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We derive the exact specification that a two-stage betatronic collimation insertion must satisfy
to cut the halo of a proton beam down to its ultimate limit which is the aperture of the secondary
collimators. Our result is a set of correlated phase advances between primary and secondary colli-
mators. We then determine the number of jaws needed to reach a given level of performance. We
also specify the optic of a momentum collimation insertion.

I. INTRODUCTION

In superconducting proton colliders of both high energy and high beam current the control of beam losses is
mandatory. Local power deposition associated to beam losses can be larger than the quench level of superconducting
magnets by several orders of magnitude [1]. In addition the large size of the rings at high energy imply to keep the
transverse size of the magnets small for obvious cost reasons. Therefore the geometrical aperture delimited by the
vacuum chamber must be kept to its bare minimum. Beam losses are mostly related to beam dynamics. Not far
above the dynamic aperture the transverse motion of the particles becomes chaotic and can form a halo diffusing
towards the geometrical aperture. The transverse extension of the halo is limited by absorbing these protons in
collimators which are made of metallic blocks, which are called jaws below. The jaws inserted close to the beam
are called primary collimators and define the primary aperture which is normally chosen to be larger or equal to
the dynamic aperture in order not to intercept stable particles. At all energies the absorbtion of protons in primary
jaws is substantially distant from unity [1]. Protons which are not absorbed can be scattered elastically off the jaw
thus forming a secondary halo which can also induce quenches. Secondary jaws are therefore necessary to limit the
extension of the secondary halo to a value smaller than the geometrical aperture or, otherwise said, to allow for the
choice of a small but safe geometrical aperture.

The geometrical size of the secondary halo, normalised to the aperture of the collimators, depends on the number
of jaws, on their relative locations and on the optic of the insertion where they are installed.

An exact treatment of a two-stage collimation system considered as an optical device, i.e disregarding true scattering
in collimator jaws, exist for the one-dimensional case (1D) and in the special two-dimensional case (2D) of an optic
with equal phase advance in the two transverse dimensions [2]. The problem of a 2D-system with an arbitrary optic
was solved with numerical methods in conjunction with the approximate concept of phase modulation with some
success [2] [3], but without cutting the amplitude of the secondary halo down to the ultimate limit of the aperture
of the secondary collimators. Existing collimation systems in high energy proton machines are, or were, all made of
two-1D systems (see the caption of Figure III). No calculated or measured performance exist. The sole documented
case is the HERA collimation system [4]. In all these studies, taking apart the 1D-case, the best arrangment of jaws
was found for a predefined optic. The solutions found are therefore some kind of local mimina, in the hypothetical
space of all possible optics.

In this paper we do not consider a particular optic. We rather derive the optical constraints between a primary
jaw and its associated secondary ones which minimise the size of the secondary halo issued from the primary jaw.
The constraints are expressed by correlated betatronic phase advances between primary and secondary jaws. The
end result is an exact specification that an optic must satisfy to provide an optimum collimation system for a given
number of jaws.

II. DEFINITION AND NOTATIONS

We use horizontal and vertical betatron coordinates as well as horizontal dispersion normalised with the transfor-
mations

~X = Nx~x , ~Y = Ny~y and ~χ = Nx
~D , (1)

which expands as
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for X coordinates, and similarly for Y . We group ~X and ~Y in 4-vectors noted ~A = (X,X ′, Y, Y ′). The vector ~A is

transported between two locations with ~A2 = M12
~A1 . The transfer matrix M12 is made of two clockwise rotations,

one for each proper plane, where the angles of rotation µx and µy are the betatronic phase advances, i.e.

M12 =

 cosµx sinµx 0 0
− sinµx cosµx 0 0

0 0 cosµy sinµy
0 0 − sinµy cosµy

 . (3)

The normalised invariant amplitudes are

Ax = (X2 +X ′
2
)1/2 , Ay = (Y 2 + Y ′

2
)1/2 (4)

which can be added to form the combined betatronic invariant amplitude

A = (A2
x +A2

y)
1/2. (5)

