Having convinced the reader that the knowledge and the proper use of the SQRF for
each fermion is very important, let us look into how it is defined. The obvious choice is to
employ the standard definition of spin states by Jacob and Wick (JW) [14], the so-called
helicity states. In ref. [9] spinors of outgoing τ± (and also of e± beams) were defined using
a variant of the JW prescription5. In the JW method, states with definite spin projection
on the z-axis (helicity states) are defined by construction in the SQRF; the full Lorentz
transformation down to the laboratory frame is used as an inherent construction element
in the definition of the spin state. In KORALB [9,10] the JW spin quantization principle
was also successfully used to define spin states of e± and τ± in the presence of one photon.

On the other hand, looking at the calculations of refs. [9, 10] it is quite clear that the
JW method is well suited to lowest order e−e+ → τ−τ+, but that it is rather complicated
to deal with already in the case e−e+ → τ−τ+γ since the orientation of SQRF systems
depends on the photon direction even in the soft-photon limit. One definitely needs a
better method to go beyond the single-photon case. The natural candidates are methods
based on the Weyl spinors, which have provend to be very successful for the evaluation
of multiple photon emission spin amplitudes for massless and massive spinors. Generally
Weyl spinors (Ws) have their own internal definition of the SQRF, substantially different
from that in the Jacob-Wick method. For example in the KS technique [6, 7] the spin
quantization axis in the rest frame of the massive fermion is related to some auxiliary
light-like vector k0 involved in the definition of the massive spinor. The typical defini-
tion of the spinor in the KS method involves a single “brutal” transformation from the
reference fermion state into the state of definite mass, spin and momentum rather than
the explicit “soft” rotation/boost method of the JW method. The problem is that in the
transformation method of the Ws/KS techniques the phase, and therefore the position of
the x- and y-axes, is lost or undefined. This is not a great problem for most of the practical
applications of the Ws/KS techniques, such as the calculation of multiple photon emis-
sion spin amplitudes, which are usually done with the “modulo phase factor” approach
anyway. This feature of Ws/KS methods inhibits, however, the use of this method for

3Pauli matrices play here the role of Clebsch-Gordan coefficients to combine two half-spin representa-
tions of the rotation group (two indices in the spin density matrix) into spin 0 and 1 angular momentum
objects, see eq. (A.10) in ref. [15].

4The TraLor subprogram actually provides explicit definition of the SQRF frame.
5The JW [14] recipe was modified in ref. [9], and in fact this choice is closer to that in ref. [3]. For

final fermions the y-axis was placed in the reaction plane, while in the JW prescription it is related by
direct rotation (around the axis perpendicular to the reaction plane) to the laboratory y-axis.
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unstable fermions. The aim of this paper is to show how to restore the knowledge of the
complex phase and the SQRF for the KS massive spinors of refs. [6, 7].

In the following we shall repeat many definitions of refs. [6, 7] in detail. This is made
necessary by the fact the central question is the control of the spinor phases, and even
knowledge that this phase is zero (in certain cases) forms an important new result! Our
final answer for the problem of control of Weyl spinor phases and all three axes of the
SQRF is very simple – the reader should not be misled by its apparent simplicity, it is an
important and new supplement of the existing Ws/KS methods.

2 Basics of the Weyl technique

For Dirac spinors, wherever an explicit representation is needed, we employ the Weyl
representation of gamma matrices

γ0 =

[
0 I
I 0

]
, γk =

[
0 −σk

σk 0

]
, γ5 =

[
I 0
0 −I

]
. (5)

In the Weyl representation, spinors transform under rotations around the k-th axis and
boosts along the j-th axis as follows [17]:

S(Rk(φ)) = exp

(
−i2 φ

[
σk 0
0 σk

])
, S(Bj(χ)) = exp

(
12 χ

[
σj 0
0 −σj

])
. (6)

We define eigenstates with definite massless four-momentum p2 = 0 and chirality λ = ±1

6puλ(p) = 0, ωλuλ(p) = uλ(p), ωλ ≡ 12(1 + λγ5), (7)

with the normalization condition uλ(p)ūλ(p) = ωλ 6p. The four basic massless spinors are
defined in a certain primary reference frame (PRF), as follows:

u+(ζ↑) =


√

2
0
0
0

 , u+(ζ↓) =


0√
2

0
0

 , u−(ζ↑) =


0
0
0

−√2

 , u−(ζ↓) =


0
0√
2

0

 , (8)

and they correspond to particles flying along the z-axis: ζ↑ = (1, 0, 0, 1) and ζ↓ =
(1, 0, 0,−1). It is important to remember that the relative phases in the above set of
basic vectors are constrained uniquely by the following relations

u±(ζ↓) = S(R2(π))u±(ζ↑), u+(ζ↑) = −6ηu−(ζ↑), u+(ζ↓) = 6ηu−(ζ↓), (9)

where6 η = êx = (0, 1, 0, 0), η2 = −1, η · ζ↑ = 0 and η · ζ↓ = 0.

