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Abstract

Exclusive decays of B and D mesons are discussed with the focus on the theoretical
problem how to calculate the relevant hadronic matrix elements of weak operators in
the framework of QCD sum rules. The three lectures are devoted to

1. leptonic decays and decay constants
2. semileptonic decays and form factors
3. nonleptonic decays and nonfactorizable amplitudes.

I shall introduce some of the basic concepts, describe various calculational techniques,
and illustrate the numerical results. The latter are compared with lattice and quark
model predictions and, where possible, with experimental data. Applications include
the determination of Vub from B → πl̄νl and B → ρl̄νl, and an estimate of the
phenomenological coefficient a2 for B → J/ψK.

1 Introduction

Inclusive and exclusive decays of heavy flavours play a complementary role in the determina-
tion of fundamental parameters of the electroweak standard model and in the development
of a deeper understanding of QCD. While the theory of inclusive decays 1 is well advanced,
inclusive measurements are generally quite difficult. Conversely, exclusive decays into few-
body final states are often easier to measure, but the theory of exclusive processes is more
demanding and hence still underdeveloped. In view of the exciting experimental prospects
at future bottom and charm factories, where many exclusive channels are expected to be
measured accurately, it is pressing to make further progress on the theoretical side.

1See, e.g., the lectures by N.G. Uraltsev in this volume [1].
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The difference in complexity of inclusive and exclusive observables is illuminated by
the fact that the simple parton picture of charm and beauty decays illustrated in Tab. 1
provides surprisingly reasonable estimates for the lifetimes and inclusive branching ratios,
whereas no such description exists for exclusive decays. The theory of both inclusive and
exclusive processes is based on operator product expansion (OPE) which allows to separate
the dynamics at short and long distances. At very large scale, µ = O(mW ), charm and
beauty decays are described by second order weak interaction involving W exchange. Since
the momentum transfer p2 ≪ m2

W , one effectively has four-fermion interactions described
by a hamiltonian of the form

HW =
GF√

2
jµj′µ , (1.1)

where jµ and j′µ are V − A quark or lepton currents. In the nonleptonic case, evolution of
the hamiltonian to the physical scale of the order of the heavy quark mass, µ = O(mQ),
leads to considerable modifications of (1.1) due to strong interactions. These effects can be
taken into account by OPE and renormalization group methods. The result is an effective
hamiltonian

HNL =
GF√

2

∑

i

ci(αs, µ)Oi(µ) (1.2)

involving a sum of local operators Oi with coefficients ci which can be calculated in pertur-
bation theory as long as µ ≫ ΛQCD so that one is only dealing with interactions of quarks
and gluons at short distances. The decay amplitudes are then given by

A(P → Xh) =
GF√

2

∑

i

ci(αs, µ)〈Xh | Oi(µ) | P 〉 (1.3)

showing the main problem, that is the calculation of the matrix elements of the weak
operatorsOi which incorporate the long-distance effects. For semileptonic decays one instead
has to compute matrix elements of weak currents:

A(P → lν̄lXh) =
GF√

2
〈Xh | jµ | P 〉〈lν̄l | j′µ | 0〉 . (1.4)

This simplifies the problem.
The usual way to proceed in inclusive decays is to assume duality of the sum over all

possible hadronic states Xh and the quark (and gluon) final states. The theory is further
improved by including radiative corrections to the decay widths, quark mass effects, and
initial bound state corrections [1]. In comparison, the calculation of the hadronic matrix
elements in (1.3) and (1.4) for exclusive final states Xh constitutes an ab initio nonpertur-
bative problem. Tab. 2 illustrates typical exclusive decays considered in these lectures, and
the corresponding matrix elements such as decay constants, form factors and nonleptonic
two-body amplitudes. Here, the interplay between weak and strong interactions is even
more intricate than in inclusive decays. Obviously, in order to disentangle the properties of
weak interactions such as the charged current structure, flavour mixing and CP violation
from exclusive processes, one must understand the impact of QCD beyond perturbation
theory.

Current approaches include lattice calculations, QCD sum rules, heavy quark effective
theory (HQET), chiral perturbation theory (CHPT), and phenomenological quark models.
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Table 1: Inclusive decays of leptons and free quarks.Lifetimes
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Table 2: Exclusive decays and hadronic matrix elements.Hadronic matrix elementsDecay channels
t t l

�l
Q
q WleptonicB ! l�l h0jjQjBidecay constant

t t l�lQq qWsemileptonicB ! �l�l h�jjQjBiform factor

t t qqQ qW q
nonleptonicB ! J= K hJ= KjOijBiweak amplitude

q qqQ
hadronicD� ! D� hD�jD�istrong coupling
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Each of these approaches has advantages and disadvantages. For example, quark models
are easy to use and good for intuition. However, their relation to QCD is unclear. On
the other hand, lattice calculations are rigorous from the point of view of QCD, but they
suffer from lattice artifacts and uncertain extrapolations. Furthermore, effective theories are
usually applicable only to a restricted class of problems, and sometimes require substantial
corrections which cannot be calculated within the same framework. For example, HQET is
very powerful in treating b → c transitions, but a priori less suitable for b → u transitions,
while CHPT is designed for processes involving soft pions and kaons.

These lectures focus on applications of QCD sum rules [2, 3, 4] to exclusive B and D
decays. 2 Proceeding from the firm basis of QCD perturbation theory this approach sys-
tematically incorporates nonperturbative elements of QCD. Schematically, hadronic matrix
elements of the kind indicated in Tab. 2 are extracted from suitable correlation functions
of quark currents at unphysical external momenta, rather than estimated directly. Thereby,
one makes use of OPE, the analyticity principle (dispersion relations), and S-matrix uni-
tarity. In addition, one assumes the validity of quark-hadron duality. The long-distance
dynamics is parameterized in terms of vacuum condensates or light-cone wave functions. At
present, these nonperturbative quantities cannot be calculated directly from QCD. There-
fore, they are determined from experimental data. Nevertheless, because of the universal
nature of the nonperturbative input, the sum rule approach retains its predictive power.
Moreover, the method is rather flexible and can therefore be applied to a large variety of
problems in hadron physics. Experience has shown that sum rules are particularly suited
for heavy quark physics. The more recent development of sum rule techniques for exclusive
B and D decays appears similarly promising.

The lectures are organized as follows. The first lecture is devoted to leptonic decays and
decay constants, the second one to semileptonic decays and form factors, and the third to
nonleptonic decays and the problem of nonfactorizable amplitudes. I shall introduce the ba-
sic concepts, describe various calculational techniques, and show selected numerical results,
aiming at a compromise between the demands by theorists and the needs of experimenters.
The results are compared with lattice and quark model predictions and, where possible,
with experimental data. Phenomenological applications include the determination of Vub
from B → πl̄νl and B → ρl̄νl, and an estimate of the effective coefficient a2 for B → J/ψK.
In addition, I shall present a few illustrative predictions for D mesons.

Although the charm and beauty flavours could be treated in parallel, for definiteness, I
will usually refer to B mesons. In most cases, it is obvious how to obtain the corresponding
results for D mesons. However, when convenient I will also use the generic notation P (V )
for a heavy pseudoscalar (vector) meson and Q for a heavy quark.

2 Leptonic decays and decay constants

2Further details can be found in a recent review by A. Khodjamirian and the present author [5].
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2.1 Decay width

The leptonic B decays are induced by the weak annihilation process bū → lν̄l where l =
e, µ, τ . The relevant weak hamiltonian is given by

HL =
GF√

2
Vub(ūΓ

µb)(l̄Γµνl) + h.c. (2.1)

with Γµ = γµ(1 − γ5). Generically, using the decay constant fP as defined by the matrix
element of the axial-vector current,

〈0 | q̄γµγ5Q | P 〉 = ifP qµ , (2.2)

qµ being the P four-momentum, one obtains the following expression for the decay width:

Γ(P → lν̄l) =
G2
F

8π
|VqQ|2mPm

2
l

(
1 − m2

l

m2
P

)2

f 2
P . (2.3)

The decay constant fP characterizes the size of the P -meson wave function at the origin,
and therefore the annihilation probability. The proportionality to the square of the lepton
mass ml is enforced by helicity conservation leading to a strong suppression of decays into
light leptons.

From the measurement of a given leptonic decay width one can directly determine the
product of a specific CKM matrix element and decay constant. Unfortunately, because
of multiple suppression it is difficult to measure leptonic decays. So far, only the mode
Ds → µ̄νµ has been observed [6], while a bound [7] exists on the Cabibbo-suppressed decay
D → µ̄νµ. Whether or not it is possible to study B → µ̄νµ and B → τ̄ ντ at future B
factories is not completely clear [8].

Theoretically, the decay constants fP are extremely interesting quantities. They repre-
sent the simplest hadronic matrix elements and therefore provide crucial tests of nonper-
turbative methods in QCD. Moreover, the decay constants are needed in sum rule analyses
of other hadronic properties of B and D mesons, e.g., form factors. Finally, fB and fBs

are
important parameters of mixing and CP-violation in the B system. For these and other rea-
sons which will be pointed out in the course of the lectures, accurate theoretical predictions
on the various decay constants are very desirable.

2.2 QCD sum rule for decay constants

The QCD sum rule estimate of fB is based on an analysis of the two-point correlation
function [3, 9, 10, 11]

Π(q2) = i
∫
d4xeiqx〈0 | T{q̄(x)iγ5b(x), b̄(0)iγ5q(0)} | 0〉 , (2.4)

q being the external momentum. By inserting a complete set of states with B-meson
quantum numbers between the currents in (2.4) one obtains a formal hadronic repre-
sentation of Π(q2). The term arising from the ground state B-meson is proportional to
〈0 | q̄iγ5b | B〉〈B | b̄iγ5q | 0〉, i.e., to f 2

B as can be seen from the relation

mb〈0 | ūiγ5b | B〉 = m2
BfB (2.5)

5



which is equivalent to (2.2). The hadronic expression for (2.4) can be written in the form
of a dispersion relation:

Π(q2) =
∫
∞

m2
B

ρ(s)ds

s− q2
(2.6)

with the spectral density

ρ(s) = δ(s−m2
B)
m4
Bf

2
B

m2
b

+ ρh(s)Θ(s− sh0) . (2.7)

Obviously, the δ-function term on the r.h.s. of (2.7) represents the B meson, while ρh(s)
and sh0 are the spectral density and threshold energy squared of the excited resonances and
continuum states, respectively. In order to make the dispersion integral (2.6) ultraviolet-
finite, one actually has to subtract the first two terms of the Taylor expansion of Π(q2) at
q2 = 0. These subtraction terms are removed by Borel transformation with respect to q2:

BM2Π(q2) = lim
−q2,n→∞

−q2/n=M2

(−q2)(n+1)

n!

(
d

dq2

)n
Π(q2) ≡ Π(M2) . (2.8)

With

BM2

(
1

s− q2

)k
=

1

(k − 1)!

(
1

M2

)k−1

e−s/M
2

(2.9)

and
BM2(−q2)k = 0 (2.10)

for k ≥ 0 one readily finds

Π(M2) =
m4
Bf

2
B

m2
b

e−m
2
B
/M2

+
∫
∞

sh
0

ρh(s)e−s/M
2

ds . (2.11)

We see that Borel transformation removes arbitrary polynomials in q2 and suppresses the
contributions from excited and continuum states exponentially relative to the ground-state
contribution. The second point is actually the main motivation for this transformation.