III. BETATRON COLLIMATION

We first consider circular collimators in normalised coordinates. The normalised aperture of the primary and
secondary collimators are n1 and n2 r.m.s transverse beam units respectively. These numbers are fixed in our problem,
in the sense that n1 cannot be varied to optimise a collimation system but must rather fit to external parameters like
the dynamic aperture or the effective geometrical aperture of the ring. Similarly, we will see in Section III A that the
relative retraction (n2−n1)/n1 must be kept constant once it has been chosen and shall therefore be substantially larger
than for exemple local closed orbit changes. We use the approximation of slow transverse diffusion of the primary
halo, with the consequence that the impact parameter at the primary collimator is small compared to n1. More
precisely said, we consider the impact points to be at the surface of the collimator while both betatronic oscillations
are at their maxima, i.e. X ′o = Y ′o = 0 with X2

o + Y 2
o = n2

1. In Section III A we will minimise the extension of the
secondary halo after it is cut by the secondary collimators treated as black absorbers, thus neglecting the formation
of a tertiary halo.

With using the transverse azimuth α to define the point of impact on the primary collimator, the coordinates of
the particles before scattering are

~Ao = (n1 cosα, 0, n1 sinα, 0). (6)

The scattering process adds an arbitrary value to X ′o and Y ′o , using here for simplicity an isotropic distribution. With
the use of the polar coordinates K and φ in the X ′o− Y

′
o plane (see Fig. 1), the coordinates at the primary collimator

after scattering are

~A1 = (n1 cosα,K cosφ, n1 sinα,K sinφ). (7)

A. Phase advances

For arbitrary α and φ angles, we transport the particle with ~A2 = M12
~A1 using Eqs. (3) and (7) to a location of

yet unspecified phase advances µx and µy where a secondary collimator is located and get

~A2 =

 n1 cosα cosµx +K cosφ sinµx
−n1 cosα sinµx +K cosφ cosµx
n1 sinα cosµy +K sinφ sinµy
−n1 sinα sinµy +K sinφ cosµy

 . (8)

The phases µx and µy are the free parameters of our problem. The efficiency of the secondary collimator is measured
by the smallest amplitude A2,cut that it can intercept. A2,cut is minimised if X2 and Y2 are maximised, because the
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aperture of the secondary collimators is fixed to n2. Using the invariance of Ax,2 and Ay,2, this condition is equivalent
to asking for X ′2 = Y ′2 = 0. With these two conditions in Eq. (8) we get

tanµx =
K cosφ

n1 cosα
, tanµy =

K sinφ

n1 sinα
. (9)

These conditions allow to compute the sole free parameters µx = µx(α, φ,K) and µy = µy(α, φ,K). While α and φ
are free variables, K is restricted to its maximum allowed value corresponding to the smallest possible A2,cut = n2

(see Fig. 1). This is obtained by the substitution of Eqs. (9) in (8) with again X ′2 = Y ′2 = 0. We get

K = Kc =
√
n2

2 − n
2
1, (10)

which is independent of both α and φ. Writing

tanµo = Kc/n1 = (n2
2 − n

2
1)

1/2/n1 or cosµo = n1/n2 , (11)

Eqs. (9) become

tanµx = tanµo
cosφ

cosα
, tanµy = tanµo

sinφ

sinα
. (12)

The normalised angle Kc is the largest scattering angle which passes the secondary jaw and as it shall be, the
corresponding largest amplitude is A1,max = A2,cut = (n2

1 +K2
c )

1/2 = n2. The two conditions stated by Eqs. (12) are
our central result. They fix univoquely the location of a secondary jaw to cut the secondary amplitudes to its lower
limit A2 = n2 for α and φ. They are governed by the single parameter µo (see also Table III). The phase µo depends
on the choice of the ratio n1/n2. Therefore, this ratio must be fixed before chosing the optic of a cleaning insertion.
Its value also fixes the location of all secondary collimators. These formulae indicate that an optimum collimation
for all possible α and φ would need an infinity of collimators, with an optic able to offer an infinity of pairs of phase
advances (µx, µy) which satisfy Eq. (12).