6Our ζ↓ corresponds to the vector called k0 in ref. [6] and η is denoted there by k1.
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3 Massless spinors

The arbitrary massless spinor of momentum p and chirality λ is generated according to
the KS method [6], out of the two constant basic spinors of opposite chirality (two out of
four in eq. (8))

uλ(p) = 1
√

2p · ζ 6pu−λ(ζ), ζ ≡ ζ↓. (10)

Written explicitly, see also ref. [8], it looks as follows:

u+(p) =


√

p+√
p−eiφ

0
0

 , u−(p) =


0
0

−√p−e−iφ√
p+

 , p± ≡ p0 ± p3, p1 + ip2 ≡ pT eiφ. (11)

The above expressions lead directly to an explicit expression for the inner product of the
two massless spinors

s+(p1, p2) ≡ ū+(p1)u−(p2) =
√

p−1 p+
2 e−iφ1 −

√
p+

1 p−2 e−iφ2,

s−(p1, p2) ≡ ū−(p1)u+(p2) = −(s+(p1, p2))
∗.

(12)

It is understood that the above formula is evaluated using four-momenta in the PRF, see
eq. (8). The same formula can be obtained using the original KS expression7:

s+(p, q) = 2 1
√

2pζ 1
√

2qζ [(pζ)(qη)− (pη)(qζ)− iεµνρσζµηνpρqσ] , (13)

which is applicable in any reference frame, not only in the PRF.

4 Massive spinors

Spinors for the massive particle with four momentum p (with p2 = m2) can also be defined
using a construction similar to that in the massless case:

u(p, λ) = 1
√

2p · ζ ( 6p + m) u−λ(ζ), v(p, λ) = 1
√

2p · ζ ( 6p−m) uλ(ζ). (14)

As we see, in order to obtain the v-spinor for the antiparticle we have to substitute
m → −m and λ → −λ, and this is a general rule in the following. Apart from the Dirac
equation (6p−m)u(p, λ) = 0 and ( 6p + m)v(p, λ) = 0 the above spinors obey the following
normalization and completeness relations:

u(p, λ) ū(p, λ) = 12(1 + λγ5 6s) ( 6p + m), v(p, λ) v̄(p, λ) = 12(1 + λγ5 6s) ( 6p−m), (15)

7The analogous expression in eq. (3.9) of ref. [6] misses factor 2. For the Levi-Civita tensor we take
ε0123 = 1.
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where

s = pm− ζ mp · ζ, s2 ≡ −1, (16)

is the spin quantization vector; in the fermion rest frame, it points opposite to ζ , i.e.
~s ∼ −~ζ , or in other words the spin quantization axis for every fermion is guided by the
single and common massless vector ζ .

The definition of eq. (14) can be rewritten explicitly in terms of massless spinors as
follows

u(p, λ) = uλ(pζ) + m
√

2pζu−λ(ζ), v(p, λ) = u−λ(pζ)−m
√

2pζuλ(ζ), (17)

where

pζ = p− ζ m22p · ζ, p2
ζ = 0 (18)

is the light-cone projection of p obtained with the help of the auxiliary vector ζ . Equa-
tion (17) immediately provides us also with the explicit inner product for the massive
spinors:

ū(p1, λ1)u(p2, λ2) = S(p1, m1, λ1, p2, m2, λ2)

ū(p1, λ1)v(p2, λ2) = S(p1, m1, λ1, p2,−m2,−λ2)

v̄(p1, λ1)u(p2, λ2) = S(p1,−m1,−λ1, p2, m2, λ2)

v̄(p1, λ1)v(p2, λ2) = S(p1,−m1,−λ1, p2,−m2,−λ2)

(19)

where

S(p1, m1, λ1, p2, m2, λ2) = δλ1,−λ2sλ1(p1ζ, p2ζ) + δλ1,λ2

(
m1

√
2ζp22ζp1 + m2

√
2ζp12ζp2

)
.