In the space-like momentum region, q2 < 0, where one has no poles and cuts associated
with physical states it is possible to calculate the correlation function Π(q2) in QCD in terms
of quark and gluon degrees of freedom. To this end, the T–product of currents in (2.4) is
expanded in a series of regular local operators Ωd:

Π(q2) =
∑

d

Cd(q
2, µ)〈0 | Ωd(µ) | 0〉 , (2.12)

d being the dimension of a given operator and µ being the renormalization scale. The
lowest-dimensional operators (d ≤ 6) are as follows:

Ωd = 1, q̄q, Ga
µνG

aµν , q̄σµν
λa

2
Gaµνq, (q̄Γrq)(q̄Γsq) . (2.13)

Here, λa denotes the usual SU(3)-colour matrices, Ga
µν is the gluon field strength tensor,

and Γt stands for a given combination of Lorentz and colour matrices. While the strong
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interaction effects at momenta larger than µ are included in the Wilson coefficients Cd(q
2, µ),

the effects at momenta smaller than µ are absorbed into the matrix elements of the operators
Ωd(µ). Thus, if µ ≫ ΛQCD the coefficients depend only on short-distance dynamics, and can
therefore be calculated in perturbation theory, while the long-distance effects are taken into
account by the vacuum averages 〈0 | Ωd | 0〉 ≡ 〈Ωd〉. These so-called condensates describe
properties of the full QCD vacuum and are process-independent. At present, they can only
be estimated in some crude approximations. For this reason, the vacuum condensates are
determined empirically by fitting selected sum rules to experimental data.

It is essential for the whole approach that at q2 ≪ m2
b the expansion (2.12) can be cut off

after a few terms. The reason is that the higher the dimension of Ωd, the more suppressed
by inverse powers of m2

b − q2 is the corresponding Wilson coefficient Cd. In leading order
and up to d = 6, the coefficients can be calculated from the diagrams depicted in Fig. 1 as
explained in [3] (see also [5]). In order to improve the accuracy of the OPE one can further
include perturbative QCD corrections to the Wilson coefficients originating from hard gluon
exchanges in the diagrams of Fig. 1. Most important are the O(αs) effects on the coefficient
C0 [3, 10] given by the two-loop diagrams of Fig. 2.

#"  !bu(a) " !� �
(b)

#"  !�
�(c)#"  !��

(d) " !� ��
(e) " !� �� �

(f)
Figure 1: Diagrams determining the Wilson coefficients in the OPE of the two-point corre-
lation function (2.4): C0 (a), C3 (b), C4 (c,d), C5 (b,e), C6 (b,f). Solid lines denote quarks,
dashed lines gluons, wavy lines external currents. Crosses indicate vacuum fields.

The complete result for the Borel-transformed correlation function (2.4) obtained in [11]
is given by

Π(M2) =
3

8π2

∫
∞

m2
b

ds
(s−m2

b)
2

s

(
1 +

4αs
3π

f(s,m2
b)
)

exp(− s

M2
)

+

(
−mb〈q̄q〉 +

1

12
〈αs
π
Ga
µνG

aµν〉 − mb

2M2
(1 − m2

b

2M2
)m2

0〈q̄q〉

7



#"  !bu(a)
#"  !(b)

#"  !(c)
Figure 2: Feynman diagrams of the O(αs) correction to the Wilson coefficient C0(q

2).

− 16παs
27M2

(1 − m2
b

4M2
− m4

b

12M4
)〈q̄q〉2

)
exp(−m2

b

M2
) , (2.14)

where

f(s,m2
b) =

9

4
− 2

∫ m2
b

s

0

dt

t
ln(1 − t) + ln

s

m2
b

ln
s

s−m2
b

+
3

2
ln

m2
b

s−m2
b

+ ln
s

s−m2
b

+
m2
b

s
ln
s−m2

b

m2
b

+
m2
b

s−m2
b

ln
s

m2
b

. (2.15)

The b-quark mass appearing in the perturbative contribution (first term in (2.14)) is defined
to be the pole mass, while the choice of mb in the leading-order coefficients of the contri-
butions from the higher-dimensional operators is arbitrary. Usually, the pole mass is used
everywhere. In order to keep the formula readable, the scale dependence of the running
coupling and the vacuum condensates is not made explicit in the above. Furthermore, use
has been made of the conventional parametrization for the quark-gluon condensate density,

〈q̄σµν
λa

2
Gaµνq〉 = m2

0〈q̄q〉 , (2.16)

and of vacuum saturation reducing four-quark condensates to squares of quark condensates
with known coefficients [2]:

〈q̄Γrqq̄Γsq〉 =
1

(12)2
{(TrΓr)(TrΓs) − Tr(ΓrΓs)}〈q̄q〉2 . (2.17)

The two representations of Π(M2), (2.11) and (2.14), yield an interesting equation which
connects hadronic properties with QCD parameters. However, in order to determine the
value of fB from it, one has to subtract the unknown contribution from the excited and
continuum states to (2.11). In a reasonable approximation based on quark-hadron duality,
one may estimate the integral over the hadronic spectral density ρh by the corresponding
integral over the perturbative density. This is achieved by substituting

ρh(s)Θ(s− sh0) =
1

π
ImC0(s)Θ(s− sB0 ) (2.18)

in (2.11), whereby
√
sB0 is treated as an effective threshold energy of the order of the mass

of the first excited B resonance. In this approximation, continuum subtraction amounts to

8



a simple change of the upper limit of integration in (2.14) from ∞ to sB0 . The uncertainty
from this rough procedure should not be too harmful because of the suppression of excited
and continuum states after Borel transformation.

Solving then the equation provided by (2.11) and (2.14) for fB, one obtains the following
sum rule:

f 2
Bm

4
B =

3m2
b

8π2

∫ sB
0

m2
b

ds
(s−m2

b)
2

s

(
1 +

4αs
3π

f(s,m2
b)
)

exp

(
m2
B − s

M2

)

+m2
b

{
−mb〈q̄q〉

(
1 +

m2
0

2M2

(
1 − m2

b

2M2

))
+

1

12
〈αs
π
Ga
µνG

aµν〉

− 16π

27

αs〈q̄q〉2
M2

(
1 − m2

b

4M2
− m4

b

12M4

)}
exp

(
m2
B −m2

b

M2

)
. (2.19)

Since the l.h.s. of this relation is a measurable quantity, any scale dependence on the
r.h.s. must cancel, at least in principle. In practice, this can of course only be achieved
approximately.

2.3 Numerical results

The numerical input in the sum rule (2.19) for fB is as follows. The pole mass of the b
quark is taken to be

mb = 4.7 ± 0.1 GeV , (2.20)

covering the range of estimates obtained from bottomonium sum rules [12], while the con-
tinuum threshold in the B channel is fixed to the range

sB0 = 35 ∓ 2 GeV2 . (2.21)

The scale µ at which αs and the condensates are to be evaluated is still ambiguous in the
approximation considered. A reasonable choice is

µ2 = O(M2) (2.22)

characterizing the average virtuality of the quarks in the correlator (2.4). Moreover, the
products mb〈q̄q〉 and 〈αs

π
Ga
µνG

aµν〉 are renormalization-group invariant. Using the numerical
value of the quark condensate density at µ = O(1 GeV ) as derived from the PCAC relation
[2, 13]:

〈q̄q〉(1 GeV) = − f 2
πm

2
π

2(mu +md)
≃ −(240 MeV)3 , (2.23)

and the running mass mb(1GeV ) corresponding to the central value (2.20) of the pole mass,
one gets

mb〈q̄q〉 ≃ −0.084 GeV4. (2.24)

This is the estimate adopted for the present analysis together with the gluon condensate
density determined from charmonium sum rules [2]:

〈αs
π
Ga
µνG

aµν〉 ≃ 0.012 GeV4 . (2.25)

9



The remaining parameters are assumed to be

m2
0(1 GeV) ≃ 0.8 GeV2 (2.26)

as extracted from sum rules for light baryons [14], and

αs〈q̄q〉2 = 8 · 10−5 GeV6 (2.27)

as given in [11]. The scale dependence of m2
0〈q̄q〉 and αs〈q̄q〉2 is negligible. The numerical

uncertainties in the condensate estimates vary from 10 % to about 50 % or more. They
nevertheless play only a minor role for the total theoretical uncertainty on fB.

Table 3: Decay constants of B and D mesons in MeV.

Method Ref. fB fBs
fD fDs

this
review 180 ± 30 – 190 ± 20 –

QCD sum rules
[15] a) 175 210 180 ± 10 220 ± 10

[16] 175± 25 200± 25 205± 15 235 ± 15

Lattice [17] 180± 32 205± 35 221± 17 237± 16

[18] 172+27
−31 196+30

−35 191+19
−28 206+18

−28

[7] – – < 310 –
Experiment

[6] b) – – – 241 ± 21± 30

a) update of results in [3, 11, 19] taking mb = 4.67 GeV, sB0 = 35 GeV2,
and mc = 1.3 GeV, sD0 = 5.5 GeV2.

b) world average

Next, one has to determine the range of values of the Borel parameter M2 for which the
sum rule (2.19) can be trusted. On the one hand, M2 has to be small enough such that
the contributions from excited and continuum states are exponentially damped and the
approximation (2.18) is acceptable. On the other hand, the scale M2 must be large enough
such that higher-dimensional operators are suppressed and the OPE converges sufficiently
fast. Furthermore, the sum rule should be stable under variations of M2 in the allowed

10



window. Whether or not these requirements can be met has to be investigated for each sum
rule separately. In the case at hand, one finds that at

3 GeV2 ≤M2 ≤ 5.5 GeV2 (2.28)

the necessary conditions are fulfilled: the quark-gluon condensate contributes less than 15
%, and the four–quark operators a negligible amount, while the excited and continuum
states contribute less than 30 %. Moreover, fB changes insignificantly when M2 varies in
the range (2.28).

The predictions on fB and fBs
derived from the sum rule (2.19) with the input specified

above are summarized in Tab. 3 together with the corresponding results for D mesons
obtained with mc = 1.3 ± 0.1 GeV, sD0 = 6 ∓ 1 GeV2, and 1 GeV2 < M2 < 2 GeV2.
The theoretical uncertainties are dominated by the uncertainties in the quark masses and
continuum thresholds. For instance, the ranges of values of fB and fD expressed by the
errors in the first row of Tab. 3 have been determined by varying mQ and sP0 simultaneously
such that the stability of the sum rule is preserved. The correlation is indicated by the
reversed ± sign in (2.21). It should also be emphasized that the O(αs) corrections have a
sizeable effect. Without these corrections the decay constants would be considerably smaller:

fB ≡ fB(αs = 0) = 140 ± 30 MeV , (2.29)

fD ≡ fD(αs = 0) = 170 ± 20 MeV . (2.30)

For comparison, Tab. 3 also shows recent lattice results and the available experimental
data. The mutual agreement within the uncertainties of the two theoretical approaches is
satisfactory. On the other hand, the data are just beginning to challenge theory.

3 Semileptonic decays and form factors

3.1 Distribution in momentum transfer

The weak hamiltonian (2.1) also applies to the semileptonic decay B → πl̄νl. The appro-
priate hadronic matrix element is parametrized by two independent form factors:

〈π(q)|ūγµb|B(p + q)〉 = 2f+(p2)qµ +
(
f+(p2) + f−(p2)

)
pµ (3.1)

with p+ q, q and p being the B and π four-momenta, and the momentum transfer, respec-
tively. Frequently, in particular in nonleptonic decays, one also uses the scalar form factor
f 0 defined by

f 0(p2) = f+(p2) +
p2

m2
B −m2

π

f−(p2) . (3.2)

The distribution of the momentum transfer squared in B → πl̄νl is given by

dΓ

dp2
=
G2|Vub|2

24π3

(p2 −m2
l )

2
√
E2
π −m2

π

p4m2
B

{(
1 +

m2
l

2p2

)
m2
B(E2

π −m2
π)
[
f+(p2)

]2

+
3m2

l

8p2
(m2

B −m2
π)

2
[
f 0(p2)

]2
}
, (3.3)
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where Eπ = (m2
B +m2

π − p2)/2mB is the pion energy in the B rest frame.
For l = e, µ, the form factor f 0 plays a negligible role because of the smallness of

the lepton masses. These channels can thus be used to directly determine the product
|Vubf+(p2)|, while the heavy mode B → πτ̄ντ offers a possibility to test the scalar form factor
f 0(p2). Recently, the decays B → πl̄νl and B → ρl̄νl have been observed by CLEO [20].
If the relevant form factors can be calculated with sufficient accuracy these measurements
eventually provide interesting alternatives to the determination of Vub from inclusive b→ u
transitions. In these lectures, the sum rule method is advocated. It is one of the virtues of
the sum rule calculations, in comparison to other approaches, that they can be tested and
consistently improved by investigating the analogous D-meson form factors. The already
existing experimental data on D → hl̄νl, h = K,K∗, π, ρ, η and l = e, µ [21] have not yet
been fully exploited in this respect.

