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Abstract

We study the sparticle spectroscopy and electroweak breaking of theories where su-

persymmetry is broken by compactification (Scherk-Schwarz mechanism) at a TeV.

The evolution of the soft terms above the compactification scale and the resulting

sparticle spectrum are very different from those of the usual MSSM and gauge medi-

ated theories. This is traced to the softness of the Scherk-Schwarz mechanism which

leads to scalar sparticle masses that are only logarithmically sensitive to the cutoff

starting at two loops. As a result, squarks and sleptons are naturally an order of

magnitude lighter than gauginos. In addition, the mechanism is very predictive and

the sparticle spectrum depends on just two new parameters. A significant advantage

of this mechanism relative to gauge mediation is that a Higgsino mass µ ∼ Msusy is

automatically generated when supersymmetry is broken. Our analysis applies equally

well to theories where the cutoff is near a TeV or MP` or some intermediate scale. We

also use these observations to show how we may obtain compactification radii which

are hierarchically larger than the fundamental cutoff scale.
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1. Introduction

Theories with supersymmetry softly broken at the weak scale have been the most pop-

ular approach to the hierarchy problem for the last seventeen years [1]. In spite of this,

the problem of supersymmetry breaking still remains an open question. Perhaps this is not

surprising since supersymmetry breaking is intimately connected to the cosmological con-

stant problem, the most difficult problem in physics. So far there have been two scenaria

that have been suggested. One is that there is some high scale physics of perhaps gravi-

tational or GUT origin leading to the soft supersymmetry breaking terms [1], and is often

referred to as the “gravity mediated scenario”. The second postulates that supersymmetry

breaking originates in a sector with which we share gauge interactions and is called the

“gauge mediated scenario” [2]. There have been a lot of works in the literature dealing

with the phenomenological consequences of either gravity or gauge mediated scenaria over

the last seventeen years.

Recently a third daring possibility was suggested [3]-[6] which is based on breaking

supersymmetry by compactification (Scherk-Schwarz mechanism) [7, 8], and involves new

TeV-size spatial dimensions. The theoretical viability of this possibility is far from obvious,

since it is embedded in theories that live in higher dimensions from the TeV to the Planck

scale. In fact, large dimensions are a general prediction of any (known) perturbative de-

scription of supersymmetry breaking in string theory, which necessarily relates the breaking

scale to the size of some compact dimension(s) [9].

More recently there has been a new proposal in which the hierarchy problem is solved

by lowering the Planck scale down to a TeV [10, 11]. This raises the possibility that

the Scherk-Schwarz mechanism for supersymmetry breaking may be embedded in theories

without any severe ultraviolet (UV) problems. However, as we shall discuss in the last

section, in this case one has to face the problem of the cosmological constant in the bulk

which is generically much larger than the vacuum energy on the (observable) wall.
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These cautionary remarks are intended to underline that there is no well established

framework in which the Scherk-Schwarz mechanism for supersymmetry breaking is embed-

ded. However, leaving apart the cosmological constant problem, it may be premature to

dismiss the Scherk-Schwarz mechanism as a viable possibility for supersymmetry breaking.

Moreover, as we shall show in this paper, the spectroscopy and experimental signatures of

Scherk-Schwarz supersymmetry breaking (SSSB) are distinct and drastically different than

either gravity or gauge mediation.

An important aspect of SSSB is that it is totally analogous to the breaking of super-

symmetry via temperature, where the role of temperature is played by the inverse of the

compactification radius 1/R. This implies that supersymmetry breaking quantities are

UV-insensitive. This is a consequence of the exponential Boltzmann suppression factors

which suppress the contribution of any high energy level to a thermodynamic quantity.

In practice it means that supersymmetry breaking physics in SSSB will only depend on

physics up to the compactification scale and will not be sensitive to what happens beyond

it. This is especially welcome since the theory above the compactification scale is intrinsi-

cally higher dimensional and not treatable with standard field theory tools. The beauty of

the SSSB is that it is insensitive to the higher dimensional theory as far as soft terms and

supersymmetry breaking parameters are concerned. Thus, in SSSB the supersymmetry

breaking parameters are under better control than supersymmetry preserving quantities,

such as gauge and Yukawa couplings.

An important corollary of this, pointed out in ref. [5], is that the cosmological constant

does not have quadratic divergences or, equivalently, quadratic sensitivity to the UV cutoff.

This is analogous to the fact that the free energy at finite temperature is proportional to

T 4 and has no quadratic divergences either. Again, this follows from the exponential

suppression of high energy states’ contribution to the free energy. A testable consequence

of this behavior is the existence of light gravitationally coupled “moduli” with ∼ sub −
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millimeter wavelengths [12, 5].