Before compromising on the number of collimators, it must be noticed that for given (α,φ), the secondary collimator
at (µx, µy) needs not be circular. A single flat jaw at the X − Y azimuth αJ = tan−1(X2/Y2) is sufficient (see Fig.
1). With Eq. (8), the azimuth of the jaw must be

tanαJ =
sinα cosµy + tanµo sinφ sinµy
cosα cosµx + tanµo cosφ sinµx

. (13)

In practice, the transverse adjustment of the jaws, i.e. at either n1 or n2 beam units of the central orbit can only be
made by the use of an opposite jaw in the same tank both together forming a pair with their respective azimuths αJ
and αJ + π (see [5]). Therefore the determination of αJ by its tangent in Eq. (13) in the range [−π/2, π/2] modulo
π is univoque. For later use in Section III B we compute also

cosαJ =
n1

n2

cosα

cosµx
, sinαJ =

n1

n2

sinα

cosµy
. (14)

The result is obtained for cosαJ with cosαJ = X2/n2 = (n1/n2) cosµx(cosα+Kc tanµx cosφ) and Eq. (14) then by
rewriting Eq. (12) as Kc/n1 = tanµx cosα/ cosφ and using 1 + tan2 µx = 1/ cos2 µx. The derivation is identical for
sinαJ = X2/n2.

From now on we will consider flat collimators only.

B. Geometry of the secondary halo in the phase-space

For a given pair of primary impact and scattering angles (α, φ) and its associated secondary jaw located at optimised
phase advances (µx, µy) oriented at the transverse azimuth αJ obtained respectively with Eqs. (12) and (13), we
compute the domain of scattering angles at the primary collimator which are projected at the edge of the secondary
jaw. The scattering angles in the X ′1 − Y

′
1 plane are parametrised with the free azimuth ψ

Kx = Kcosψ Ky = Ksinψ. (15)

The edge of the secondary jaw is parametrised with

3



X2 cosαJ + Y2 sinαJ = n2. (16)

We rewrite X2 and Y2 from Eq. (8)

X2 = n1 cosα cosµx +Kx sinµx (17)

Y2 = n1 sinα cosµy +Ky sinµy. (18)

With Eqs. (17), (18) and (14) in (16) we get

Kxn1 cosα tanµx +Kyn1 sinα tanµy = n2
2 − n

2
1 (19)

Using Eqs. (10), (12) and the definition (11) we finally get

Kx cosφ+Ky sinφ = Kc , (20)

which is the normalised equation of a line with Kc the shortest distance to the origin and φ its slope. With this
result the effect of an optimised secondary jaw is easily interpreted. With Kc the smallest scattering angle cut when
ψ = φ (remembering that the optimisation was done for the scattering angle φ), the line of Eq. (20) delimits a
half plane of scattering angles Kx cosφ + Ky sinφ > Kc intercepted by the jaw and the complementary half-plane
Kx cosφ+Ky sinφ < Kc passing the jaw. Several secondary jaws labelled with their central azimuth (α, φi, i ε [1,ms])
define a polygon of order ms (if ms ≥ 3) which delimits the area of scattering angles which are not intercepted. The
secondary halo is therefore delimited in the 4D-phase space at the location of the primary jaw by a 2D-polygon, labelled
by the index ms, located in a plane parallel to the axes X ′ and Y ′ at (X1 = n1 cosα, Y1 = n1 sinα). This polygon has
an inscribed circle of radius Kc. The largest amplitude of the secondary halo is therefore A2

max(ms) = n2
1 +K2

max(ms)
with Kmax(ms) the distance of the most remote apex of the polygon relative to the origin X ′ = Y ′ = 0 (see Fig. 2).

In addition to the optimisation made by using the correlated phase advances of Eq. (12), a second optimisation is
now made by requesting that for given ms the polygon be made regular. This minimises both Kmax(ms) and the
surface of the polygon. The scattering angles φi used to compute the phases of the secondary jaws shall therefore be
equally distributed around the azimuth with (φi = φo+ iπ/ms, i ε [1,ms]). Varying φo rotates the polygon but do not
modify the distribution of the combined secondary amplitude. The angle φo can therefore be freely chosen as long as
isotropic scattering is considered. But in practice the outscattering rate is largest at φ = α+ π, a value to which one
jaw must be adjusted by chosing φo adequately.

C. A finite number of collimators

In a real collimation system, both the number mp of primary and ms of secondary jaws must be finite and small.
The choice of mp and ms is made a bit complicated by an effective correlation between them. We first discuss the
case of the primary jaws.