3.2 Light-cone vs. short-distance expansion

For processes involving a light meson, e.g., a π, K, or ρ there is an interesting alternative
to the short-distance OPE of vacuum-vacuum correlation functions in terms of condensates,
namely the expansion of vacuum-meson correlators near the light-cone in terms of meson
wave functions [22, 23, 24]. The latter are defined by matrix elements of composite operators
and classified by twist, similarly as the deep-inelastic structure functions. The light-cone
variant of QCD sum rules has been suggested in [25, 26, 27]. In this approach, the light
mesons are described by means of light-cone wave functions, whereas the heavy meson
channels are treated in the usual way: choice of a generating current, dispersion relation,
Borel transformation and continuum subtraction.

The general idea is explained in the following using the B → π matrix element (3.1) as
an example. The detailed derivation of the light-cone sum rules for f+ and f− is reported in
[28, 29, 30] and reviewed in [5]. The central object is the vacuum-pion correlation function

Fµ(p, q) = i
∫
d4xeipx〈π(q) | T{ū(x)γµb(x), b̄(0)iγ5d(0)} | 0〉 (3.4)

= F (p2, (p+ q)2)qµ + F̃ (p2, (p+ q)2)pµ .

From the comparison with (3.1) it is clear that the two invariant functions F and F̃ have
some kind of relation with the form factors f+ and f+ + f−, respectively. Since the pion is
on-shell, q2 = m2

π vanishes in the chiral limit adopted throughout this discussion. For the
momenta in the b̄d and ūb channels one requires (p+q)2 ≪ m2

b and p2 ≤ m2
b−2mbχ, χ being

a mb-independent scale of order ΛQCD. This assures that the b quark is far off mass-shell.
Contracting the b-quark fields in (3.4) and inserting the free b-quark propagator, one gets

Fµ(p, q) = i
∫

d4x d4k

(2π)4(m2
b − k2)

ei(p−k)x (mb〈π(q)|ū(x)γµγ5d(0)|0〉

+ kν〈π(q)|ū(x)γµγνγ5d(0)|0〉) . (3.5)

This contribution is diagrammaticly depicted in Fig. 3a. It is important to note that the
path-ordered gluon operator

Pexp
{
igs

∫ 1

0
dα xµA

µ(αx)
}

(3.6)
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necessary for gauge invariance of the matrix elements in (3.5), is unity in the light-cone
gauge, xµA

µ = 0, assumed here.�� ��
bd u�
(a)

�� ���
(b)

Figure 3: Diagrammatic representation of the correlation function (3.4): terms involving
two-particle (a) and three-particle (b) wave functions. Solid lines represent quarks, dashed
lines gluons, wavy lines external currents, and ovals light-cone wave functions of the pion.

Let us first consider the matrix element

〈π(q)|ū(x)γµγ5d(0)|0〉, (3.7)

and expand the bilocal quark-antiquark operator around x = 0:

ū(x)γµγ5d(0) =
∑

r

1

r!
ū(0)(

←

D ·x)rγµγ5d(0) . (3.8)

The matrix elements of the local operators can be written in the form

〈π(q)|ū
←

Dα1

←

Dα2 ...
←

Dαr
γµγ5d|0〉 = (i)rqµqα1qα2 ...qαr

Mr + ... , (3.9)

where the ellipses stand for additional terms containing the metric tensor gαiαk
in all possible

combinations. Note that the lowest twist 3 in (3.9) is equal to 2. Substituting (3.8) and
(3.9) in the first term of (3.5), integrating over x and k, and comparing the result with (3.4),
one obtains

F (p2, (p+ q)2) = i
mb

m2
b − p2

∞∑

r=0

ξrMr (3.10)

with

ξ =
2(p · q)
m2
b − p2

=
(p+ q)2 − p2

m2
b − p2

. (3.11)

3 Twist is defined as the difference between the canonical dimension and the spin of a traceless and
totally symmetric local operator.
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Obviously, if the ratio ξ is finite one must keep an infinite series of matrix elements in (3.10).
All of them give contributions of the same order in the heavy quark propagator 1/(m2

b−p2),
differing only by powers of the dimensionless parameter ξ. In other words, the expansion
(3.8) is useful only in the case ξ → 0, i.e., p2 → (p + q)2 or equivalently, when the pion
momentum vanishes. In this case, the series in (3.10) can be truncated after a few terms
involving only a manageable number of unknown matrix elements Mr. However, generally,
when p2 6= (p+q)2 one has to sum up the infinite series of matrix elements of local operators
in some way.

One possible solution of this problem is provided by the light-cone expansion of the
bilocal operator (3.8). For the matrix element (3.7) the first term of this expansion is given
by

〈π(q)|ū(x)γµγ5d(0)|0〉x2=0 = −iqµfπ
∫ 1

0
du eiuqxϕπ(u) . (3.12)

The function ϕπ(u) is known as the twist 2 light-cone wave function of the pion. It represents
the distribution in the fraction of the light-cone momentum q0 + q3 of the pion carried by
a constituent quark. As can be seen by putting x = 0 in the above, ϕπ(u) is normalized to
unity. Substitution of (3.12) in (3.5) and integration over x and k yields

F (p2, (p+ q)2) = mbfπ

∫ 1

0

du ϕπ(u)

m2
b − (p+ uq)2

. (3.13)

We see that the infinite series of matrix elements of local operators encountered before in
(3.10) is effectively replaced by a wave function. Formal expansion of (3.13) in q,

F (p2, (p+ q)2) = mbfπ
∞∑

r=0

(2p · q)r
(m2

b − p2)r+1

∫ 1

0
du urϕπ(u) , (3.14)

and comparison with (3.10) yields the relation between the matrix elements Mr defined in
(3.9) and the moments of ϕπ(u):

Mr = −ifπ
∫ 1

0
du urϕπ(u). (3.15)

Including the next-to-leading terms in x2, the light-cone expansion of the matrix element
(3.7) is given by

〈π(q)|ū(x)γµγ5d(0)|0〉 = −iqµfπ
∫ 1

0
du eiuqx

(
ϕπ(u) + x2g1(u)

)

+fπ

(
xµ −

x2qµ
qx

) ∫ 1

0
du eiuqxg2(u), (3.16)

where g1 and g2 are twist 4 wave functions. Proceeding to the second term in (3.5) and
using the relation

γµγνγ5 = gµνγ5 − iσµνγ5 , (3.17)

one encounters two further matrix elements:

〈π(q) | ū(x)iγ5d(0) | 0〉 = fπµπ

∫ 1

0
du eiuqxϕp(u) (3.18)
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and

〈π(q) | ū(x)σµνγ5d(0) | 0〉 = i(qµxν − qνxµ)
fπµπ

6

∫ 1

0
du eiuqxϕσ(u) (3.19)

with µπ = m2
π/(mu + md). Only the leading terms of the expansion are considered here.

They have twist 3 and are parameterized by the wave functions ϕp and ϕσ.
Beyond twist 2, one should also take into account the higher-order term illustrated

graphically in Fig. 3b, where a gluon is emitted from the heavy quark line. This correction
is determined by quark-antiquark-gluon wave functions [31]. Explicit expressions for this
contribution can be found in [28, 29] and also in [5]. Below, this term is denoted by FG.
Gluon radiation from the light quark lines in Fig. 3a is effectively included in the twist 3
and 4 wave functions as was shown in [26, 32, 33]. Components of the pion wave function
with two extra gluons, or with an additional q̄q pair are neglected. Including all operators
up to twist 4 one obtains the following results for the two invariant functions defined in
(3.4):

F (p2, (p+ q)2) = fπ

1∫

0

du

m2
b − (p+ uq)2

{
mbϕπ(u)

+ µπ

[
uϕp(u) +

1

6

(
2 +

p2 +m2
b

m2
b − (p+ uq)2

)
ϕσ(u)

]

+mb

[
2ug2(u)

m2
b − (p+ uq)2

− 8m2
b

(m2
b − (p+ uq)2)2

(
g1(u) −

∫ u

0
dvg2(v)

)]}

+ FG(p2, (p+ q)2) (3.20)

F̃ (p2, (p+ q)2) = fπ

1∫

0

du

m2
b − (p+ uq)2

{
µπϕp(u) +

µπϕσ(u)

6u

×
[
1 − m2

b − p2

m2
b − (p+ uq)2

]
+

2mbg2(u)

m2
b − (p + uq)2

}
. (3.21)

We see that every power of x2 in the light-cone expansion of the integrand in (3.4) leads to
an additional power of m2

b − (p+ uq)2 in the denominators of the coefficients. This justifies
the neglect of higher-twist operators, provided (p+ q)2 and p2 are sufficiently smaller than
m2
b . It is also interesting to note that there are no contributions from twist 2 and from

three-particle wave functions to F̃ .

3.3 Light-cone wave functions

Before proceeding with the derivation of the light-cone sum rules for the form factors f±, it
may be useful to make a few more remarks on the light-cone wave functions. Firstly, these
functions are universal, a property which is essential for the whole approach, similarly as the
universality of the vacuum condensates in the case of short-distance sum rules. Secondly,
the asymptotic form of the wave functions is given by conformal symmetry and asymptotic
freedom of QCD [24, 33], while the nonasymptotic features incorporate long-distance quark-
gluon interactions. Thirdly, the factorization of collinear logarithms generated by gluon
radiation and the renormalization procedure induce scale dependences. Usually, a common
scale µ is chosen for simplicity.
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In leading-order approximation (LO), the twist 2 wave function ϕπ(u, µ) obeys the
Brodsky-Lepage evolution equation [22]:

dϕπ(u, µ)

d lnµ
=

1∫

0

dwV (u, w)ϕπ(w, µ) , (3.22)

where

V (u, w) =
αs(µ)CF

π

[
1 − u

1 − w

(
1 +

1

u− w

)
Θ(u− w) +

u

w

(
1 +

1

w − u

)
Θ(w − u)

]

+
(3.23)

and the + regularization is defined by

R(u, w)+ = R(u, w) − δ(u− w)

1∫

0

R(v, w)dv . (3.24)

The evolution equation effectively sums up the leading logarithms to all orders. It can be
solved by expanding ϕπ(u, µ) in terms of Gegenbauer polynomials

ϕπ(u, µ) = 6u(1 − u)
[
1 +

∑

i

a2i(µ)C
3/2
2i (2u− 1)

]
, (3.25)

in which case the coefficients a2i(µ) are multiplicatively renormalizable [22]. The scale
dependence is given by

an(µ) = an(µ0)

(
αs(µ)

αs(µ0)

)γn/b

, (3.26)

where b = 11 − 2nf/3 is the 1-loop coefficient of the QCD beta function, nf being the
number of active flavours, and

γn = CF

[
−3 − 2

(n + 1)(n+ 2)
+ 4

(
n+1∑

k=1

1

k

)]
(3.27)

are the anomalous dimensions [24]. We see that an(µ), n ≥ 2 vanishes for µ → ∞. There-
fore, these terms describe the nonasymptotic effects in the wave function (3.25). The µ-
independent term is the asymptotic wave function, ϕπ(u, µ = ∞) = 6u(1 − u). As already
pointed out, the normalization is such that

∫ 1

0
duϕπ(u, µ) = 1 . (3.28)

The initial values of the nonasymptotic coefficients can be estimated from two-point
sum rules [24] for the moments

∫
unϕπ(u, µ)du at low n. The nonperturbative information

encoded in the quark and gluon condensates is thereby transmuted into the long-distance
properties of the wave function. Alternatively, one can determine the coefficients directly
from light-cone sum rules for known hadronic quantities such as the πNN and ωρπ couplings.
Here, the estimates at µ0 = 0.5 GeV given in [26] are adopted:

a2(µ0) =
2

3
, a4(µ0) = 0.43 . (3.29)
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The corresponding Gegenbauer polynomials are given by

C
3/2
2 (2u− 1) =

3

2
[5(2u− 1)2 − 1] ,

C
3/2
4 (2u− 1) =

15

8
[21(2u− 1)4 − 14(2u− 1)2 + 1] . (3.30)

On the basis of the approximate conformal symmetry of QCD it has been shown [33] that
the expansion (3.25) converges sufficiently fast so that the terms with n > 4 are negligible.