The aim of this paper 1 is to study the implications of the intrinsic softness of the

SSSB mechanism for the sparticle spectroscopy. We will show that the resulting sparticle

spectrum markedly differs from the gauge or gravity mediated case and leads to much

larger hierarchies of the scalar and gaugino masses without any fine tuning. This will be

done in Sections 3 and 4. The paper is organized as follows. In Section 2, we present our

general framework and discuss the role of extra dimensions and the issue of gauge coupling

unification. In Section 3, we review the method of supersymmetry breaking by SSSB

compactification and compute the one-loop corrections to the soft terms. In Section 4, we

study the breaking of the electroweak symmetry and discuss the resulting superparticle

spectrum and its properties.2 In Section 5, we show how the softness of SSSB can be useful

in attempts to dynamically relate the compactification and fundamental scale (cutoff) in a

hierarchical way. Finally, Section 6 contains some concluding remarks.

2. Large dimensions and unification

Here, we consider a supersymmetric extension of the standard model with an extra

dimension y compactified on a line interval S1/Z2, obtained upon identification under

y → −y of the points of a circle S1 of radius R ∼ TeV−1. In general, the Z2 discrete

symmetry acts also non trivially on the 5-dimensional (5D) fields. These theories have two

types of matter states: the bulk (untwisted) ones, living with the gauge fields in the 5D

bulk, and the boundary (twisted) ones, that are localized at the two fixed points of the

orbifold, y = 0 and y = πR.

1The main results contained in this work have been presented at the SUSY 98 Conference, Oxford

(11-17 July 1998) [13].
2A previous attempt to study the phenomenology of SSSB [4] did not take into account the extreme

softness of the soft breaking terms.
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The massless spectrum hasN = 1 supersymmetry in four dimensions and should contain

the MSSM particles. The massive spectrum, however, forms towers of Kaluza-Klein (KK)

excitations for all the fields living in the 5D bulk, with masses n/R for n = 0, 1, . . .; they fall

into supermultiplets of extended N ≥ 2 supersymmetry. We will distinguish two different

cases:

(a) The KK modes are organized either in N = 4 supermultiplets, or in N = 2 but are

falling into appropriate group representations leading to vanishing beta-functions. For

brevity, we shall refer to this case as the N = 4 one.

(b) The KK modes form just N = 2 multiplets.

On the other hand, obviously, the 4D boundary fields have no KK excitations.

Following refs. [4, 6], we will consider that in addition to gauge multiplets only the Higgs

fields live in the 5D bulk, as a part of N = 2 vector supermultiplets or hypermultiplets. In

this way, the µ-problem is automatically solved, since as we shall see in the next section,

Higgsinos acquire a mass of the order of the compactification scale by the Scherk-Schwarz

mechanism of supersymmetry breaking. On the other hand, quarks and leptons chiral

multiplets are assumed to be localized in the 4D boundary.

In the N = 4 case (a), there is no contribution from the KK states to the beta-function

coefficients of the gauge couplings. The only contribution arises from the zero modes and the

twisted states of the 4D boundary. Therefore, the gauge couplings evolve as in the MSSM

and unify at Mst ' 1016 GeV. In general, in these models, additional constraints have to

be imposed in order to avoid potential growing of the Yukawa couplings. For instance,

when the quarks and leptons are also bulk fields and come from N = 2 hypermultiplets,

this condition is automatically satisfied, since their wave function is not renormalized. Of

course, in this case, special model building is needed to satisfy the condition of vanishing of

the 1-loop N = 2 beta-functions. When quarks and leptons are twisted fields, the Yukawa

coupling constraints are satisfied if for instance there are non-trivial infrared-stable fixed
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points in the full theory 3.

In the generic N = 2 case (b), the KK states contribute to the gauge beta-function coef-

ficients, and change the logarithmic scale dependence of the gauge coupling to a power-law

running. This accelerates the gauge couplings evolution and they may unify at much lower

energies [14]. Assuming that only the gauge and Higgs fields live in 5D, and that super-

symmetry is broken by the Scherk-Schwarz mechanism along the orbifold compactification

at the scale Mc ≡ 1/R, one has at one loop level

1

αi(mZ)
=

1

αst
+
bSMi
2π

ln
Mc

mZ

+
bMSSM
i

2π
ln
Mst

Mc

+
bKKi
2π

[
Mst

Mc

− 1− ln
Mst

Mc

]
+ ∆i , (2.1)

where bSM = (41/10,−19/6,−7), bMSSM = (66/10, 1,−3) and bKK = (3/5,−3,−6) are

respectively the beta-function coefficients of the Standard Model (SM), MSSM and KK

states, while ∆i denote additional string threshold corrections.

In the absence of threshold corrections, it turns out that the measured values of the

three gauge couplings at mZ lead to an approximate unification (within 2% taking into

account the experimental errors) with

Mst ' 45 TeV α−1
st ' 50 , (2.2)

for Mc ' 1 TeV. However, as one can see from eq. (2.1), the gauge couplings acquire a

power law sensitivity with respect to the UV cutoff Mst. As a result, the gauge coupling

unification conditions are extremely sensitive to string threshold corrections [15]. This casts

doubts on the significance of this calculation. It shows that unification of couplings cannot

be decided by a low energy effective-theory computation; it requires a detailed knowledge

of the full UV theory.