(20)

For the sake of the subsequent discussion, let us also write the explicit basic massive
spinors in the particular case when the fermion rest frame coincides with the PRF (in
which ζ = (1, 0, 0,−1)):

u(p, +) =


1
0
1
0

 , u(p,−) =


0
1
0
1

 , v(p, +) =


0
−1
0
1

 , v(p,−) =


1
0
−1
0

 . (21)

We have omitted the trivial normalization factor
√

m. The convention for relative phases
is inherited from the underlying massless spinors (9). In particular the important phase
relations

S(R2(π))u(p, +) = u(p,−), S(R2(π))v(p, +) = v(p,−). (22)

6



For ultrarelativistic p0 → ∞, or for an almost massless fermion m → 0, the differ-
ence between p and pζ is negligible and the massive spinor becomes identical with the
corresponding massless spinor:

lim
m→0

u(p, λ) = lim
m→0

v(p,−λ) = uλ(pζ),

lim
mi→0

S(p1, m1, λ1, p2, m2, λ2) = δλ1,−λ2sλ1(p1ζ , p2ζ)
(23)

The validity of the above limits is restricted by the condition p · ζ � m, i.e. they fail
in the special case of p parallel to ζ and such cases have to be treated one by one, with
special care. In such a case, in eq. (17), the second term, proportional to mass, survives
and dominates. The same phenomenon occurs in the inner product of eq. (20). Thus, we
have to remember that the naive procedure of taking the massless fermion limit by means
of straightforward omission of all terms proportional to mass can be dangerous and the
limiting procedure has to be done very carefully8.

5 Again the central question and the GPS answer

We now come to the central question of interpreting the massive fermion spinors of
eq. (14), the spin vector of eq. (16), and finding out what the SQRF for these spinors
is. The states u(p,±) and v(p,±) represent pure quantum mechanical states, which we
intend to use in the Feynman rules to calculate scattering matrix elements. As we see
for instance from eq. (16), u(p, +) and u(p,−) have spin projections +1/2 and −1/2 on
the vector ~s in the fermion rest frame. Thus the vector ~s, which is guided by ζ , deter-
mines the z-axis of the SQRF. This is the easy part of determining the SQRF. The more
difficult question is: Where are the x- and y-axes of the SQRF corresponding to u(p, +)
and u(p,−) defined in eq. (14)? Is this question meaningful at all? Yes, it is meaningful
because a rotation R3(φ) around the z-axis introduces a λ-dependent phase in u′(p, λ). In
fact one possible method of finding the x- and y-axes of the SQRF is to inspect u(p,±) in
the rest frame of the fermion and to adjust φ such that the relative phase of u′(p, +) and
u′(p,−) is zero, i.e. such that the relation S(R2(π))u′(p, +) = u′(p,−) holds. This rule is,
however, not very practical – we would like to have at our disposal more practical, easy
to apply, rules, which determine the position of the same x- and y-axes of the SQRF for
both (λ = ±) spinors defined in eq. (14).

The rules for determining all three spin quantization axes for u(p,±) and v(p,±) of
eq. (14) are the following:

• In the rest frame of the fermion, take the z-axis along −~ζ.

• Place the x-axis in the plane defined by the z-axis from the previous point and the
vector ~η, in the same half-plane as ~η.

• With the y-axis, complete the right-handed system of coordinates.

8On the other hand, keeping mass terms does not necessarily mean correct results in numerical cal-
culations, because of machine rounding errors.
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We call the above rules the Global Positioning of Spin scheme or in short the GPS rules,
and we shall call the GPS frame the SQRF determined by the GPS rules. We give here
the formal proofs of the above rules.

Proof: Since all massive spinors are defined in terms of two basic massless spinors
u+(ζ↓) and u−(ζ↓), it is sufficient to consider underlying massless spinors and to prove
that after transforming them from the PRF to the GPS frame they look the same as in
eq. (8), up to a common phase factor. In other words the two basic massless spinors
u+(ζ↓) and u−(ζ↓) get regenerated in the GPS frame. Without actually doing explicitly
the transformation from the PRF to the GPS frame we know that because of the Dirac
equation, chirality deefinition (see eq. (7) ), and because ζ ≡ ζ↓ = const (1, 0, 0,−1) the
resulting spinors have to look as follows

u+(ζ↓) =


0
c2

0
0

 , u−(ζ↓) =


0
0
c3

0

 , (24)

where c2 and c3 are unknown complex constants. We shall now exploit two facts: (a) in
the local GPS frame, ~η lies in z-x plane (with positive x-component) and (b) the four-
vector η obeys η · ζ↓ = 0 and η2 = −1. The above implies that η = (−a, 1, 0, a), where a
is a real constant, and therefore

6η =


0 0 0 1
0 0 1 −2a
−2a −1 0 0
−1 0 0 0

 . (25)

The above completes the proof because we may exploit the relation

u+(ζ↓) = 6η u−(ζ↓) =


0
c3

0
0

 , (26)

see eq. (9), finding out that c3 = c2, and therefore we do really get back the same looking
basic spinors in the GPS frame as in the original PRF, up to a spin-independent phase
factor c = c3 = c2 = r exp(iφ). In fact one may advance even one step further and prove
that the actual overall phase φ is exactly zero. We sketch a formal proof of this conjecture
in the following.