For completeness, the twist 3 and 4 two-particle light-cone wave functions of the pion
are listed below [24, 26]:

ϕp(u, µ) = 1 +B2(µ)
1

2
(3(u− ū)2 − 1) +B4(µ)

1

8
(35(u− ū)4

− 30(u− ū)2 + 3) , (3.31)

ϕσ(u, µ) = 6uū
[
1 + C2(µ)

3

2
(5(u− ū)2 − 1)

+ C4(µ)
15

8
(21(u− ū)4 − 14(u− ū)2 + 1)

]
, (3.32)

g1(u, µ) =
5

2
δ2(µ)ū2u2 +

1

2
ε(µ)δ2(µ)[ūu(2 + 13ūu) + 10u3 ln u(2 − 3u+

6

5
u2)

+ 10ū3 ln ū(2 − 3ū+
6

5
ū2)] , (3.33)

g2(u, µ) =
10

3
δ2(µ)ūu(u− ū) , (3.34)

u∫

0

dvg2(v, µ) =
5

3
δ2(µ)ū2u2 (3.35)

with ū = 1 − u and

B2 = 30
f3π

µπfπ
, B4 =

3

2

f3π

µπfπ
(4ω2,0 − ω1,1 − 2ω1,0) ,

C2 =
f3π

µπfπ
(5 − 1

2
ω1,0) , C4 =

1

10

f3π

µπfπ
(4ω2,0 − ω1,1) . (3.36)

The additional parameters appearing in the above are numerically given by

f3π(1GeV) = 0.0035 GeV2 ,

ω1,0(1GeV) = −2.88 , ω2,0(1GeV) = 10.5 , ω1,1(1GeV) = 0 ,

δ2(1GeV) = 0.2 GeV2 , ε(1GeV) = 0.5 . (3.37)

For the quark-antiquark-gluon wave functions the reader is referred to [31] and [5].

3.4 Sum rules for heavy-to-light form factors

Now we are ready to proceed with the discussion of the B → π transition form factors. In
order to determine f±(p2) from the correlation function Fµ(p, q) derived in (3.4), we apply
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QCD sum rule methods to the B-meson channel following essentially the same steps as in
the derivation of the sum rule for fB in sect. 2.2. The hadronic representation of (3.4) is
obtained by inserting a complete set of intermediate states with B-meson quantum numbers
between the currents on the r.h.s. of (3.4). Using the matrix elements (2.5) and (3.1), and
representing the sum over excited and continuum states by a dispersion integral with the
spectral density ρhµ = ρhqµ + ρ̃hpµ, one obtains the following relations for the invariant

amplitudes F and F̃ :

F (p2, (p+ q)2) =
2m2

BfBf
+(p2)

mb(m2
B − (p+ q)2)

+

∞∫

sh
0

ρh(p2, s)ds

s− (p+ q)2
, (3.38)

F̃ (p2, (p+ q)2) =
m2
BfB(f+(p2) + f−(p2))

mb(m2
B − (p+ q)2)

+

∞∫

sh
0

ds
ρ̃h(p2, s)

s− (p+ q)2
. (3.39)

Similarly as in (2.11), the integrals over ρh and ρ̃h are approximated by corresponding
integrals over the spectral densities calculated from the light-cone expansion of (3.4) using
the substitution

ρh(p2, s)Θ(s− sh0) =
1

π
ImF (p2, s)Θ(s− sB0 ) , (3.40)

and the analogous relation for ρ̃h and ImF̃ . The calculation of the imaginary parts of F
and F̃ from the functions given in (3.20) and (3.21), respectively, is outlined, e.g., in [5].
With the above duality approximation it is again rather straightforward to subtract the
continuum contributions from the l.h.s. of (3.38) and (3.39). After performing the Borel
transformation in (p+ q)2, one arrives at the sum rules [28, 29]

fBf
+(p2) =

fπm
2
b

2m2
B

exp

(
m2
B

M2

){ 1∫

∆

du

u
exp

[
−m

2
b − p2(1 − u)

uM2

]

×
(
ϕπ(u) +

µπ
mb

[
uϕp(u) +

ϕσ(u)

3

(
1 +

m2
b + p2

2uM2

) ]

−4m2
bg1(u)

u2M4
+

2

uM2

u∫

0

g2(v)dv

(
1 +

m2
b + p2

uM2

))
+ t+(sB0 , p

2,M2)

+ f+
G (p2,M2) +

αsCF
4π

δ+(p2,M2)

}
, (3.41)

and [30]

fB(f+(p2) + f−(p2)) =
fπµπmb

m2
B

exp

(
m2
B

M2

){ 1∫

∆

du

u
exp

[
−m

2
b − p2(1 − u)

uM2

]

×
[
ϕp(u) +

ϕσ(u)

6u

(
1 − m2

b − p2

uM2

)
+

2mbg2(u)

µπuM2

]
+ t±(sB0 , p

2,M2)

}
. (3.42)
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The sum rule for the scalar form factor f 0 follows from the relation (3.2). In the above, t+

and t± are numerically small corrections left from continuum subtraction, and f+
G denotes the

contribution from the three-particle wave functions. The explicit expressions of these terms
are given in [29, 30]. Also indicated is the perturbative QCD correction δ+ to the leading
twist 2 term in f+ which has been calculated only recently [34, 35]. Other perturbative
corrections are still unknown.

Concerning the O(αs) correction to the leading twist 2 result, a few comments are in
order. Hard gluon exchanges give rise to radiative effects in the correlation function (3.4)
which can be calculated perturbatively. The first-order diagrams are shown in Fig. 4. The
expression (3.13) of the invariant function F can be more generally written as a convolution
of a hard scattering amplitude T with the twist 2 wave function:

F (p2, (p+ q)2) = fπ

∫ 1

0
duϕπ(u, µ)T (p2, (p+ q)2, u, µ) , (3.43)

where T is determined by a perturbative series

T (p2, (p+ q)2, u, µ) = T0(p
2, (p+ q)2, u) +

αsCF
4π

T1(p
2, (p+ q)2, u, µ) +O(α2

s) . (3.44)

The LO approximation is given by the zero-order amplitude

T0(p
2, (p+ q)2, u) =

mb

m2
b − p2(1 − u) − (p+ q)2u

(3.45)

convoluted with the wave function obeying the LO Brodsky-Lepage evolution equation
(3.22). In next-to-leading order (NLO), the hard amplitude (3.44) includes the first-order
term T1, while the wave function ϕπ(u, µ) solves the NLO evolution equation [36]. For cal-
culational details and analytic results one may consult [34, 35]. To date, the NLO program
is completed only for the twist 2 contribution to the invariant amplitude F .

It is important to note that the correlation function (3.4) actually leads to sum rules for
products of decay constants and form factors as made explicit in (3.41) and (3.42). When
dividing out the decay constants, consistency requires to take both the sum rule and fP in
LO or in NLO. This appears obvious, but has not always been respected in the literature.
Some of the discrepancies in the calculations originate just from mixing orders. In fact, as
will be quantified later, the remaining radiative corrections to f+(p2) turn out to be rather
small because of a cancellation of the corrections to the sum rules (3.41) for fBf

+(p2) and
(2.19) for fB.

As a final remark, the light-cone sum rules provide a unique possibility to investigate
the heavy-mass dependence of the heavy-to-light form factors. To this end, one employs the
following scaling relations for mass parameters and decay constants:

mP = mQ + Λ̄ , sP0 = m2
Q + 2mQω0 , M2 = 2mQτ , (3.46)

fp = f̂P/
√
mQ, (3.47)

where in the heavy quark limit Λ̄, ω0, τ , f̂P are mQ-independent quantities. With these
substitutions it is straightforward to expand the sum rules (3.41) and (3.42) in mQ. In both
cases, the light-cone expansion in terms of wave functions with increasing twist is consistent
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Figure 4: Diagrams of the O(αs) corrections to the correlation function (3.4).

with the heavy mass expansion, that is the higher-twist contributions either scale with the
same power of mQ as the leading-twist term, or they are suppressed by extra powers of mQ.

The asymptotic scaling behaviour of the form factors turns out to differ sharply at small
4 and large momentum transfer [30]. At p2 = 0

f+(0) = f 0(0) ∼ m
−3/2
Q , (3.48)

f+(0) + f−(0) ∼ m
−3/2
Q , (3.49)

whereas at p2 = m2
Q − 2mQχ, χ being independent of mQ,

f+(p2) ∼ m
1/2
Q , (3.50)

f+(p2) + f−(p2) ≃ f 0(p2) ∼ m
−1/2
Q . (3.51)

The sum rules thus nicely reproduce the asymptotic dependence of the form factors on the
heavy quark mass derived in [37, 38] for small pion momentum in the rest frame of the P
meson. In addition, the sum rules allow to investigate the opposite region of large pion

4see also ref. [27]
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momentum where neither HQET nor the single-pole model can be trusted. Clearly, from
the sum rule point of view it is expected that the excited and continuum states become
more and more important as p2 → 0. This is reflected in the change of the asymptotic mass
dependence. Claims in the literature which differ from (3.48) to (3.51) are often based on
the pole model and therefore not reliable. A similar analysis has been carried out in [39] for
B → ρ form factors with essentially the same conclusions.

3.5 Numerical analysis

For most of the following illustrations, it suffices to work in LO. Strictly speaking, since
the NLO order corrections to fB(f+ + f−) are unknown, it is also more consistent to work
in LO when combining or comparing f+ and f+ + f−. Therefore, if not stated otherwise,
the values of mb, s

B
0 , and fB(αs = 0) specified in (2.20), (2.21) and (2.29), respectively, are

used. The pion wave functions are as given in sect. 3.3 with the coefficients scaled to

µb =
√
m2
B −m2

b ≃ 2.4 GeV . (3.52)

With this input we have checked that for M2 = 10±2 GeV2 the twist 4 corrections are very
small, and that the continuum contributions do not exceed 30%. Up to p2 ≃ 18 GeV2, the
sum rules are also quite stable under variation of M2. At larger momentum transfer the sum
rules become unstable, and the twist 4 contribution grows rapidly. This is not surprising
because the light-cone expansion and the sum rule method are expected to break down as
p2 approaches m2

b .

p2[GeV2]
f+(p2) (f+ + f�)(p2)

0
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0 4 8 12 16

Figure 5: B → π form factors obtained from light-cone sum rules in LO.

The momentum dependence of the form factors f+ and f+ + f− can be seen in Fig. 5.
Specifically, at zero momentum transfer we predict

f+(0) = 0.30,
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f+(0) + f−(0) = 0.06. (3.53)

If the known O(αs) corrections are included in the sum rules for fBf
+(p2) and fB, one gets

instead
f+(0) = 0.27. (3.54)

0

0.2

0.4

0.6

0.8

1

1.2

8 10 12 4.6 4.7 4.8 33 35 37

f+(p2)

M 2[GeV2] mb[GeV] sB0 [GeV2]

(a) (b) (c)

Figure 6: Variation of the sum rule prediction on f+(p2) with the Borel parameter (a), the
b-quark mass (b), and the continuum threshold sB0 (c). Considered are three typical values
of momentum transfer: p2 = 0 (solid), p2 = 8 GeV2 (long-dashed), and p2 = 16 GeV2

(short-dashed).