It is important to point out the relevance of the underlying string theory in both cases

we discussed above, and mainly in the N = 4 case. Unlike gauge couplings whose quantum

corrections are constrained by holomorphicity, physical amplitudes cannot in general be

3This possibility was pointed out to us by Nima Arkani-Hamed.
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reliably computed beyond the compactification scale, as the effective field theory becomes

non-renormalizable (higher dimensional). The full string theory is then required above Mc

to fix the coefficients of the higher dimensional effective operators. However, as we will

see in the next section, this “pathology” does not hold for the effective couplings that

are generated after supersymmetry breaking, due to the extreme softness of the SSSB

mechanism.

3. Soft terms in Scherk-Schwarz compactification

Theories with extra dimensions, and in particular five dimensional theories, allow the

use of the Scherk-Schwarz (SSSB) mechanism to break supersymmetry [7, 6]. This consists

in imposing to the 5D fields a different periodicity condition for bosons and fermions under

a 2πR translation of the extra dimension:

Φ(xµ, y + 2πR) = e2πiqΦΦ(xµ, y) , (3.1)

where qΦ is the R-symmetry charge of the field Φ. Due to the periodicity condition (3.1),

the fields are Fourier expanded as

Φ(xµ, y) =
∞∑

n=−∞

eiy(n+qΦ)/R Φ(n)(xµ) , (3.2)

where y is assumed to be compactified on the circle S1. Reducing the theory from 5D to

4D, eq. (3.2) leads to a tower of KK states with a fermion-boson mass splitting inside each

KK supermultiplet:

m2
B = (n+ qB)2M2

c ,

m2
F = (n+ qF )2M2

c , n = 0,±1,±2, ... , (3.3)

where Mc ≡ 1/R, and qB and qF are the charges of the bosons and fermions, respectively.
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In orbifold compactifications, the expansion (3.2) is truncated, since only the invariant

states under the orbifold group remain in the theory. For example in S1/Z2 compactifica-

tions, the Z2 parity, y → −y, acts on the KK-states as Φ(n) → Φ(−n). Therefore the Z2

projects the KK-tower into Z2-even (Φ
(n)
+ ) or Z2-odd (Φ

(n)
− ) states:

Φ
(n)
+ = Φ(n) + Φ(−n), n = 0, 1, 2, ... ,

Φ
(n)
− = Φ(n) − Φ(−n), n = 1, 2, ... . (3.4)

Massless fields arise in the theory only if either qB or qF are zero. We are interested

in the qB = 0 case, in which only the vector and scalar boson n = 0 states remain in the

massless spectrum of the theory, and can be associated with the bosonic sector of the SM.

Although vector bosons remain massless because of the gauge symmetry, the n = 0 complex

scalar field, φ, will get a mass at the one-loop level due to the breaking of supersymmetry

by the SSSB mechanism. Each level of KK excitations contribute to the scalar mass. This

is a crucial difference with respect to 4D theories with softly broken supersymmetry.

The one-loop m2
φ induced by a tower of KK with a mass splitting (3.3) can be obtained

from the effective potential V (φ):

m2
φ =

d V (φ)

d|φ|2

∣∣∣∣∣
φ=0

, (3.5)

with V (φ) given by

V (φ) =
1

2
Tr

∞∑
n=−∞

∫
d4p

(2π)4
ln

[
p2 + (n+ qB)2M2

c +M2(φ)

p2 + (n+ qF )2M2
c +M2(φ)

]
, (3.6)

where the trace is over the degrees of freedom of the KK tower and M2(φ) is the φ-dependent

mass of the KK states. From eq. (3.5), we obtain

m2
φ =

1

2
Tr

dM2(φ)

d|φ|2

∣∣∣∣∣
φ=0

∞∑
n=−∞

Πn(0) , (3.7)

Πn(0) =
∫

d4p

(2π)4

[
1

p2 + (n+ qB)2M2
c

−
1

p2 + (n+ qF )2M2
c

]
. (3.8)
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As in finite temperature calculations, we must first sum over the infinite tower of KK states

and then perform the momentum integral. Eq. (3.8) thus leads to 4

m2
φ =

1

32π4

[
∆m2(qB)−∆m2(qF )

]
Tr

dM2(φ)

d|φ|2

∣∣∣∣∣
φ=0

, (3.9)

where

∆m2(q) =
1

2
(Li3(z) + Li3(1/z))M2

c , (3.10)

with z ≡ ei2πq and Lin(z) are the polylogarithm functions Lin(z) =
∑∞
k=1

zk

kn
. For q ranging

from 0 to 1/2, (Li3(z) + Li3(1/z))/2 goes from 1.2 to −0.9.

We have just considered a theory compactified on S1. For a compactification on the

S1/Z2 orbifold, the contribution to m2
φ from a KK-tower must sum from n = 0 to ∞ (see

eq. (3.4)). Nevertheless, the contribution to m2
φ of an even field (Π+

n ) can be always added

to the one of an odd field (Π−n ) such that they can be considered as the contribution of a

single KK-tower where n goes from −∞ to ∞ [6]:

∞∑
n=0

Π+
n +

∞∑
n=1

Π−n =
∞∑

n=−∞

Πn , (3.11)

where Π±n ≡ Π±n . Thus, in S1/Z2 orbifold compactifications, the effective number of states

of the KK-tower is reduced by a half with respect to that in S1.