1. Primary collimators

We considered circular collimators in Section III to simplify our calculations. In practice, it is also often desirable
to define a circular primary aperture. One reason is to fit to a circular vacuum chamber which define an approximated
circular normalised aperture when integrated over an arc cell. Another reason might be the need to fit to a nearly
circular dynamic aperture. On the other hand in practice, the circular aperture must be approximated by flat jaws
which have an adjustable distance to the beam. They shall be arranged to form a regular polygon, to limit at
best the primary amplitudes above the specified value n1 (see Fig. 3). The phase advances of the secondary jaws
shall be computed for the central impact points of the primary jaws (see Fig. 3), defined by the central azimuths
(αi = (i− 1)π/[2(mp − 1)], iε[1,mp]). At the central location the primary aperture is Ao = n1 while at the apex of
the polygon it is

Ao,max =
n1

cos[ π
4(mp−1) ]

(21)

as deduced by trigonometry from Fig. 3. Primary impacts maps are of course not limited to the central point of the
jaw but rather continuously distributed all along the surface of the jaws. For later use we define an approximate
average primary amplitude over the whole azimuth α with
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Ao,eff (mp) = neff (mp) =
1

2
{(n1 +

n1

cos[ π
4(mp−1) ]

)}. (22)

With only mp = 2 primary jaws (usually oriented horizontally and vertically) the largest primary amplitude before

scattering is Ao,max =
√

2n1 ' 1.41n1 (see Fig. 3), which is a too large value when high performance is mandatory.
With mp = 3 jaws, thus defining an octagonal primary aperture, a much better performance is obtained with
Ao,max = n1/ cos(π/8) ' 1.08n1 (see Fig. 3).

2. Secondary collimators

To help chosing the number of secondary jaws we give for a set of ms values in Table I the variable Kmax(ms)
discussed in Section III B, the associated maximum secondary amplitude A2,max(ms) and the relative surface S/K2

c of
the regular polygon which delimits the secondary halo in the phase-space. Numerical values are computed with n1 = 6
and n2 = 7. Any number ms of secondary jaws can be considered but above ms = 4 the changes per ms unit are
small. With A2,max(ms = 3) = 9.4 the case ms = 3 can be readily be discarded and we further limit our discussion to
(mp = 3,ms = 4) and (mp = 3,ms = 8). We must now take into account the effective primary amplitudes which limit
the performance obtained by the secondary jaws. We therefore define an effective average of the maximum secondary
amplitude

Aeff,max(mp,ms) =

√
neff (mp)2 +

1

4
[Kc +Kmax(ms)]2 (23)

with neff (mp) taken from Eq. (22). We also define the total number of jaws

mjaws = mp(1 +ms). (24)

Both Aeff,max and mjaws are given in Table II.
The difference of the effective performance δAmax = 0.3 between the two cases (mp = 3,ms = 4) and (mp =

3,ms = 8) (see Table II) is marginal, ruling out the case (mp = 3,ms = 8). To make full use of eight secondary jaws
five primary ones must be considered, with a result close to the ultimate limit Amax = n2, but at the price of a quite
prohibitive number of jaws amouting to 45 (see Table II).

We therefore further consider the case mp = 3 with mp = 4 secondary collimators per primary one. The phases in
Table III are computed with Eq. (12) for the central impacts on the primary jaws α = 0, π/4, π/2 with four equidistant
scattering angles φi = [α+ iπ/2, i = 1, 4]. Theses correlated phases constitute a specification for an optic to offer the
smallest secondary halo extension for the given number of jaws.

D. Simulation for continuous primary impact

To check the relevance of the effective maximum amplitude of Eq. (23), we integrated numerically the amplitude
distribution of the secondary halo with a simple simulation program. We used the primary and secondary apertures
n1 = 6 and n2 = 7. Primary impacts are uniform along the inner surface of the jaws. Scattering angles are uniform in
the K−φ plane. The tracking is made with the transfer matrix (3) in which the phases (µy , µx) are taken from Table
III. At each collimator it is verified if the particle touches a jaw. The particles surviving all secondary collimators
are added to a Ax − Ay plot, thus building the density distribution d2N/dAxdAy of the secondary halo (see Fig. 4)
and added also to a combined amplitude distribution dN/dA (see Fig. 5). The case ms = 8 is also explored and
added to Fig. 5. The effective maximum amplitude of Eq. (23) fits well to the end of the distribution dN/dA and
is therefore a good indicator of the limit of the secondary halo. The distributions shown in Fig. 5 confirm that the
case (ms = 3,mp = 8) is not worth the additional hardware investment while four secondary collimators for each of
the primary azimuths, i.e. twelve ones with three primary collimators is a quite good choice. This result was already
obtained by D. Kaltchev who developped a numerical algorithm to minimise the size of a polygon in the X ′ − Y ′

plane [3] [6].

