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1 Introduction

Considerations about the formation of light element abundances when the temperature of
the Universe was about 1 MeV lead us to conclude that the difference between the number
density of baryons and that of antibaryons is about 10−10 if normalized to the entropy density
of the Universe [1].

The theories that explain how to produce such a tiny number go generically under the
name of theories of baryogenesis, and they represent, perhaps, the best example of the
interplay between particle physics and cosmology. Until now, many mechanisms for the
generation of the baryon asymmetry have been proposed. Grand Unified Theories unify the
strong and the electroweak interactions and predict baryon number violation at the tree
level. They are, therefore, good candidates for a theory of baryogenesis. There, the out-
of-equilibrium decay of superheavy particles can explain the observed baryon asymmetry
[2].

An alternative possibility is represented by electroweak baryogenesis, which has been
the subject of intense activity in the last few years [3, 4]. The Standard Model (SM) itself
provides one of the key ingredients for baryogenesis [5]: violation of baryon number via the
anomaly [6], which also constrains some models in which the baryon asymmetry is generated
at a very high energy scale.

The underlying idea is this. If the electroweak phase transition is of the first order,
the minimum of the Higgs potential associated with the symmetric phase is separated from
the local minimum of the broken phase by an energy barrier. At the critical temperature Tc
both phases are degenerate in energy and at later times the broken phase becomes the global
minimum of the potential. The universe supercools in the symmetric phase, and the phase
transition then proceeds by nucleation of critical bubbles. As the bubble walls separating
the broken from the unbroken phase pass each point in space, the order parameter changes
rapidly, leading to a significant departure from thermal equilibrium. CP-violating sources
may be locally induced by the passage of the bubble wall and baryogenesis is enhanced if
the CP-violating charges can efficiently diffuse in front of the advancing bubble wall, where
anomalous electroweak baryon number violating processes induced by sphaleron transitions
are unsuppressed [7].

In the SM, the electroweak phase transition is too weakly first order to assure the preser-
vation of the generated baryon asymmetry, as perturbative and non-perturbative analyses
have shown [3]. For this reason, electroweak baryogenesis requires new physics at the elec-
troweak scale. Low-energy supersymmetry is a well-motivated possibility, and there is still
some room for a suitably strong phase transition in this scenario [8] and for the production
of the baryon asymmetry [4].

In this paper we will focus on a different mechanism to implement electroweak baryoge-
nesis, in which the third Sakharov condition, loss of thermal equilibrium [5], is fulfilled by
the evolution of a network of topological defects [9, 10]. The advantage of this idea is that it
does not depend upon the order of the electroweak phase transition, although the presence
of stable topological defects still requires new physics beyond the SM.

Topological defects are regions of trapped energy density which may be left over after a
cosmological phase transition if the topology of the vacuum of the theory is nontrivial. In
particular, cosmic strings are solitonic solutions in spontaneously broken field theories for
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which there exist non-contractible loops in the vacuum manifold [11].
An essential ingredient of cosmic string mediated baryogenesis is the restoration of elec-

troweak symmetry in a region surrounding the core of the string. This obviously requires
some coupling of the fields responsible for the strings, which are presumed to have formed
at a scale above the weak scale v, to the Higgs field. For example, the strings may arise
from the breaking of an extra gauged U(1)′ symmetry by the formation of a condensate of
some other scalar field S; if the SM Higgs is charged under U(1)′, electroweak symmetry is
restored in a region about the string because this reduces Higgs field gradient energies within
the string [12].

After the electroweak phase transition, baryon number violation may be efficient only in
the symmetry restored region around the string, and not outside. If, in addition, there are
CP violating interactions between the string and the background plasma, the motion of the
string can disturb equilibrium in a way which creates a localized CP asymmetry. The CP
asymmetry biases electroweak sphalerons to generate a baryon asymmetry [9], in a manner
analogous to the physics at a bubble wall in the conventional scenario with a first order phase
transition. We anticipate that the asymmetry generated by cosmic strings will be smaller
because only a fraction of space is swept out by the moving network of strings, and because
the opposite walls of the string produce asymmetries of opposite sign that tend to cancel
unless baryon number violation is very rapid inside the string.

From these considerations one sees that a crucial requirement for string mediated elec-
troweak baryogenesis is that the baryon number violating sphaleron transitions are fast in
the regions near the strings. Further, this must be true for some part of the epoch where
baryon number violation is very inefficient in the bulk plasma, because when baryon number
violation is at all efficient in the bulk, any asymmetry produced by strings is subsequently
erased. Hence, the mechanism relies on there being some temperature range in which both

1. Sphaleron configurations large enough to be unsuppressed fit inside the region of elec-
troweak symmetry restoration, so the baryon number violation rate is unsuppressed
close to string cores, and

2. sphalerons are suppressed in the bulk plasma, so baryon number produced by strings
is preserved.