The contribution (3.9) is finite and ultraviolet independent. There are different ways to

understand this result. The simplest way is to notice that a theory with SSSB supersym-

metry breaking keeps a clear analogy with a theory at finite temperature T (a quantum

field theory with the time compactified) where Mc plays the role of T . At finite temper-

ature, the T -dependent effective potential is not affected by the ultraviolet cutoff due to

the Boltzmann suppression of the heavy states. Of course, the T -independent part of the

effective potential is ultraviolet sensitive. In our case, however, Mc = 0 corresponds to

the supersymmetric limit and therefore the corrections to V (φ) are zero. Alternatively, the

4For further details see ref. [16].
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insensitivity of m2
φ to an ultraviolet scale Λ�Mc (where new physics arises) can be probed

by just putting an explicit ultraviolet cutoff in our theory and showing that the result (3.9)

is not modified. This is in analogy with Casimir energy calculations [17]. For example, we

can insert in the sum of eq. (3.7) a function f(Λ, nMc) that goes to zero for nMc � Λ.

The function f must be normalized such that f → 1 for n→ 0. For example, we can take

f = e−nMc/Λ. As expected, we find that the calculation of m2
φ gives, for Λ�Mc, the same

result (3.9).

Using eq. (3.9) we can calculate the contribution to the soft mass of any scalar field of

the theory. Let us take as an example, the model of ref. [6] in which after compactification

on S1/Z2 a massless scalar φ arises from a 5D hypermultiplet. For simplicity, let us assume

qF = 1/2 and qB = 0. The fermionic Z2-even sector consists of two bispinors, a gaugino

and the partner of φ, that combine with the odd sector to form two full KK-towers. We

then have 4 degrees of freedom and TrM2(φ) = 8g2C(φ)|φ|2 where C(φ) is the quadratic

Casimir of the scalar φ in the corresponding gauge group [C(N) = (N2 − 1)/(2N) for the

fundamental representation of SU(N)]. Therefore

Tr
dM2(φ)

d|φ|2

∣∣∣∣∣
φ=0

= 8g2C(φ) . (3.12)

By supersymmetry eq. (3.12) must hold both for bosons and fermions. Using eqs. (3.9) and

(3.12), we obtain

m2
φ =

7g2C(φ)ζ(3)

16π4
M2

c ' 5× 10−3M2
c , (3.13)

where for the numerical estimate we have taken g2C(φ) ∼ 1 and ζ(3) ' 1.2. Thus, the

scalar remains around an order of magnitude lighter than the compactification scale.

Let us now consider the fields living in the 4D boundary. These fields do not have

associated KK excitations and are massless at tree level. Nevertheless, if they couple to the

fields living in the 5D bulk, the supersymmetry breaking will be transmitted from the bulk

to the boundary and, as a consequence, the scalars living in the boundary will get masses

at the one-loop level. Let us consider again the case of an S1/Z2 orbifold. The possible
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interactions between the bulk and the boundary fields can be found in ref. [18]. The gauge

interactions couple the fields in the boundary to the KK-towers of the gauge boson, gaugino

and the auxiliary D-field. At the one-loop, we find that the boundary scalars get a mass

given by (for qB = 0)

m2
i =

g2C(Ri)

4π4

[
∆m2(0)−∆m2(qF )

]
, (3.14)

where Ri is the representation of the gauge group under which the boundary field trans-

forms, and ∆m2(q) is given in eq. (3.10). The boundary field can also couple to an N = 1

chiral supermultiplet that consists in the KK-towers of a complex scalar, a bispinor and

the auxiliary F -field. In this case we find that the scalar field of the boundary gets a mass

given by

m2
i =

Y 2

16π4

[
∆m2(qB) + ∆m2(2qF − qB)− 2∆m2(qF )

]
, (3.15)

where Y is the Yukawa coupling between the bulk and boundary fields. The first term

in eq. (3.15) arises from the scalar KK-tower, the second term from the auxiliary F -field

KK-tower and the third from the bispinor KK-tower. Again these contributions are also

finite and ultraviolet independent.

Finally, we have calculated the contribution of the KK-towers to a scalar trilinear cou-

pling, A, between two boundary fields, Q and U , and one field in the bulk. This contribution

arises from gaugino loops and gives

A = 4Y g2T aQT
a
U

∫
d4p

(2π)4

1

p2

∞∑
n=−∞

(n+ qF )Mc

p2 + (n+ qF )2M2
c

, (3.16)

that leads to

A =
Y g2T aQT

a
U

8π3
∆A(qF ) , (3.17)

where

∆A(qF ) = i
[
Li2(ei2πqF )− Li2(e−i2πqF )

]
Mc , (3.18)

and T aR is the generator of the gauge group in the representation of R.
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Note that in contrast to the case of supersymmetric parameters, as gauge and Yukawa

couplings that exhibit generically a power dependence on the UV cutoff, the soft breaking

parameters are insensitive to it. This is due to the extreme softness of the SSSB mechanism

which dies off exponentially in the supersymmetric limit, in analogy to the situation at

finite temperature. This behavior persists, as well, for all couplings of higher dimensional

operators induced by the supersymmetry breaking. In fact, it is easy to see that these

couplings vanish in the supersymmetric limit and they are suppressed by powers of Mc/Mst.