E. Existing solutions

With a symmetric optic (µx(s) = µy(s)) the secondary halo is cut at Asec = 1.32n2 [2] with a ratio n2/n1 = 7/6.
The present best performance obtained with a modulated optic for the LHC collimation insertion is Asec = 1.21n2
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[3]. It was emphasized in former studies [2] [3] that cutting efficiently on large amplitudes associated to orthogonal
scattering (φ = α ± π/2) requires large phase modulation, i.e. large µy − µx values, along the cleaning insertion.
This argument was right but incomplete. Strict correlation of the phase advances µx and µy is mandatory and the
maximum modulation µy − µx = π/2 is needed for some jaws (see Table III). While it may be unfair to compare
the performance of existing optics to our nearly ultimate limit Amax,eff = 1.08n2 obtained with a yet virtual optic,
a potential gain remains to be exploited with an optic which satisfies the phase advances specified in Table III.

F. Isotropic and real scattering

If the use of isotropic scattering is adequate for comparing different jaw arrangements, real scattering must be
considered to quantify the performance of a system in absolute terms. We give here only a brief outlook of a
discussion made in [1]. In first approximation elastic scattering of protons in matter is dominated by multiple
Coulomb scattering. The angular distribution after scattering of a proton of momentum p through one interaction
length of matter is Gaussian with a r.m.s width σ′mcs = ap−1 ' 3×10−5p−1 [rad,TeV/c] considering here an aluminum
jaw. The quantity σ′mcs is compared to the r.m.s beam divergence σ′β = (εnmp/βp)

1/2 = bp−1/2 ' 6× 10−6p−1/2 rad

with the proton mass mp = 0.94×10−3 Tev/c2 and an average betatronic wave length β ' 100 m. In a proton collider
we use a normalised emmitence εn ' 4 × 10−6 m. The isotropic scattering model is adequate if the real scattering
distribution is wider than the angular cut Kc made by the collimators, i.e. if

σ′mcs ≥ Kcσ
′
β , (25)

with Kc taken from Eq. (11). With n1 = 6 and n2 = 7 the cross-over momentum p = (a/Kcb)
2 ' 2 TeV/c deduced

from the equality in Eq. (25) defines the limit below which the condition (25) is satisfied. Above this momentum,
the isotropic model substantially overestimates the size of the secondary halo cut by the collimators. At the injection
momentum of LHC, or p = 0.45 TeV/c, the performance of the cleaning insertion is Aisotropic,cut = 8.4 [3]. The limit
obtained with a numerical model which includes real scattering, tertiary halo and multiturn tracking is Acut = 8.0
[1], a slightly better value than the result obtained with the isotropic model. This indicate that the range of the
cross-over momentum is quite large.

G. Secondary halo and quench levels

The link between the edge of the secondary halo and the quench levels in superconducting magnets is not direct. It
is discussed in [1] and briefly outlined here. An aperture limitation in the ring delimits a small volume in phase-space,
in which protons will be captured locally. The integral of the flux of halo in that small volume must be compared to
the quench limit. If the edge Acut of the distribution dN/dA of the secondary halo is smaller than the aperture of the
ring Aring, the secondary halo induces no direct losses. Tertiary losses, made of protons elastically scattered off the
secondary collimators must then be considered and compared to the quench limit. On the other hand, it is always
important to satisfy the condition Acut < Aring, because of the steep slope of dN/dA (see Fig. 5).

IV. MOMENTUM COLLIMATION

We restrict our discussion to a momentum cleaning insertion installed in a straight section, where the dispersion
function is a betatronic trajectory. In that case, the condition D′/D = −αx/βx, or equivalently χ′ = 0 (see Eqs. (1)
and (2)), must be satisfied at the primary collimator [2] [7] to ensure that the cut made on the secondary halo does
not depend on the relative momentum offset δp. It also strictly reduces the treatment of the momentum collimation to
the betatronic case in a straight section [2], while outside the straight section the transverse offset xβ and xδp = Dδp
must of course be distinguished.