Allowing the parameters to vary within the ranges specified one can estimate the uncer-
tainties in the sum rule predictions. The main sources of uncertainty are discussed below:

(a) Borel mass parameter
The dependence of f+ on M2 is illustrated in Fig. 6a. In the allowed interval of M2, f+

deviates by only ±(3 to 5) % from the nominal value, depending slightly on p2.
(b) b-quark mass and continuum threshold
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Fig. 6b shows the variation of f+ with mb keeping all other parameters except fB fixed.
The value of fB is taken from the sum rule (2.19) after dropping the O(αs) corrections. The
analogous test for sB0 is performed in Fig. 6c. If sB0 and mb are varied simultaneously such
that one achieves maximum stability of the sum rule for fB, the change in f+ is negligible
at small p2 and only about ± 3 % at large p2.

(c) higher-twist contributions
No reliable estimates exist for wave functions beyond twist 4. Therefore, we use the magni-
tude of the twist 4 contribution to f+ as an indicator for the uncertainty due to the neglect
of higher-twist terms. From Fig. 7a we see that the impact of the twist 4 components is
comfortably small, less than 2 % at low p2 and about 5 % at large p2. This suggests a
conservative estimate of ± 5 % uncertainty due to unknown higher-twist.

(d) light-cone wave functions
In order to clarify the sensitivity of f+ to the nonasymptotic effects in the wave functions,
the corresponding coefficients are put to zero and the result is compared, in Fig. 7b, to the
nominal prediction. The change amounts to about -10 % at small p2 and +10 % at large p2,
while the intermediate region around p2 ≃ 10 GeV2 is very little affected. Since this exercise
is rather extreme, the real uncertainty from the errors in the nonasymptotic coefficients is
considerably smaller.

(e) perturbative corrections
The O(αs) corrections to the leading twist 2 term in the sum rule (3.41) for fBf

+ and to
the sum rule (2.19) for fB, both being about 30 %, cancel in the ratio. The net effect is the
surprisingly small correction to f+ shown in Fig. 8. This result [34, 35] eliminates one main
uncertainty. Unfortunately, the perturbative corrections to the higher-twist terms are not
known. Considering that the twist 3 terms contribute about 50 % to the sum rule for fBf

+,
and assuming again radiative corrections of about 30 % but no cancellation, the remaining
uncertainty is 15 %.

In summary, the present total uncertainty in the normalization of f+(p2) is estimated
to be about 25 %, if the individual contributions (a) to (e) with the exception of (d) are
added up linearly, and about 17 % if they are added in quadrature as is often done in the
literature. Ultimately, this may be reduced to about 15 to 10 %. In addition, there is a
shape-dependent uncertainty from (d) of less than -10 % at low and +10 % at high p2.
Moreover, in the integrated width the latter uncertainty averages out almost completely.
The uncertainties from (a) to (d) on f+ + f− are of comparable size, while the effect of
radiative corrections is still unknown.

Finally, it is interesting to compare the predictions on the B → π form factors from the
light-cone sum rules with the results of other approaches. Such a comparison is presented in
Fig. 9 and 10. Although there is rough agreement on the normalization at low momentum
transfer, the light-cone sum rules predict the fastest increase of f+ with p2.

The sum rules (3.41) and (3.42) for the B → π form factors are formally converted into
sum rules for the D → π form factors by replacing b with c and B with D. The input
parameters are taken over from the calculation of fD in sect. 2.2. In addition, one has to
rescale the wave functions from µb ≃ 2.4 GeV to µc ≃ 1.3 GeV. The allowed Borel mass
window is 3 GeV2 < M2 < 5 GeV2. With this choice, the D → π form factor at p2 = 0 is
predicted to be [29, 30]

f+(0) = 0.68. (3.55)
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Figure 7: B → π form factor f+: (a) individual contributions of twist 2 (dashed), 3 (dash-
dotted), and 4 (dotted), and the total sum (solid); (b) wave functions with (solid) and without
(dashed) nonasymptotic corrections.
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Figure 8: B → π form factor f+(p2) in leading twist 2 approximation: LO (dashed) in
comparison to NLO (solid).

O(αs) corrections are not included here. The momentum dependence of f+ in the range
p2 ≤ m2

c −O(1 GeV2) is shown in the next section, together with an extrapolation to higher
p2.

Other important applications of light-cone sum rules include the estimate of the B → K
form factor [28] which determines the factorizable part of the B → J/ψK amplitude, the
prediction of the matrix element of the electromagnetic penguin operator for B → K∗γ [43],
and the calculation of the B → ρ form factors [39]. In the latter work, essentially the same
procedure is applied as outlined above. However, the relevant weak currents and light-cone
wave functions are very different.

3.6 Single pole approximation and the B∗Bπ and D∗Dπ couplings

As repeatedly stressed, the light-cone sum rules derived in sect. 3.2 and 3.4 are only valid
in the momentum range p2 ≤ m2

Q−2mQχ. In order to calculate the integrated semileptonic
width Γ(P → hlν̄l) one must therefore find another way to estimate the form factors in the
high momentum range m2

Q − 2mQχ ≤ p2 ≤ (mP − mh)
2. Near the pole p2 = m2

V of the
vector ground state V it is justifiable to use the single pole approximation

f+(p2) =
fV gV Pπ

2mV (1 − p2/m2
V )

. (3.56)

Here, fV is the decay constant of the vector state defined by the matrix element

〈0 | q̄γµQ | V 〉 = mV fV ǫµ , (3.57)
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Figure 9: B → π form factor f+ calculated in different approaches: three-point sum rule
[40] (dashed), quark model [41] (dotted), and light-cone sum rule [28, 30] (solid).

and gV Pπ is the strong coupling between the heavy vector and pseudoscalar mesons and the
pion defined by

〈V π | P 〉 = −gV Pπ(q · ǫ) , (3.58)

ǫµ being the V polarization vector.
The B∗Bπ and D∗Dπ couplings have been studied with different variants of sum rules

and in a variety of quark models. In [29], a light-cone sum rule for gB∗Bπ has been suggested
which is derived from the same correlation function (3.4) as the B → π form factors.
Hence, the nonperturbative input is exactly the same in both calculations . The key idea is
to write a double dispersion integral for the invariant function F (p2, (p+ q)2). Inserting in
(3.4) complete sets of intermediate hadronic states carrying B and B∗ quantum numbers,
respectively, and using the matrix elements (2.5), (3.57) and (3.58) one obtains

F (p2, (p+ q)2) =
m2
BmB∗fBfB∗gB∗Bπ

mb(p2 −m2
B∗)((p+ q)2 −m2

B)
+
∫

Σ

ρh(s1, s2)ds1ds2

(s1 − p2)(s2 − (p+ q)2)
(3.59)

+ (subtractions) .

The first term is obviously the ground-state contribution containing the B∗Bπ coupling,
while the spectral function ρh(s1, s2) represents higher resonances and continuum states in
the B∗ and B channels. The integration region in the (s1, s2) – plane is denoted by Σ. The
subtraction terms are polynomials in p2 and/or (p+q)2 which vanish by Borel transformation
of (3.59) with respect to both variables p2 and (p+q)2. The resulting hadronic representation
of F is thus given by

F (M2
1 ,M

2
2 ) ≡ BM2

1
BM2

2
F (p2, (p+ q)2) =

m2
BmB∗fBfB∗gB∗Bπ

mb

exp

[
−m

2
B∗

M2
1

− m2
B

M2
2

]
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Figure 10: The B → π form factor f 0: light-cone sum rule prediction (solid) in comparison
to the quark model result from [41] (dashed) and the sum rule estimate from [42] (dash-
dotted).

+
∫

Σ12

exp

[
− s1

M2
1

− s2

M2
2

]
ρh(s1, s2)ds1ds2 , (3.60)

where M2
1 and M2

2 are the Borel parameters associated with p2 and (p + q)2, respectively.
The same transformation is also applied to F (p2, (p+ q)2) given in (3.20):

F (M2
1 ,M

2
2 ) = mbfπϕπ(u0)M

2e−
m2

b
M2 + (higher twist) (3.61)

with u0 = M2
1 /(M

2
1 +M2

2 ) and M2 = M2
1M

2
2 /(M

2
1 + M2

2 ). The derivation of the complete
result and, in particular, the subtraction of the continuum is quite tricky. Further explana-
tions can be found in [5]. It turns out that the subtraction greatly simplifies if M2

1 = M2
2 ,

i.e., u0 = 1/2. With this choice, the following sum rule is obtained from (3.60) and (3.61)
after continuum subtraction:

fBfB∗gB∗Bπ =
m2
bfπ

m2
BmB∗

e
m2

B
+m2

B∗

2M2

{
M2

[
e−

m2
b

M2 − e−
sB
0

M2

]

×
[
ϕπ(u0) +

µπ
mb

(
u0ϕp(u0) +

1

3
ϕσ(u0) +

1

6
u0
dϕσ
du

(u0)

)
+

2f3π

mbfπ
IG3 (u0)

]

+ e−
m2

b
M2

[µπmb

3
ϕσ(u0) + 2u0g2(u0) −

4m2
b

M2
(g1(u0) +G2(u0)) + IG4 (u0)

]}

u0=1/2

. (3.62)

Here, IG3 (u0) and IG4 (u0) are contributions from the three-particle amplitude shown in Fig.
3b and given formally in [29, 5]. Since G-parity implies g2(u0) = dϕσ

du
(u0) = 0 at u0 = 1/2,

these terms can be dropped in the above sum rule due to the choice M2
1 = M2

2 .
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One of the numerically crucial parameters is the leading twist 2 wave function ϕπ at the
symmetry point u0 = 1/2. The same parameter also enters the sum rules for other hadronic
couplings involving the pion. For the following predictions the value

ϕπ(u =
1

2
) = 1.2 ± 0.2 (3.63)

obtained from the light-cone sum rule for the pion-nucleon coupling [26] has been used. This
value is consistent with the coefficients a2,4 given in (3.29). The values of the remaining
parameters are as in the calculation of the form factor f+ in sect. 3.5. With this input the
sum rule (3.62) yields

fBfB∗gB∗Bπ = 0.64 ± 0.06 GeV2 . (3.64)

Furthermore, using the sum rule estimate (2.29) for fB, and

f̄B∗ = fB∗(αs = 0) = 160 ± 30 MeV (3.65)

derived from a similar two-point sum rule for fB∗ , one gets

gB∗Bπ = 29 ± 3 . (3.66)

Note that the couplings of the different charge states are related by isospin symmetry:

gB∗Bπ ≡ gB̄∗0B−π+ = −
√

2gB̄∗0B̄0π0 =
√

2gB∗−B−π0m = −gB∗−B̄0π− . (3.67)

The uncertainties quoted above reflect the variation of the results with the Borel mass in
the allowed window 6 ≤ M2 ≤ 12 GeV2. In this window the excited and continuum states
contribute less than 30 % and the twist 4 corrections do not exceed 10 %. There are other
sources of uncertainties. In particular, the above predictions can and should be improved
by calculating radiative gluon corrections.

The sum rule (3.62) for gB∗Bπ is translated into a sum rule for gD∗Dπ by formally changing
b to c, B̄ to D, and B̄∗ to D∗. With (3.63) and the input parameters from the calculation
of the D → π form factor, one finds

fDfD∗gD∗Dπ = 0.51 ± 0.05 GeV 2 . (3.68)

Use of (2.30) for fD and of the analogous sum rule estimate

f̄D∗ = fD∗(αs = 0) = 240 ± 20 MeV (3.69)

yields

gD∗Dπ = 12.5 ± 1.0 . (3.70)

The variation with M2 in the allowed interval, here, 2 ≤M2 ≤ 4 GeV2, is again quoted as
an uncertainty.