Let us finally comment on higher loop effects. In analogy with the finite temperature

calculation, we can implement some of these effects by replacing the couplings g and Y in the

above calculations by the running couplings at the scale Mc, g(Mc) and Y (Mc). The effect

of the boundary fields, however, does not have an analogy with finite temperature. The

fields in the boundary contribute at the one-loop level to the wave function renormalization

constant of the KK-excitations. This contribution will make the KK masses to evolve

logarithmically with the renormalization scale. As a consequence, at higher-loop orders,

M2
c must be replaced by the renormalized M2

c (see below eq. (5.3)).

4. Superparticle spectrum and electroweak symmetry breaking

Sspectroscopy and the LSP

Let us apply the above calculation to our model, where gauginos and Higgsinos in the

bulk are given the same boundary conditions, qF , corresponding to a common R-symmetry

charge. A more general case [6] will be treated in [16]. Since gauge and Higgs bosons live

in the 5D bulk their corresponding n = 0 fermions, gauginos and Higgsinos, will get masses

of order Mc:

mλ = qF Mc , (4.1)
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m
H̃

= qF Mc . (4.2)

Therefore the massless states of the 5D bulk correspond to the gauge and Higgs bosons

of the SM. Quarks and leptons superfields reside in the 4D boundary, and then they also

remain massless at the tree-level. Nevertheless, since supersymmetry is broken in the bulk,

squarks and sleptons will get masses at the one-loop level through the gauge and Yukawa

interactions, leaving only the fermion sector of the SM in the massless spectrum. Using

eqs. (3.14) and (3.15), we obtain the squarks and sleptons masses:

m2
Q̃

=
(

8

6
α3 +

3

4
α2 +

1

60
α1

)
∆m2

g +
1

2
αt∆m

2
H , (4.3)

m2
Ũ

=
(

8

6
α3 +

4

15
α1

)
∆m2

g + αt∆m
2
H , (4.4)

m2
D̃

=
(

8

6
α3 +

1

15
α1

)
∆m2

g , (4.5)

m2
L̃

=
(

3

4
α2 +

3

20
α1

)
∆m2

g , (4.6)

m2
Ẽ

=
3

5
α1∆m2

g , (4.7)

where

∆m2
g =

[
∆m2(0)−∆m2(qF )

]
/π3 , (4.8)

and

∆m2
H =

[
∆m2(0) + ∆m2(2qF )− 2∆m2(qF )

]
/(2π3) , (4.9)

with ∆m2(q) given in eq. (3.10).

The above equation gives us a very predictive spectrum for the squarks and sleptons. It

only depends on two free parameters, qF and Mc. Notice also that the above contributions

are positive as they are necessary to avoid color or charge breaking. The ratio of masses is

given by (for qF = 1/2)

10m
Q̃
' 10m

D̃
' 10m

Ũ
' 25m

L̃
' 40m

Ẽ
' m

λ,H̃
. (4.10)
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Therefore the gauginos and Higgsinos are the heaviest supersymmetric particles and the

right-handed slepton is the lightest (LSP) one. In an R-parity conserving theory, the right-

handed slepton will be stable and will cross the detector leaving an ionizing track. It can be

discovered by looking at anomalous ionization energy loss, dE/dx, in the tracking detector

gas [19]. The actual experimental lower bound on its mass is 82.5 GeV [19]. Cosmologi-

cal arguments all but exclude charged, stable particles with masses in the ∼ 100 GeV to

∼ 10 TeV range [20]. A significant number of these particles will survive annihilation with

their antiparticles and, at the time of Nucleosynthesis, combine with other nuclei to form

“heavy” hydrogen, helium, etc., leading to heavy versions of these atoms today. Searches

for such anomalous isotopes put very strong limits on their fractional abundance –as small

as 10−30 for hydrogen. There is a variety of other possible considerations showing the im-

plausibility of stable-charged LSPs, including interstellar calorimetry –the thermodynamics

of interstellar clouds [21]– as well as neutron stars [22].

One way out of this is to ensure that the charged LSP is unstable. A simple way to

accomplish this is to postulate an R-parity breaking interaction. Indeed, if R-parity is

violated, the right-handed slepton will decay into SM leptons. In fact, since the R-parity

violating coupling is renormalizable, the slepton is expected to decay inside the detector

and can be easily discovered [23]. Another possibility to avoid a right-handed slepton LSP

occurs in theories with right-handed neutrinos [24]. These must have miniscule Yukawa

coupling to account for the observed smallness of the neutrino masses. Since the right-

handed sneutrinos are electroweak singlets and also have miniscule Yukawa couplings, they

will get tiny masses of order of the (Dirac) neutrino masses in the sub-eV range and will

be the LSP. We are not aware whether such an LSP passes all the necessary cosmological

safety tests, but it does not seem to us to be obviously excluded.
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Electroweak Breaking

To study the breaking of the electroweak symmetry, we must analyze the soft masses of the