In the usual case of a ring without substantial vertical dispersion and in contrast with the betatron halo which may
drift away from the beam in all transverse directions, momentum losses are concentrated in the horizontal plane. The
most demanding case occurs at ramping when off-bucket protons are lost. Most of these protons keep their initial
betatronic amplitude at injection [8] and are therefore confined in the range of betatronic amplitudes Ax,y ≈ 2. It is
therefore enough to use a single horizontal primary collimator, to which four secondary collimators must be associated,
following the conclusions of Section III C. Their locations correspond to the case α = 0 of Table III and they limit

the components of the betatron vector after scattering to ~A1 = (n1,Kc,≈ 2,Kc).
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In the arc of a ring, the aperture limitation for a particle with momentum offset is located near horizontally focusing
quadrupoles where both βx and Dx are at their maximum. With in addition βy � βx, it is thus adequate to fit the
largest horizontal secondary excursions Ax,β + Dδp of the secondary halo with the aperture Narc = Nx,arc at that
location. The straight sections of a ring need not be considered for momentum collimation since the dispersion is
usually supressed in these areas.

A. Amplitude cut with momentum offset

In the general case, a particle reaches the primary collimator with a mixing of betatron amplitude and momentum
offset. With the dispersion χ1 at the primary collimator, and using the approximation of slow diffusion (see section
III) we write

n1 = χ1δp +Xβ = χ1δp +Ax,β (26)

and define the largest momentum offset which can pass the primary collimator as δc = n1/χ1 with Ax,β = 0. After
scattering and the cut of the amplitude by the secondary collimators, the maximum horizontal betatronic amplitude
is Ax,β = [(n1 − χ1δp)

2 +K2
c ]

1/2. Expanding Ax,β with Eq. (10), the maximum horizontal excursion in the arc is

Xmax(n1, χ1, δp) = χarcδp + (χ2
1δ

2
p − 2n1χ1δp + n2

2)
1/2 (27)

and is plotted in Fig. 6. The largest allowed excursion Xmax(n1, χ1, δc) = Narc fixes

δc(n1) = n1/χ1 = [Narc − (n2
2 − n

2
1)

1/2]/χarc (28)

obtained with δp = δc(n1) in Eq. (27). Would large n1 values be considered (see Fig. 6), the large Xmax excursion
at small δ values would be cut at the betatron cleaning insertion. The system is completely fixed by chosing n1 and
computing the dispersion which is needed at the primary collimator

χ1(n1) =
n1

δc
=

n1χarc

Narc − (n2
2 − n

2
1)

1/2
. (29)

As for the choice of n1, a lower limit n1,min is fixed by the acceptable effective cut of the primary horizontal betatronic
amplitude at the edge of the bucket nedge = n1(1 − δb/δc) with δb the bucket width. In practice, a high enough χ1

must be obtained by matching the optic such that the corresponding n1 value obtained with Eq. (29) is larger than
n1,min.

V. SUMMARY

We derived the correlated betatronic phase advances between primary and secondary jaws which allow to cut the
amplitude of the secondary halo of a two-stage collimation system down to the aperture of the secondary collimators.
We showed that an infinite number of jaws would be necessary to reach that limit. We derived a precise estimator of
the effective extension of the secondary halo for a finite number of jaws. We give a specification that an optic must
satisfy for the case of a collimation system made of three primary jaws and twelve secondary ones. We also specified
the properties of a momentum cleaning insertion.
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FIG. 1. The line of the scattered particles at the primary collimator parametrised with (n1, α,K, φ) transforms at the location
of a secondary collimator to another line which crosses the circle of radius n2 when K = Kc whatever α and φ, see Eq. (11).
A flat jaw at azimuth αjaw is sufficient to cut at amplitude A = n2, see text.
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FIG. 2. The polygon delimited by the secondary jaws in the X′ − Y ′ plane. Here ms = 4. The scattering azimuth are
chosen equidistant to form a square which minimises the surface and the extention of the polygon. The largest angle passing
the secondary jaws is K4,max = ‖OA‖ =

√
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FIG. 3. The X − Y primary impact distribution of the simulation on the primary collimator jaws. The small circles are the
scattering sources of the central impact approximation for which the betatronic phase advances were computed (see text). With
mp = 2, the largest amplitude before scattering is already Ao,max = ‖OD‖ =

√
2n1. With mp = 3, the jaws being arranged to

form an octagonal primary aperture, Ao,max = ‖OE‖ = n1/cos(π/8) = 2n1/(2 +
√

2)1/2.
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FIG. 4. The contour plot of the distribution d2N/dAxdAy of the secondary halo in the case mp = 3 and ms = 4 with
continuous primary impact distribution. This distribution is obtained with isotropic scattering. The abscissa is Ax and the
ordinate Ay. We used collimator apertures n1 = 6 and n2 = 7. The two octagons of inner radii n1 and n2 indicate that the
secondary halo is almost entirely contained inside these limits.