From (3.70) one can calculate the width for the decay D∗ → Dπ. The prediction,

Γ(D∗+ → D0π+) =
g2
D∗Dπ

24πm2
D∗

| ~q |3 = 32 ± 5 keV , (3.71)
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Table 4: Theoretical estimates of the strong B∗Bπ and D∗Dπ couplings (from [29]).

Reference ĝ gB∗Bπ gD∗Dπ Γ(D∗+ → D0π+) (keV)

[29] 0.32 ± 0.02 29 ± 3 12.5 ± 1.0 32 ± 5

[29]a – 28 ± 6 11 ± 2 –

[45]a – 32 ± 6 – –

[46]a 0.2 ÷ 0.7 – – –

[47]a 0.39 ± 0.16 20 ± 4 9 ± 1 –

[47]a∗ 0.21 ± 0.06 15 ± 4 7 ± 1 10 ± 3

[48]b 0.7 – – –

[37]b – 64 – –

[49]b 0.75 ÷ 1.0 – – 100 ÷ 180

[50]c 0.6 ÷ 0.7 – – 61 ÷ 78

[51]c 0.4 ÷ 0.7 – – –

[52]d 0.3 – – –

[53]e – – 16.2 53.4

[54]f – – 19.5 ± 1.0 76 ± 7

[55]g – – 16.2 ± 0.3 53.3 ± 2.0

[56]h – – 8.9 16

[57]i – – 8.2 13.8

[44]k – – < 21 < 89

a QCD sum rules in external axial field or soft pion limit.
∗ including perturbative correction to the heavy meson decay constants.
b Quark model + chiral HQET.
c Chiral HQET with experimental constraints on D∗ decays.
d Extended NJL model + chiral HQET .
e Quark Model + scaling relation.
f Relativistic quark model.
g Bag model.
h SU(4) symmetry.
i Reggeon quark-gluon string model.
k Experimental limits
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lies well below the current experimental upper limit,

Γ(D∗+ → D0π+) < 89 keV . (3.72)

The latter is derived from the upper limit Γtot(D
∗+) < 131 keV and from the branching

ratio BR(D∗+ → D0π+) = (68.3 ± 1.4) % [44]. Predictions for other charge combinations
are readily obtained from (3.71) and isospin relations analogous to (3.67). Accounting also
for the differences in phase space, one expects

Γ(D∗+ → D0π+) = 2.2 Γ(D∗+ → D+π0) = 1.44 Γ(D∗0 → D0π0) . (3.73)

In contrast to gD∗Dπ, the coupling constant gB∗Bπ cannot be measured directly, since the
corresponding decay B∗ → Bπ is kinematically forbidden.
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Figure 11: The B → π form factor f+: direct sum rule prediction (solid), and single-pole
approximation normalized by the sum rule estimate for gB∗Bπ (dashed).

In Tab. 4, the numerical results discussed above are summarized and compared with
other estimates. One observes significant differences. Some of the predictions are rather
close to the experimental upper limit, some already violate the bound. It would be very
interesting to have more precise data.

As far as the asymptotic dependence of the V Pπ coupling on the heavy quark mass is
concerned, the sum rule (3.62) suggests

gV Pπ ∼ mQ , (3.74)

in agreement with the expectation from HQET [37, 48, 58]. The sum rules can also be used
to investigate the 1/mQ corrections. A simple quantitative estimate of the latter is obtained
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Figure 12: The D → π form factor f+: direct sum rule prediction (solid), and single-pole
approximation normalized by the sum rule estimate for gD∗Dπ (dashed).

by fitting the numerical predictions (3.66) and (3.70) to the expression

gB∗Bπ =
2mB

fπ
· ĝ
(

1 +
∆

mB

)
(3.75)

and the analogous one for gD∗Dπ. The result is [29]

ĝ = 0.32 ± 0.02 , ∆ = (0.7 ± 0.1) GeV . (3.76)

In Tab. 4 , the above value of the reduced coupling constant ĝ is compared to the estimates
from other approaches. The 1/mQ correction being about 15% for gB∗Bπ and 40% for gD∗Dπ

is non-negligible. Furthermore, in the heavy quark limit the ratio

r =
gB∗BπfB∗

√
mD

gD∗DπfD∗

√
mB

(3.77)

is expected to approach unity. Moreover, it has been shown [59] that r is subject to 1/mQ

corrections only in next-to-leading order. Indeed, the ratio r = 0.92 derived from the light-
cone sum rules deviates surprisingly little from unity, in qualitative agreement with the
HQET expectation.

Finally, let us return to the original problem of calculating the heavy-to-light form factors
at large momentum transfer. As pointed out in the beginning of this section, the V Pπ on-
shell vertex is of great importance for the understanding of the form factor f+ at large
momentum transfer, since near the kinematic limit the V pole is expected to dominated the
behaviour of f+. For B → π, the single-pole approximation,

f+(p2) =
fB∗gB∗Bπ

2mB∗(1 − p2/m2
B∗)

(3.78)
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Figure 13: The sum rule prediction for the B → π form factor f+ in comparison to lattice
results [16].

is illustrated in Fig. 11 taking gB∗Bπ from (3.66) and fB∗ from (3.65). The extrapolation
of the single-pole model to smaller p2 matches quite well with the direct estimate from the
light-cone sum rule (3.41) at intermediate momentum transfer p2 = 15 to 20 GeV2. One
thus has a consistent and complete theoretical description of f+. The extrapolation for the
D → π form factor using the analogous single-pole formula with gD∗Dπ from (3.70) and fD∗

from (3.69) is shown in Fig. 12. Also in this case we find the direct sum rule result and the
pole model to match nicely at p2 ≃ 0.7 GeV2. However, here the matching point is a little
bit too far away from the D∗ resonance for the extrapolation to be completely trustworthy.

3.7 Decay spectra, integrated widths, and Vub

With the f+ form factors for B and D mesons at hand, we are now in the position to
discuss the differential distributions and integrated widths for the exclusive semileptonic
decays B → πl̄νl and D → πl̄νl with l = e or µ. In these decays, the form factor f 0 being
suppressed by m2

l plays a negligible role.
For convenience, one may fit a parametrization of the form

f+(p2) =
f+(0)

1 − ap2/m2
P + bp4/m4

P

(3.79)

to the theoretical curves plotted in Fig. 11 and 12. For the B → π form factor this fit yields

a = 1.50, b = 0.52 . (3.80)

Here, the known NLO corrections are included and, correspondingly, f+(0) has been fixed
to the NLO value f+(0) = 0.27 given in (3.54). Fig. 13 shows the interpolation (3.79) in
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Figure 14: Distribution of the momentum transfer squared in B → πl̄νl (l = e, µ). The
dashed curves indicate the theoretical uncertainty discussed in detail in the text.

comparison with recent lattice results 5. The agreement is very encouraging. The analogous
fit of (3.79) for the D → π form factor results in

a = 1.16, b = 0.32 . (3.81)

In this case, the NLO effects are not yet included whence the LO prediction f+(0) = 0.68
given in (3.55) is used.

The distribution in momentum transfer squared for B → πl̄νl is shown in Fig. 14. The
band indicates the present theoretical uncertainty as discussed in detail in sect 3.5. To be
precise, the uncertainties from the different sources are added in quadrature. Integrating
this distribution one obtains the partial width

Γ(B → πl̄νl) = (7.5 ± 2.5) |Vub|2 ps−1 . (3.82)

The corresponding distribution in the charged lepton energy is displayed in Fig. 15.
Contrary to the semileptonic decays into e and µ, the decay B → πτ̄ντ is quite sensitive

to the scalar form factor f 0. As well-known [59], the single-pole approximation used to
extrapolate the sum rule result on f+ to maximum p2 cannot be applied to f 0. One way
to argue is that the scalar B ground state is about 500 MeV heavier than the pseudoscalar
B and, therefore, lies too far above the kinematical endpoint of the B → π transition in
order to dominate the form factor. Nearby excited resonances and nonresonant states are
expected to give comparable contributions. Thus, in order to demonstrate the sensitivity of
the τ -mode to f 0, the light-cone prediction shown in Fig. 10 is linearly extrapolated from

5For a comprehensive review see J.M. Flynn and C.T. Sachraida, ref. [60].
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Figure 15: Distribution of the charged lepton energy in B → πl̄νl for l = e, µ (solid) and
l = τ (dashed). In the latter case the two curves correspond to the two extrapolations of f 0

shown in Fig. 16.

the value at p2 ≃ 15 GeV2 at which the sum rules (3.41) and (3.42) still hold to the value
at p2 ≃ m2

B dictated by the soft pion limit [38, 59]:

lim
p2→m2

B

f 0(p2) =
fB
fπ

= 1.1 to 1.6 . (3.83)

Here, we have used the conservative range of estimates fB = 150 to 210 MeV. This rough
extrapolation of f 0 is illustrated in Fig. 16 [30]. Also shown are lattice data. They are
systematically lower than the expectation. Note, however, that the sum rule estimate of
f 0 still lacks NLO corrections. Certainly, within the theoretical uncertainties there is no
contradiction.

Fig. 15 shows the τ -energy spectrum. As anticipated, a measurement of B → πτ̄ντ has
the potential to determine or at least constrain the scalar form factor. For the integrated
width one predicts

Γ(B → πτ̄ντ ) = (6.1 ± 0.4)|Vub|2 ps−1 . (3.84)

Interesting is also the ratio of (3.84) and (3.82):

Γ(B → πτ̄ντ )

Γ(B → πēνe)
= 0.75 to 0.85 . (3.85)

This expectation is independent of Vub, and less sensitive to uncertainties in the sum rule
parameters than the widths themselves. The range quoted above corresponds to the two
extreme extrapolations of f 0 considered.
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Figure 16: The B → π form factor f 0: direct sum rule estimate (solid) and linear extrapo-
lations to the limit (3.83) (dashed). The lattice results are from [16].

Recently, the CLEO collaboration [20] has reported the first observation of the semilep-
tonic decays B → πl̄ν and B → ρl̄ν (l = e, µ). From the measured branching fraction,
BR(B0 → π−l+νl) = (1.8± 0.4± 0.3± 0.2) · 10−4, and the world average of the B0 lifetime
[44], τB0 = 1.56 ± 0.06 ps, one derives

Γ(B0 → π−l+νl) = (1.15 ± 0.35) · 10−4 ps−1 , (3.86)

where the errors have been added in quadrature. Comparison of (3.86) with (3.82) yields

|Vub| = 0.0039 ± 0.0006 ± 0.0006. (3.87)

Here, the first (second) error corresponds to the current experimental (theoretical) uncer-
tainty.

A similar analysis has been performed for B → ρl̄νl [39]. There are four independent
B → ρ form factors:

〈ρ(λ)|ūγµ(1 − γ5)b|B〉 = −i(mB +mρ)A1(t)ǫ(λ)µ +
iA2(t)

mB +mρ
(ǫ(λ)pB)(pB + pρ)µ

+
iA3(t)

mB +mρ
(ǫ(λ)pB)(pB − pρ)µ (3.88)

+
2V (t)

mB +mρ
ǫ αβγ
µ ǫ(λ)αpBβpργ

with t = (pB − pρ)
2. Only V (t), A1(t) and A2(t) contribute to the semileptonic decay into

l = e or µ. The sum rule predictions on these form factors are plotted in Fig. 17, while Fig.
18 shows the resulting distribution in momentum transfer squared.
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Figure 17: The B → ρ form factors: predictions from light-cone sum rules (solid) in com-
parison to lattice results [16]. The dashed curves indicate the uncertainties in the sum rule
results (from [39]).
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From the integrated width [39],

Γ(B → ρl̄νl) = (13.5 ± 4) |Vub|2 ps−1 , (3.89)

and the CLEO result,

Γ(B0 → ρ−l+νl) = (1.60 ± 0.6) · 10−4 ps−1 , (3.90)

derived from the observed branching ratio BR(B0 → ρ−l+νl) = (2.5 ± 0.4+0.5
−0.7 ± 0.5) · 10−4

and the B0 lifetime used in (3.86), one obtains

|Vub| = 0.0034 ± 0.0006 ± 0.0005. (3.91)

Within errors, the values of |Vub| extracted from the two exclusive measurements (3.86) and
(3.90) are nicely consistent with each other, and also coincide with the inclusive determina-
tion of Vub [1, 61].