Higgs(es). In the MSSM, we need two Higgs SU(2)L-doublets, H1 and H2, in order to give

masses to all the fermions living in the 4D boundary. After imposing the supersymmetry

breaking with the SSSB compactification, these two Higgses can either arise as two (tree-

level) massless states, or as a massless and a massive state. This depends on the R-charges

of the Higgses, and different possibilities have been proposed in refs. [4, 6]. The simplest

case corresponds to having a unique massless SU(2)L-doublet, φ, that will be responsible

for the electroweak symmetry breaking. This massless field can be either associated to one

of the MSSM Higgses or to a linear combination of the two, φ ≡ cosβH1 + sin βH2. The

mixing angle tanβ is model dependent. For example, for the model of ref. [6] in which φ

arises from a 5D hypermultiplet and corresponds to a flat direction of the D-terms, one has

cosβ = sin β. In ref. [4] the only massless mode is the Higgs that couples to the top-quark:

this would correspond to sin β = 1. Further scenarios will be considered in ref. [16].

Here we will be only interested in knowing whether φ gets a vacuum expectation value

and therefore breaks the electroweak symmetry. For this purpose we must calculate the

quantum corrections to its mass. Using eq. (3.9), we have

m2
φ(Mc) =

(
3

4
α2 +

3

20
α1

)
∆m2

g . (4.11)

This mass is positive. Nevertheless, we must also consider the correction to the Higgs mass

due to the stop. This correction arises at the two-loop level but it is important since the

stops are heavier than the Higgs. This is given by

m2
φ(mZ) ' m2

φ(Mc)−
3α2m

2
t

8πm2
W

(m2
Q̃

+m2
Ũ

) ln
M2

c

m2
Q̃

. (4.12)

As in theories of gravity or gauge-mediation supersymmetry breaking, this contribution

turns the Higgs mass to negative values and triggers the breaking of the electroweak sym-
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metry. Imposing the minimization condition

−m2
φ(mZ) =

m2
Z

2
cos2 2β , (4.13)

one can derive the value of the compactification scale Mc. Taking qF = 1/2, mt ' 175 GeV

and cos 2β ∼ 1, we obtain

Mc ∼ 3.7 TeV , m
Q̃
∼ 400 GeV , m

Ẽ
∼ 100 GeV . (4.14)

We must notice that the above prediction is quite sensitive to the values of mt and α3 that

have large experimental uncertainties. We find some values for these parameters for which

the two terms of the RHS of eq. (4.12) approximately cancel out, and consequently the

supersymmetric spectrum turns to be much heavier.

Contrast with the MSSM and Gauge Mediation

Sparticle spectroscopy in SSSB is strikingly different from that of more familiar gauge

mediated and MSSM. All fermionic sparticles are at least an order of magnitude heavier

than the bosonic ones, a smoking gun for this framework. In particular, the gauginos and

higgsinos are ∼ 40 times heavier than the right-handed sleptons. A consequence of this,

following from the present lower limit of 82.5 GeV on the mass of the right-handed sleptons,

is that the compactification scale as well as the gaugino and higgsino masses must be no less

than 3 TeV. Consequently, the KK excitations of ordinary particles would not be accessible

at LHC.

Another point of contrast is the ease with which SSSB generates a mass µ for the

higgsinos. This occurs as an integral part of the SSSB and naturally accounts for the

equality of the µ term and the supersymmetry breaking scales. In contrast, in gauge

mediation one needs to work hard to accomplish this task [25].

Finally there are some similarities. As in gauge-mediated theories, the breaking of
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supersymmetry is communicated to the squarks by the gauge interactions. Therefore the

theory does not have dangerous flavor violating interactions.

5. Dynamical determination of the compactification radius

In this section we determine the value of the radius by minimizing the vacuum energy

with respect to the corresponding modulus field, or equivalently with respect to the com-

pactification scale Mc. As we mentioned already in the introduction, the Higgs contribution

at the electroweak breaking minimum (4.13), being proportional to m4
H(Mc), is negligible

compared to the direct contribution computed in ref. [5]. The latter reads (in the large

radius limit):

E =
1

2
Str

∫
d4p

(2π)4
ln

{
p2

(
1− γT

α

2π
ln
p2

Λ2

)
+M2

}
+ · · ·

=
∑
i

ηi

(
1 + 4γi

αi
2π

ln
Mc

Λ

)
M4

c + · · · , (5.1)

where Λ is the cutoff scale, and all couplings in (5.1) are considered at the scale Λ. In this

context the cutoff Λ is the scale at which the matching with the fundamental (string) theory

is done. Scale independence of the effective action guarantees independence of the effective

theory with respect to the choice of the scale Λ. For practical purposes it is customary

to take Λ = Mst, where the boundary conditions are provided from the underlying theory.