Proof: Let us observe that the spinor transformations S(B1), S(B3) and S(R2), i.e.
transformations induced by boosts in the x-z plane, and the rotation around the y-axis
are purely real, while the S(R3) induced by the rotation around the z-axis is complex and
diagonal, see eqs. (6). We shall now analyse the complete string of the Lorentz trans-
formations connecting the PRF and the GPS frames of a given fermion with momentum
p. The first rotation R3(φp) puts ~p in the x-z plane and introduces the following phases:
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uλ(ζ↓) → exp(iφp/2λ)uλ(ζ↓). Next, the rotation R2 and boost B3 and again the rotation
R2 transform us to the frame where p = (m, 0, 0, 0) and ζ↓ = (1, 0, 0,−1). Since the
corresponding transformations of spinors are real, we know that the resulting final uλ(ζ↓)
preserves its complex phase! We are not yet in the GPS frame – the last transformation
needed is the rotation R3(φ

′) which brings ~η into the x-z plane. The resulting net phase
is exp((i/2)(φp + φ′)λ). Since we already know from the former proof of the GPS rules
that there is no λ dependence in the total phase, the only possible solution is that the
total change of the spinor phases is zero, φp + φ′ = 0, modulo 4nπ for some integer n, so
that exp((i/2)(φp + φ′)λ) = 1 as desired. (It is also possible to give the argument, based
on geometry, that φp = −φ′.) We have also checked numerically, using spinor transforma-
tions of eq. (6), that the series of the above Lorentz transformation really regenerates the
basic spinors u±(ζ) in the GPS frame. For massive spinors, we have checked numerically
that the massive spinors defined in eq. (17) in the laboratory frame, when transformed
properly to the GPS frame, become identical to those of eq. (21)!

Summarizing: the important property of the GPS rules is that the basic spinors defined
in eq. (14), when transformed to the GPS rest frame of the fermion, obtain the same form
(are regenerated), up to a real spin-independent, normalization constant, as the original
ones, defined in eq. (21). The Lorentz transformation from any Lorentz frame, for instance
from the laboratory reference system, to the SQRF/GPS frame of every massive fermion
is therefore uniquely defined. Thanks to the GPS rules, we are finally in a situation as
comfortable as in the Jacob-Wick method. The difference is however clear: in the JW
method, the transformation from the laboratory frame to the SQRF is the essence and
the starting point of the method – it is tied up to the fermion four-momentum in the
laboratory system, and the axes of that frame. In the GPS method the SQRF/GPS
frame and the Lorentz transformation from the laboratory to the SQRF/GPS frame are
deduced with the help of the “backward engineering” procedure guided by the auxiliary
vectors ζ and η (common to all fermions), without any direct reference to the laboratory
system.

6 GPS at work, τ-pair spin correlations

In the following we shall show how to apply the GPS rules in order to find out the Wick
rotation [3] responsible for change of spin quantization axes between the JW and KS
conventions for fermion spinors, for the spin amplitudes of the e−e+ → τ−τ+ process.

Let us use the variant of JW helicity states defined in ref. [3] and refer to it as JW2.

The JW2 spin states are defined (quantized) in the τ− rest frame with axes: ẑ = −τ̂+

and ŷ = τ̂+ × ê−/|τ̂+ × ê−|, and in the τ+ rest frame with axes: ẑ = −τ̂− and ŷ =

−τ̂− × ê+/|τ̂− × ê+|. We denote as f̂ the unit three-vector parallel to the momentum of
a fermion f . The other (third) axis is always picked in such a way that the right-handed
reference frame (x̂, ŷ, ẑ) is formed. With the above choice of quantization axes the double
spin density matrix of the τ pair (see formula (2.6) of ref. [9], used also in the KORALB
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Figure 1: Numerical illustration of Wick rotation for one τ -pair production event at
√

s =4 GeV,
mτ = 1.777 GeV, cos θ = −0.884680271149. In the upper part we print the complex spin amplitudes
Mprod

λ1λ2µ1µ2
, with the numbering style {λ1λ2µ1µ2} shown explicitly. Then, we show the R00cd, c, d =

0...4, correlation matrix (imaginary part equal zero) as calculated in the GPS frame, using eqs. (4)
and (28), and after a (double) Wick rotation to JW2 τ rest frames. On the other hand, the result
marked “analytical” is obtained from eq. (27), also in the JW2 frames. The difference of the two
results in the JW2 frame is shown to be precisely zero.