It is worth mentioning that the ratio

Γ(B0 → ρ−l+νl)

Γ(B0 → π−l+νl)
= 1.8 ± 0.7 (3.92)

following from (3.89) and (3.82) is also consistent with the ratio

BR(B0 → ρ−l+νe)

BR(B0 → π−l+νe)
= 1.4+0.6

−0.4 ± 0.3 ± 0.4 (3.93)

observed by CLEO. However, the uncertainties on both sides are still too big to draw any
firm conclusion.
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The final application of the sum rule results on form factors which I want to consider
here is the Cabibbo-suppressed decay D → πēνe. The decay distribution (3.3) calculated
from the parametrization (3.79) with (3.81) for f+ is plotted in Fig. 19. Since the electron
mass can be neglected, the form factor f 0 plays no role. The integrated width is predicted
to be

Γ(D → πl̄νl) = 0.16 |Vcd|2 ps−1 = 8.0 · 10−3 ps−1 , (3.94)

where |Vcd| = 0.224 ± 0.016 [44] has been used. This prediction should be compared with
the experimental result,

Γ(D0 → π−e+νe) = (9.2+2.9
−2.4) · 10−3 ps−1 , (3.95)

derived from the branching ratio BR(D0 → π−e+ν) = (3.8+1.2
−1.0) · 10−3 and the lifetime

τD0 = 0.415 ± 0.004 ps [44]. The theoretical uncertainty is estimated to be of the order
of the experimental error. Despite of the preliminary agreement, one cannot be satisfied
with the present status. In order to really test the sum rule approach both more accurate
calculations and more precise data are needed.
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Figure 19: Distributions of the momentum transfer squared in D → πēνe .

4 Nonleptonic two-body decays

4.1 Effective hamiltonian

As illustrated in Tab. 2, exclusive nonleptonic decays are the theoretically most complicated
processes discussed in these lectures. This class of decays is strongly influenced by hard and
soft interactions of quarks and gluons, by initial bound state and nonspectator effects, as well
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as by hadronization and final state interactions. Although over the years one has developed
a qualitative understanding and even an amazingly consistent phenomenological description
of two-body decays 6, some features are still lacking a quantitative theoretical explanation.

Up to now, only the hard-gluon effects can be systematically taken into account in
the framework of renormalization group improved QCD perturbation theory. As already
pointed out, the essential tool is OPE which allows to separate the dynamics at short and
long distances. The result is an effective weak hamiltonian given by a sum of renormalized
local operators with scale-dependent Wilson coefficients as sketched in (1.2). Specifically
for nonleptonic B decays, one has

HNL =
GF√

2

∑

q=c,u

Vqb [c1(µ)O1q(µ) + c2(µ)O2q(µ)] + h.c. , (4.1)

where
O1q = (d̄′Γρu+ s̄′Γρc)(q̄Γρb), O2q = (q̄Γρu)(d̄′Γρb) + (q̄Γρc)(s̄′Γρb) (4.2)

with Γρ = γρ(1− γ5). Similarly, the effective hamiltonian relevant for nonleptonic D decays
is given by

HNL =
GF√

2

∑

q=s,d

Vcq [c1(µ)O1q(µ) + c2(µ)O2q(µ)] + h.c. , (4.3)

with
O1q = (d̄′Γρu)(c̄Γρq), O2q = (c̄Γρu)(d̄′Γρq) . (4.4)

In the above, d′ = Vudd+ Vuss and s′ = Vcdd+ Vcss are weak eigenstates. In addition to the
four-quark operators O1 and O2, the operator-product expansion includes so-called penguin
operators [63]. These are mainly relevant for rare nonleptonic decays such as B → Kπ or
radiative decays such as B → K∗γ, but they play no role in the following discussion.

The Wilson coefficients ci(µ) contain the effects from hard gluon and quark exchanges
with virtualities larger than µ. In perturbation theory, these interactions generate large
logarithmic terms, αms ln

nmW

µ
, which must be summed up to all orders. This is achieved by

solving the renormalization group equation

(
d

dlnµ
− γ±

)
c±(µ) = 0 , (4.5)

where

γ± =
αs
4π
γ

(1)
± +

(
αs
4π

)2

γ
(2)
± + ..... (4.6)

are the anomalous dimensions of the operatorsO± = 1
2
(O1±O2), and c1,2 = 1

2
(c+±c−). With

the boundary conditions c±(mW ) = 1 following from the unrenormalized weak hamiltonian
indicated in (1.1) the solution is given by

c±(µ) =

(
αs(µ)

αs(mW )

)γ
(1)
±

2b
(

1 +R±
αs(µ) − αs(mW )

4π

)
. (4.7)

6For a recent comprehensive review see M. Neubert and B. Stech, ref. [62].
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The first factor is the LO result [64], while the second bracket incorporates the NLO cor-
rections [65]. The LO coefficients are determined by the one-loop anomalous dimensions,

γ
(1)
+ = +8 , γ

(1)
− = −4 , (4.8)

and by the one-loop coefficient of the QCD β-function,

b = 11 − 2

3
nf . (4.9)

The NLO term R± is given in [65].
The relevant physical scale is expected to be of the order of the heavy quark mass. For

µ = mb = 4.8 GeV one obtains [62], numerically,

c1(mb) = 1.108, c2(mb) = −0.249 (LO) , (4.10)

c1(mb) = 1.132, c2(mb) = −0.286 (NLO) , (4.11)

while for µ = mc = 1.4 GeV one gets

c1(mc) = 1.263, c2(mc) = −0.513 (LO) , (4.12)

c1(mc) = 1.351, c2(mb) = −0.631 (NLO) . (4.13)

Here, the running coupling is normalized to αs(mZ) = 0.118. As anticipated, the effects are
smaller in b decays than in c decays. Furthermore, the NLO effects re-enforce the LO trend.

4.2 Decay amplitude and factorization

Given the effective hamiltonian, the amplitude for a two-body decay is calculated from the
corresponding hadronic matrix elements of the local four-quark operators:

A(P → h1h2) = 〈h1h2 | HNL | P 〉

=
GF√

2

∑

q

Vqb
∑

i

ci(µ)〈h1h2 | Oiq(µ) | P 〉 . (4.14)

Since these matrix elements contain soft QCD interactions characterized by virtualities
smaller than µ, the problem of calculating them is extremely difficult and still far from a
satisfactory solution. It may not be completely needless to stress that the scale dependence
of the matrix elements must cancel in (4.14) against the scale dependence of the Wilson
coefficients since the decay amplitude is an observable. In practice, there is always some
residual scale dependence because of the truncation of the perturbative series. In terms of
the weak amplitude (4.14) the partial width for two-body decays is given by

Γ(P → h1h2) =
1

16πm3
P

√
(m2

P +m2
1 −m2

2)
2 − 4m2

Pm
2
1 |A|2 . (4.15)

The present knowledge and understanding of nonleptonic B decays has recently been
reviewed in a very comprehensive article by M. Neubert and B. Stech [62]. For D decays
one may consult the classic papers by M. Bauer, B. Stech and M. Wirbel [41]. Here, I will

40



restrict the discussion to a particular example which brings the main theoretical difficulties
to light, namely B → J/ψK. This decay mode also plays an outstanding role in B-physics
at hadron colliders and future B-factories.

After Fierz-transformation of the operator O1c in (4.1) the piece of the effective hamil-
tonian relevant for B → J/ψK can be written in the form

HNL =
GF√

2
VcbV

∗

cs{(c2 +
c1
3

)O2 + 2c1Õ2} (4.16)

with

O2 = (c̄Γρc)(s̄Γρb), Õ2 = (c̄Γρ
λa

2
c)(s̄Γρ

λa

2
b) , (4.17)

λa being the usual SU(3)-colour matrices. The colour indices and the µ-dependence are
suppressed for simplicity.

In a radical first approximation, one may factorize the matrix elements of the operators
O2 and Õ2 into products of matrix elements of the currents that compose these operators.
Long distance strong interactions between quarks belonging to different currents are thereby
completely neglected. Furthermore, the matrix element of the octet operator Õ2 vanishes
because of colour conservation, while the factorized matrix element of the singlet operator
O2 is approximated by

〈J/ψK | O2(µ) | B〉 = 〈J/ψ | c̄Γρc | 0〉〈K | s̄Γρb | B〉 = 2fψf
+
B→Kmψ(ǫψ · q) . (4.18)

Obviously, fψ is the J/ψ decay constant, f+
B→K is the B → K form factor at the momentum

transfer p2 = m2
ψ, ǫψ denotes the J/ψ polarization vector, and q the K four-momentum.

The leptonic width Γ(J/ψ→ l+l−) = 5.26 ± 0.37 keV implies

fψ = 405 MeV , (4.19)

while a sum rule estimate [28] similar to the one for the B → π form factor in sect. 3.5
yields

f+
B→K = 0.55 ± 0.05 . (4.20)

At this point one encounters a first principal problem: since the matrix elements of
the quark currents in (4.18) are scale-independent, the µ-dependence of the short-distance
coefficients cannot be compensated. Hence, the approximation

〈J/ψK | HNL | B〉 =
√

2GFVcbV
∗

cs

(
c2(µ) +

c1(µ)

3

)
fψf

+
B→Kmψ(ǫψ · q) (4.21)

can at best be valid at a particular scale µ which could be called the factorization scale.
The conventional assumption is µ = O(mb).

Using the next-to-leading order coefficients c1,2(µ) in the HV scheme with Λ
(5)

MS
= 225

MeV from [66] and taking µ = mb ≃ 5 GeV, one has

c2(µ) +
c1(µ)

3
= 0.156 . (4.22)

Together with (4.19) and (4.20), this yields the branching ratio

BR(B → J/ψK) = 0.025% , (4.23)
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a value which is considerably smaller than the measured branching ratios [44, 67]

BR(B− → J/ψK−) = (0.101 ± 0.014)% , (4.24)

BR(B0 → J/ψK̄0) = (0.075 ± 0.021)% . (4.25)

The discrepancy between experiment and expectation is worsened by a factor 3 if the coef-
ficients (4.11) are used yielding c2 + c1/3 = 0.091 instead of (4.22). This provides a good
example for the scale uncertainty due to factorization.

4.3 Nonfactorizable contributions and effective coefficients

The quantitative failure and the scale problem pointed out above imply that naive factor-
ization of matrix elements does not work. Clearly, factorization has to be accompanied by
a reinterpretation of the Wilson coefficients. For B → J/ψK, the short-distance coefficient
c2(µ) + c1(µ)/3 is substituted by an effective scale-independent coefficient a2. Phenomeno-
logically [41], a2 is treated as a free parameter to be determined from experiment. From
(4.21) and (4.24) one finds

|aBψK2 | = 0.31 ± 0.02 , (4.26)

where the quoted error is purely experimental. The sign of aBψK2 remains undetermined. It
is an interesting observation that the above value is similar to the coefficient a2 found from
so-called class III decays [62]. This suggests, but does not prove a universal nature of a2.