The two terms inside the bracket in the second line of (5.1) correspond, respectively, to

the 1-loop and the dominant (logarithmic) two-loop contribution due to the wave-function

renormalization of the i-th bulk mode, which is coupled to the massless (twisted) fields

in the boundary with coupling αi. This coupling denotes generically either the gauge or

the Yukawa couplings between fields in the bulk and in the boundary. Since only even

fields couple to the boundary these interactions are N = 1 supersymmetric. For those

fields in the bulk without gauge and Yukawa interactions with the boundary (as e.g. the

gravitational and moduli multiplets) αi ≡ 0. The dots stand for the remaining subdominant



–18–

(non logarithmic) two-loop contribution, as well as for higher loops. Note that the two-

loop contribution of only bulk fields has no logarithmic dependence in Mc in analogy with

finite temperature, while the two-loop contribution of only boundary fields vanishes due to

supersymmetry. γi is a positive numerical coefficient (the eigenvalue of γT for the i-th bulk

field) coming from the one-loop integration over the boundary states; its sign is always

positive as boundary fields can never be gauge bosons in the present context.

By imposing the Λ-independence of (5.1) we can deduce the β-functions for ηi. To

lowest order they are given by:

βi ≡ Λ
dηi
dΛ

= 4ηiγi
αi
2π

, (5.2)

whose formal solution can be written as

ηi(Mc) = ηi(Λ) exp

{
4γi

∫ t

0

αi(t
′)

2π
dt′
}
, (5.3)

where t ≡ ln(Mc/Λ). The logarithmic dependence of the two-loop vacuum energy and the

corresponding β-functions (5.2) follow from the one-loop running of all untwisted masses

M2
i = η

1/2
i M2

c due to the wave function renormalization of bulk fields from the massless

twisted loops. As a result, the logarithms appearing in the two-loop expression (5.1) can

be absorbed in the (one-loop) renormalized masses Mi(Mc).

The two-loop result (5.1) can be resummed to all-loop in the leading-log approximation

by the improved vacuum energy:

E = η(Mc)M
4
c , (5.4)

where η(Mc) =
∑
i ηi(Mc) and ηi(Mc) is defined in (5.3). Minimization of eq. (5.4) with

respect to Mc leads to

Mc

dE

dMc

= 4M4
c [η(Mc) + Γ(Mc)] = 0 , (5.5)

where Γ =
∑
i ηiγiαi/2π. The minimum of the potential is then given by the value of Mc

such that

η(Mc) + Γ(Mc) = 0 , (5.6)
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and

Γ(Mc) +
1

4
Mc

dΓ(Mc)

dMc

> 0 , (5.7)

which is the condition for the extremal (5.6) to be a minimum.

This phenomenon, i.e. the appearance of a minimum by radiative corrections, has been

long ago known as dimensional transmutation [26, 27], as one dimensionless parameter, η, is

traded for the VEV of a field, Mc. The physical picture by which Mc does acquire a VEV is

then similar to radiative breaking in field theory. We start running the ηi-parameters at the

scale Λ = Mst where the fundamental theory gives us the boundary values of all couplings

αi(Mst). At the boundary, η(Mst) and Γ(Mst) should not satisfy eq. (5.6). As we go down

with the energy the quantity η+Γ should approach zero and, at a given scale Mc, it should

change sign. However, taking into account from eq. (5.3) that ηi(Mc) is a monotonically

decreasing (increasing) function for ηi(Λ) > 0 (ηi(Λ) < 0), it follows that some ηi(Mc) are

required to be positive and some ηi(Mc) should be negative. On the other hand, notice

that ηi are numerical factors depending on the R-charges used to break supersymmetry. In

particular, the contribution to η from a single bosonic and fermionic degree of freedom is

given by:

∆η = −
3

128π6

[
Li5(e2iπqB)− Li5(e2iπqF ) + h.c.

]
. (5.8)

The expression (5.8) is negative for qB = 0 and qF = 1/2, which means that if the fermion

number operator (−1)F is used for the Scherk-Schwarz breaking the condition (5.6) for

radiative determination of the compactification radius is never realized. However other

R-symmetries (as e.g. the SU(2)R of N = 2 supersymmetry) might provide different signs

for different sectors and yield the necessary conditions for radiative breaking.

We can now expand eq. (5.6) to lowest order and find an approximated solution for the

non-trivial minimum as

Mc = exp

{
−

1

4

(
η(Λ)

Γ(Λ)
+ 1 +O(h̄)

)}
Λ . (5.9)
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For Λ = Mc the solution (5.9) satisfies trivially eq. (5.6) to lowest order, as it should,

while for Λ = Mst, Mc can be hierarchically smaller than the string scale, depending on the

particular string model and on the value of the gauge couplings αi at the string (unification)

scale. In the latter case the large logarithm developed by the minimum does not invalidate

perturbation theory, it just reflects a bad choice of the scale and can be reabsorbed in the

renormalized parameters.

A very simple example can be provided by a model where only the strong coupling is kept

and all other couplings αi (electroweak, Yukawa, gravitational,...) are neglected. Then we

have a strongly coupled gauge (gluino vector multiplet) sector with ηs ≡ ηs(Mst) < 0 and a

non-interacting sector (electroweak vector multiplets, Higgs and gravitational multiplets,...)

with η0 ≡ η0(Mst) > 0. The sign of ηs is unambiguous since for vector multiplets qB = 0.