0

500

1000

1500

2000

2500

3000

3500

4000

6 7 8 9 10

 

A

dN/dA

b c da

FIG. 5. The distribution dN/dA for mp = 3 and ms = 4 (upper curve) compared to mp = 3 and ms = 8 (lower curve). We
used collimator apertures n1 = 6 and n2 = 7. In abscissa, the combined amplitude in normalised units. This distribution is
obtained with isotropic scattering. The arrows a and d correspond to A4,max and A8,max computed with central impacts and
are taken from Table II. The arrows b and c are the effective limits of Eq. (23) for the same two cases. The latter ones are
much better estimators of the upper limits if the fading ends of the spectra are neglected.
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FIG. 6. The maximum transverse normalised excursion Xmax (ordinate) of a particle as a function of the relative momentum
offset δp (abscissa) and of the primary collimator aperture n1 (index in the right upper corner of the figure). Each curve is
ended at δp = δc(n1) where Xmax = Narc = 11.8, a case study for LHC for which we fixed the ratio n2/n1 = 7/6.
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TABLE I. Extension of the secondary halo for different numbers ms of pairs of secondary jaws per primary impact point.
The variable ms is also the order of the polygon discussed in Section IIIB. The expressions for Kmax are obtained by the
geometry of regular polygons and the maximum amplitudes are given by A2

max = n2
1 +K2

max. We used the collimator apertures
n1 = 6 and n2 = 7 to compute Amax numerically.

ms Kmax A2
max Amax S/K2

c S/K2
c

3 2Kc 4n2
2 − 3n2

1 9.4 3
√

3 5.19

4
√

2Kc 2n2
2 − n

2
1 7.9 4 4.00

8 2Kc/(2 +
√

2)1/2 (4n2
2 − 2n2

1 +
√

2n2
1)/(2 +

√
2) 7.2 8

√
2−
√

2)

2+
√

2)
3.31

∞ Kc n2 7 π 3.14

TABLE II. Effective maximum amplitude of the secondary
halo Amax,eff and total number of jaws mjaws as a function of
the number of primary and secondary jaws mp and ms. The
primary jaws are arranged to form a regular polygon in the
normalised plane (X1, Y1). The secondary jaws are arranged
to contain the scattering angles inside another regular poly-
gon located in the normalised plane (X′1, Y

′
1). The betatronic

phase advances between primary and secondary jaws are the
optimum ones, see text.

mp ms Amax,eff mjaws

3 4 7.6 15
3 8 7.3 27
5 4 7.5 25
5 8 7.1 45

12



TABLE III. Secondary collimator locations µx and µy and
jaw orientations αJ for three scattering azimuths α and four
scattering angles φ . One can add π to any of these phases
but then αjaw must be reevaluated. It is assumed that jaws
are mounted in transversely opposite pairs, i.e. for each entry
in the table there is a jaw at αJ and one at αJ + π, for
operational reasons explained in Section IIIA. We listed the
value αJ which is closer to the first quadrant. The lines of the
table where φ = α or φ = α+π correspond to plane scattering
and define a 1D-collimation system. The existing collimation
systems in proton colliders cut on plane scattering and only
with horizontal and vertical primary jaws, i.e. have primary
and secondary jaws corresponding to lines 1,2,9 and 10 of the
table.

α φ µx µy αJ
0 0 µo - 0
0 π π − µo - 0
0 π/2 π 3π/2 µo
0 −π/2 π 3π/2 -µo
π/4 π/4 µo µo π/4
π/4 5π/4 π − µo π − µo π/4
π/4 3π/4 π − µo π + µo π/4
π/4 −π/4 π + µo π − µo π/4
π/2 π/2 - µo π/2
π/2 −π/2 - π − µo π/2
π/2 π π/2 π π/2− µo
π/2 0 π/2 π π/2 + µo
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