The drastic difference between the short-distance coefficient (4.22) and the effective
coefficient (4.26) points at the existence of sizeable nonfactorizable contributions. The
latter are also needed to cancel or at least soften the strong µ-dependence of the factorized
amplitude (4.21). Further investigation shows that the dominant nonfactorizable effects
should arise from the matrix element of the operator Õ2. Writing the latter in the convenient
parametrization

〈J/ψK | Õ2(µ) | B〉 = 2fψf̃BψK(µ)mψ(ǫ
ψ · q) , (4.27)

and adding it to (4.18), one formally reproduces (4.21),

〈J/ψK | HNL | B〉 =
√

2G VcbV
∗

csa
BψK
2 fψf

+
B→Kmψ(ǫψ · q) , (4.28)

with the effective coefficient [68]

aBψK2 = c2(µ) +
c1(µ)

3
+ 2c1(µ)

f̃BψK(µ)

f+
B→K

. (4.29)

In Fig. 20, the partial width for B → J/ψK is shown as a function of the parameter f̃BψK
associated with 〈Õ2〉. Note that f̃BψK = 0 corresponds to naive factorization, while the

fitted value of aBψK2 given in (4.26) implies

f̃BψK(µ = mb) = +0.04 or − 0.12 . (4.30)

For a lower scale the value of f̃BψK is shifted to slightly more positive values, e.g.,

f̃BψK(µ =
1

2
mb) = +0.06 or − 0.09 . (4.31)

We see that a nonfactorizable amplitude of 10 to 20 % of the size of the factorizable one is
sufficient to reconcile expectation with experiment.
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Figure 20: The partial width for B → J/ψK as a function of f̃BψK parameterizing the
nonfactorizable contribution to the decay amplitude. The horizontal dotted lines represent
the average of the experimental widths given in the text. The solid (dashed) curves show
the theoretical expectation for µ = mb/2 (µ = mb). The arrows indicate the QCD sum rule
estimate.

4.4 Sum rule estimate of the nonfactorizable amplitude

The calculation of aBψK2 and of the analogous coefficients for other two-body decays [41]
from first principles is one of the outstanding problems in weak decays. As a first step
in this direction, we have undertaken a rough estimate of f̃BψK using again QCD sum
rule methods 7. Following the idea worked out for charm decays in [69], we consider the
four-point correlation function

Π̃µν(p, q) =
∫

d4x d4y d4z eiqx+ipy〈0 | T{jKµ5(x)j
ψ
ν (y)Õ2(z)j

B
5 (0)} | 0〉 , (4.32)

where jB5 = b̄iγ5u, j
ψ
ν = c̄γνc, and jKµ5 = ūγµγ5s are the generating currents of the mesons

participating in the decay B → J/ψK, and p+ q, p and q are the respective four-momenta.
Õ2 is the octet operator given in (4.17) which is suspected to give rise to the dominant
effect.

Similarly as in the case of the two-point correlation function (2.4) studied in sect. 2.2,
one writes a dispersion relation for (4.32) in terms of intermediate hadronic states in the B,

7This work was done in collaboration with B. Lampe and A. Khodjamirian. Results have been reported,
e.g., in [68].
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J/ψ, and K channel. The ground state contribution to (4.32),

Π̃µν(p, q) = i
〈0 | jKµ5 | K〉〈0 | jψν | J/ψ〉〈J/ψK | Õ2 | B〉〈B | jB5 | 0〉

(m2
K − q2)(m2

ψ − p2)(m2
B − (p+ q)2)

+ ..... , (4.33)

contains the desired matrix element (4.27). In addition, one has contributions from excited
resonances and continuum states denoted above by ellipses which lead to a very compli-
cated singularity structure. Furthermore, in the euclidean momentum region Q2 = −q2 >
O(1 GeV2), p2 ≤ 0, (p+ q)2 ≤ 0 one can expand the correlation function (4.32) in terms of
local operators:

Π̃µν(p, q) =
∑

d

C̃µν
d (p, q, µ)〈Ωd(µ)〉 . (4.34)

For the operators with dimension d ≤ 6 given in (2.13), one can calculate the necessary
coefficients C̃µν

d (p, q, µ) from the diagrams shown in Fig. 21. From (4.33) and (4.34) it is
possible, at least in principle, to derive a sum rule for the matrix element 〈J/ψK | Õ2 | B〉.

However, there are two complications that are not present in the two point sum rules
discussed in sect. 2.2. One problem is the presence of a light continuum in the B channel
below the pole of the ground state B-meson. This contribution to (4.33) can be associated
with processes of the type B → “D∗Ds” → J/ψK, where an intermediate state carrying
D∗Ds quantum numbers rescatters into the final J/ψK state. Formally, in (4.32) this
intermediate state is created from the vacuum by the combined action of the operator
product Õ2j

B
5 . As a reasonable solution we suggest to cancel this unwanted contribution

against the terms in (4.34) which have the quark content cc̄sq̄ and which develop a nonzero
imaginary part at (p+ q)2 ≥ 4m2

c . In the approximation considered this is the case for the
four-quark condensate contribution represented by Fig. 21c.

The second problem concerns the continuum subtraction in the remainder. A detailed
examination of (4.32) indicates that the higher charmonium resonances contribute with
alternating signs. Therefore, the usual subtraction procedure in which the dispersion integral
over the excited and continuum states is approximated by the perturbative counterpart is not
reliable here. In order to proceed we employ explicit, although rough models for the hadronic
spectral functions. Since the number of additional parameters has to be manageable, only
the first excited resonances are included in each channel besides the B, J/ψ and K ground
states. In total, in this approximation the correlator (4.33) contains three free parameters
in addition to f̃BψK . Finally, one takes the Borel transform of (4.33) and (4.34) in the
B-meson channel and moments in the charmonium channel. In the K-meson channel, q2 is
kept spacelike.

A fit of the hadronic representation (4.33) to the OPE result (4.34) for various values of
the Borel mass M and q2, and for different moments yields

f̃BψK = −(0.045 to 0.075). (4.35)

The implicit scale of this estimate is given by M ≃
√
m2
B −m2

b ≃ 1
2
mb ≃ 2.4 GeV. Substi-

tuting (4.35) in (4.29), and evaluating the short-distance coefficients c1,2(µ) also at µ = M ,
one gets

aBψK2 = −0.29 + 0.38 − (0.19 to 0.31) = −(0.10 to 0.22) . (4.36)

Here, the three terms in the first relation refer to the three terms in (4.29) in the same
order. Interestingly, the sum rule approach seems to favour the negative solution for f̃BψK .
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Although in comparison with (4.31) the above estimate falls somewhat short, it narrows the
gap between theory and experiment considerably as can be seen from Fig. 20.

bu s cc�� ����
(a)

�� �����
(b) �� ��� ���

(c)
Figure 21: Diagrams determining the Wilson coefficients of the OPE of the correlation
function Π̃µν. The symbols are as in Fig. 1.

Several comments are in order. Firstly, the nonfactorizable matrix element (4.27) is
rather small as compared to the factorizable one given in (4.18), numerically,

|f̃BψK/f+
B→K | ≃ 0.1 . (4.37)

Nevertheless, the impact on aBψK2 is strong because of the large coefficient as compared to
the coefficient of the factorized amplitude,

|2c1/(c2 + c1/3)| ≃ 20 to 30 . (4.38)

Secondly, the factorizable amplitude proportional to c1/3 and the nonfactorizable one pro-
portional to f̃BψK are opposite in sign and hence tend to cancel. In fact, if |f̃BψK | is taken
at the upper end of the estimated range, the cancellation is almost complete resulting in a
considerable enhancement of the branching ratio (4.23). Note that both terms are nonlead-
ing in 1/Nc. This is exactly the scenario anticipated by the 1/Nc – rule for D decays [70]
which is generally consistent with observation [41] and has found theoretical support by the
sum rule analysis of [69]. In [71, 72], a similar trend was claimed for B → Dπ. Thirdly,
our estimate yields a negative overall sign for aBψK2 in contradiction to a description of
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the data on two-body B decays based on factorized decay amplitudes with two universal
coefficients a1 and a2 [62]. It should be stressed, however, that in this fit the positive sign
of a2 actually results from the channels B− → D0π−, D0ρ−, D∗0π−, and D∗0ρ−, and is then
assigned also to the J/ψK channel. This assignment may not be correct. Certainly, the
sum rule approach described above provides no justification for such an assumption. On the
contrary, diagrams of the kind shown in Fig. 21 suggest some channel-dependence of the
nonfactorizable matrix elements. For class II processes the channel-dependence is enhanced
by the large coefficient 2c1 in a2 (see (4.29)). The opposite is the case for class I processes
involving

a1 = c1(µ) +
c2(µ)

3
+ 2c2

f̃

f+
. (4.39)

Here, the nonfactorizable contributions are damped by the small coefficient c2, while the
factorized term has a large coefficient. Therefore, a1 is indeed expected to be universal to
a good approximation, whereas a2 should exhibit some channel-dependence, in particular
when comparing decays with very different final states such Dπ and J/ψK.

As a last remark, from the sum rule point of view one does not expect a simple relation
between B and D decays. At least, the OPE of the four-point correlation functions (such as
(4.32)) is significantly different, e.g., for the channels B → Dπ, B → J/ψK, and D → Kπ
as can be inferred from Fig. 21. Hence, the arguments presented in [62] in favour of a
change of sign in a2 when going from D to B may oversimplify the dynamics of nonleptonic
decays.

5 Conclusion

These lectures have been devoted to the theory of exclusive decays of B and D mesons. I
have discussed examples of leptonic, semileptonic and nonleptonic decays, focussing on the
problem of calculating hadronic matrix elements of weak currents and four-quark operators.
The aim has been to demonstrate the usefulness of QCD sum rule techniques. I have
described the derivation of sum rules for decay constants, form factors, and two-body decay
amplitudes. In addition, I have outlined a sum rule for couplings between heavy and light
mesons. Numerical predictions have been presented for the decay constants fD, fDs

, fB, and
fBs

, for the heavy-to-light formfactors f+(p2), f−(p2), and f 0(p2), for the strong couplings
gB∗Bπ and gD∗Dπ, and for the nonfactorizable matrix element 〈J/ψK | Õ2(µ) | B〉.

Using the sum rule results I have presented predictions on decay distributions and in-
tegrated widths for B → πl̄νl, B → ρl̄νl, and D → πl̄νl. Comparison with the CLEO
measurements [20] of exclusive semileptonic B decays yields values for Vub in good agree-
ment with each other and with the determination from inclusive data [61]. Agreement
between expectation and measurement is also found for the Cabibbo-suppressed semilep-
tonic D0 decay [44]. Furthermore, a sum rule estimate is given for D∗ → Dπ. The present
experimental upper limit [44] is still about three times larger than the expected width. Fi-
nally, including the sum rule estimate of the nonfactorizable contribution to the amplitude
for B → J/ψK a theoretical estimate of the effective coefficient a2 is obtained which is
rather close to the value extracted from the experimental branching ratio [44]. However,
the sign of a2 predicted by the sum rule analysis is opposite to the sign determined from
data, if channel-independent, universal coefficients a1,2 are assumed [62]. I have explained
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why in the sum rule approach universality can be expected for a1, but not for a2. From the
sum rule point of view the apparent universality of a1 and a2 constitutes a major puzzle
which needs further clarification.

Finally, I have addressed the present theoretical uncertainties in the sum rule calcula-
tions, and the prospects for reducing the uncertainties. On the theoretical side, one has
to improve the light-cone wave functions of light mesons, and calculate the higher-order
perturbative corrections to the sum rules. On the experimental side, new and more precise
measurements at hadron facilities and at future B and tau-charm factories should allow to
tightly constrain the input parameters and to test the reliability of the sum rule approach.
It appears conceivable to ultimately decrease the uncertainties from presently 20 to 30 %
by a factor of 2. Encouragement comes from the preliminary agreement of lattice and sum
rule calculations on decay constants and form factors. It would certainly be very fruitful
to combine the flexibility of the sum rule method with the rigorous nature of the lattice
approach.
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[30] KHODJAMIRIAN A., RÜCKL R. and WINHART C., hep-ph/9802412.

[31] BALITSKY I.I. and BRAUN V.M., Nucl. Phys. B, 311 (1988) 541.

[32] GORSKY A.S., Sov. J. Nucl. Phys., 41 (1985) 1008; ibid., 45 (1987) 512; ibid., 50

(1989) 498 .

[33] BRAUN V.M. and FILYANOV I.B., Z. Phys. C, 48 (1990) 239.
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