The sign and value of η0 depends of course on the field content and the R-invariance used

for the Scherk-Schwarz mechanism. We will consider ρ = η0/ηs as a free parameter and

adopt the running of the strong coupling given in (2.1) and the string scale and unification

coupling obtained in (2.2).

In the region of scales between Mst and Mc the running of αi is dominated by the linear

term. Neglecting the logarithmic term in (2.1) we can obtain an analytic expression for

ηs(Mc), and so for the vacuum energy as:

1

ηs
E = ρ−

[
Mc

Mst

+
bKKs αst

2π

(
1−

Mc

Mst

)]4γs/

(
2π
αst
−bKKs

)
, (5.10)

where bKKs = −6 and γs = 6 is the contribution to the anomalous dimension of gluons from

the chiral quark supermultiplets in the boundary. In Fig. 1 we have plotted the vacuum

energy (5.10) as a function of Mc, in TeV units, for ρ = 0.74. We see that a local minimum

develops around 1 TeV.

To conclude, this mechanism can therefore be used to fix the size of the dimension that

breaks supersymmetry at a TeV, in either N = 4 case, with logarithmic unification of gauge

couplings, or in the generic N = 2 case with power low evolution and the string scale near
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Figure 1: Effective potential/ (TeV)4 as a function of Mc/TeV in the simple model above.

the TeV region. In this case, however, the generic bulk contribution to the vacuum energy

is much bigger than M4
c due to the existence of n additional ultra-large dimensions of size

r, that are required to account for the weakness of four-dimensional gravity:

Ebulk ∼M4+n
c rn ∼M2

stM
2
P` for Mc ∼Mst . (5.11)

The scaling M4+n
c is a consequence of the Scherk-Schwarz breaking in 4 + n non-compact

dimensions and can also be understood from the four-dimensional viewpoint as the multi-

plicity (rMc)
n of the KK-towers with respect to the n ultra-large dimensions. Since these

KK-states have no standard model gauge interactions, there are no logarithmic correc-

tions. As shown in eq. (5.11), this bulk contribution brings back essentially the problem of

quadratic divergences after supersymmetry breaking and invalidates the radiative determi-

nation of the compactification scale Mc. In the context of TeV strings this problem is even

worse since such a cosmological constant induces a new scale much bigger than Mst. One

has therefore to impose the condition that this bulk contribution to the vacuum energy
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vanishes. This selects out special models having equal number of bosons and fermions in

the (4 + n)-dimensional bulk after supersymmetry breaking, level by level, at least per-

turbatively [28]. The next dominant contribution is then M4
c up to logarithms and the

above mechanism of fixing Mc can be applied. Of course, the problem of determining the

additional ultra-large radii r still remains open.

As a result, in both N = 4 and generic N = 2 cases, the compactification scale is

determined in terms of the string scale and the unification coupling, and it can be hier-

archically smaller. It is then remarkable that once the compactification scale is fixed, the

phenomenology of supersymmetry breaking in both cases is very little distinct, due to the

extreme softness of the Scherk-Schwarz breaking that leads to a logarithmic sensitivity of

the soft terms in the string scale only at two loops. For example, from eq. (5.9) it follows

that starting with a string scale Mst ∼ 1016 GeV, one obtains a compactification scale near

the TeV region provided that Γ/η = O(10−2), which is reasonable since Γ is a two-loop

correction while η is a one-loop effect.

6. Concluding remarks

The first interesting consequence of our analysis is the pattern of supersymmetry break-

ing. While gaugino and Higgsino masses are of the order of the compactification scale, scalar

masses are generated at one loop level via gauge interactions and are naturally one order

of magnitude lighter. Thus, flavor universality is guaranteed as in gauge mediated models.

On the other hand, again as in gauge mediation, the stop correction to the Higgs mass-

squared drives it to negative values, breaking the electroweak symmetry. The resulting

spectrum consists of heavy charginos and neutralinos (2 − 3 TeV), squarks at 400 − 500

GeV, and the right-handed slepton as the lightest supersymmetric particle with mass close

to the electroweak scale. Moreover, the higher dimensional nature of the theory and the

softness of the Scherk-Schwarz breaking replace effectively the ultraviolet cutoff with the
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compactification scale, keeping the loop corrections to the Higgs mass due to the heavy

gauginos small. Thus, one obtains a pattern of supersymmetry breaking with hierarchical

structure, which is very different from all other scenaria. In addition, the models we study

are extremely predictive, since they have no free parameters, other than a discrete option

of boundary conditions, and the superparticle spectrum is fully determined.

Furthermore, this mechanism offers a possibility to determine dynamically the compact-

ification scale by relating it to the fundamental (string) scale in a hierarchical way. One

may think naively that the radius modulus dependent potential, generated by the vacuum

energy, would be runaway and the extra dimension either decompactifies, or else, it shrinks

to zero size in the minimum. However, in the presence of boundary (twisted) fields with

gauge interactions, there are logarithmic corrections that can stabilize the radius at a non-

trivial minimum. Moreover, its value has an exponential sensitivity to the coefficient of the

one loop logarithm, and thus, it may be hierarchically smaller that the string scale. As a

result, this mechanism can generate a very large or smaller value for the compactification

scale, depending on the detailed spectrum of the model.
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