Monte Carlo [10]) takes the form:

{RJW2
00cd } = N


1 + c2 + M2s2 0 0 0

0 (1 + M2)s2 0 2Mcs
0 0 (1−M2)s2 0
0 −2Mcs 0 −1 − c2 + M2s2

 , (27)

where c = cos θ, s = sin θ, θ is the scattering angle between e− and τ−, M = 2mτ/s
1/2

and N = 1/(1+ c2 +M2s2). In order to simplify the discussion we include only s-channel
photon exchange (the parity-violating Z exchange is neglected). We also neglected the
electron mass. To be more precise, in ref. [9] the spin quantization axes of τ± are slightly
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different from JW2; let us call them the KB choice. The KB spin states are defined
(quantized) in the τ− rest frame with axes ẑ = τ̂+ and x̂ = τ̂+ × ê−/|τ̂+ × ê−| and in

the τ+ rest frame with axes ẑ = −τ̂− and x̂ = τ̂− × ê+/|τ̂− × ê+|. The transition from
KB to JW2 costs additional trivial Wick rotation R3(π/2) for τ+ and R2(π)R3(π/2) for
τ−. (These rotations are merely permutations and reflection of axes.) This is what was
actually done in order to get (analytically) our eq. (27) from eq. (2.6) of ref. [9].

On the other hand, we calculate spin amplitudes for the same process with the basic
KS spinors of eq. (17). Using the Chisholm identity (treating electron spinors as massless)
and the inner product of eq. (20), we obtain the following result:

Mprod,GPS
λ1λ2µ1µ2

= C δλ1,−λ2

[
ū(q1, µ1)u(p1, λ1) v̄(p2, λ2)v(q2, µ2)

+ū(q1, µ1)v(p2,−λ2) ū(p1,−λ1)v(q2, µ2)
]

= C δλ1,−λ2

[
S(q1, mτ , µ1, p1, 0, λ1) S(p2, 0,−λ2, q2,−mτ ,−µ2)

+S(q1, mτ , µ1, p2, 0, λ2) S(p1, 0,−λ1, q2,−mτ ,−µ2)
]
,

(28)

where C is an overall normalization constant, unimportant for our discussion. As com-
pared to the previous result, we lack insight into the analytical structure of the above
formula; it is simply meant to be evaluated numerically. We are also unable to show ana-
lytical expressions for RGPS

00cd – the translation from Mprod,GPS
λ1λ2µ1µ2

to RGPS
abcd using eq. (4) has to

be done numerically. In view of the nice simplicity of the JW/KB helicity amplitudes (see
eg. eq. (2.3) of ref. [9]), one may wonder why bother about all the complications of the
KS/GPS scheme. The answer is well known: the KS spinors (now with GPS supplement)
will be very powerful and useful once we consider multiple photon emission from fermions.
In this case, the Jacob-Wick helicities are no longer so simple and useful, as they were
really invented for the Born amplitudes.

The following exercise would demonstrate that our GPS rules really work: If we cal-
culate RGPS

00cd numerically and if we really know precisely (from the GPS rules) in which
τ± reference frames RGPS

00cd is defined, then we should be able by the appropriate two non-
trivial Wick rotations to get exactly the very simple RJW2

00cd of eq. (27). The two Wick
rotations are in this case just ordinary rotations in two τ rest frames, corresponding to
transformations from the GPS to the JW2 rest frames. In the following, see fig. 1, we
show the numerical results, demonstrating precisely the above operation done numerically.
Indeed, we see that due to the appropriate Wick rotations the R-matrices become identi-
cal. This demonstrates clearly that in fact our GPS supplement to the KS spinor method
works in the practical application. The above exercise is just a small warm-up before the
forthcoming paper [13], in which we apply the GPS rules to a full-scale calculation with
multiple photon emissions (with exponentiation) and with decaying fermions.

7 Conclusions

In the present paper we have established a method to control the complex phase and
spin quantization reference frame for the Weyl spinor technique (Kleiss-Stirling type) for
massive and massless spinors. The method applies to multiphoton emission. The present
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work opens the way to extending the work of refs. [9,10,5] (where the spin effects, photon
emission and Monte Carlo event generation were successfully combined for the first time)
to the case of the multiple photon emission. This will be elaborated in a forthcoming
publication [13].
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