To see what is needed to satisfy the above requirements, let us consider the typical length
scale Rs of symmetry restoration around the center of nonsuperconducting strings:

Rs ∼
1

λ1/2v(T )
, (1)

where λ is the quartic Higgs coupling and v(T ) is the temperature dependent vacuum expec-
tation value of the Higgs field. On the other hand, the sphaleron size in the unbroken phase
is Rsph ∼ (g2T )−1. Conditions 1. and 2. are then Rsph ∼< Rs and v(T )/T ∼> 1, respectively.
Together these imply

λ ∼< g4 , (2)

which indicates that one needs a Higgs boson which is far too light and already ruled out by
present LEP data which require λ ∼ g2 [13]. It might be possible to satisfy this condition in
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extensions of the SM; however such a weak scalar self-coupling leads to a very strong first
order electroweak phase transition, in which case baryogenesis could proceed without strings
anyway.

It is therefore clear that a more rigorous treatment is needed to understand whether string
mediated electroweak baryogenesis can really explain the observed baryon asymmetry. To
answer this question, we have computed either the sphaleron energy or the sphaleron rate
in the background of each sort of nonsuperconducting strings. For sphaleron energies we
use techniques similar to those in [14] and for sphaleron rates we use the techniques of [15].
The case of superconducting strings is more complicated, because it involves determining the
size of currents on such strings in a realistic cosmological setting. Since we are not aware of
any reliable estimates of the current carried by a superconducting string in a realistic early
universe cosmological setting we have not attempted this here and we leave it for future
investigation.

Our findings indicate that the baryon number violation along a string is generally too
slow for significant baryogenesis. This is because the region where electroweak symmetry
is restored is never wide enough to allow symmetric phase sphaleron-like events. At best it
brings the sphaleron rate to 1/30 of what it would be if the core region were of the order of
the natural nonperturbative length scale 1/αWT ; and this only occurs in a rather special case
where the Higgs field is charged under an extra U(1)′, with a charge incommensurate with
the charge of the scalar field which breaks the extra U(1)′. If the charge is commensurate,
or if the Higgs field only interacts with the string generating fields via potential terms, then
the sphaleron rate is insignificant.

Moreover, if the network is in the scaling regime, the baryon number violation occurs in
too small a total volume to explain the observed baryon asymmetry. If the network evolution
is friction dominated, the network will be denser, but strings will move more slowly. As we
discuss in some detail here, the baryon number production is suppressed by the second power
of the string velocity, so this case also leads to insignificant baryogenesis. In either case we
find that the generated baryon number is at least ten orders of magnitude smaller than the
observed abundance.

The paper is organized as follows: section 2 is dedicated to the computation of the baryon
number violation on the strings for different cases; section 3 deals with the generation of CP
asymmetry inside the strings; and section 4 with the efficiency of baryogenesis by a string
network. Finally, in section 5 we present our conclusions.

2 Baryon number violation on cosmic strings

To determine how efficiently cosmic strings can generate the baryon number asymmetry, we
need to know the rate of B violation by sphalerons inside the string, at times when the
Higgs field condensate is large enough so B violation is negligibly slow outside the string.
We characterize the efficiency of baryon number violation on the string by the Chern-Simons
number (NCS) diffusion constant per unit string length L,

Γl ≡ lim
t→∞

〈(NCS(t)−NCS(0))2〉

Lt
. (3)
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This is related to baryon number production by the string through

1

L

dNB

dt
= −

ΓlNF

2

∑
i

µi

T
, (4)

where NF = 3 is the number of families and µi is half the difference in chemical potential
between particle and antiparticle, averaged over the region of symmetry restoration. The
sum runs over each doublet which couples to SU(2)L. We will often write Γl in terms of a
dimensionless quantity κl,

Γl = κlα
2
wT

2 . (5)

For a very thick string, κl would numerically be approximately α2
wT

2 times the cross sectional
area, although parametrically there is actually an extra power of αw [16, 17, 18, 19, 20]. We
would say that baryon number violation is unsuppressed on the string if κl ∼ 1.

Since the only baryons which survive are those created after the Higgs VEV exceeds the
temperature, we will focus on temperatures such that φ0/T ∼> 1, where φ0 is the amplitude
of the Higgs field condensate, φ2

0 = 2Φ†Φ (broken phase). We expect (and can check) that at
lower temperatures, baryon number violation becomes less efficient along a cosmic string. For
instance, a cosmic string today, at temperatures ∼< 1MeV, will not catalyze baryon number
destruction except by extremely inefficient instanton processes, unless the region of symmetry
restoration is very large–either > 1/αWT , so sphaleron processes will be unsuppressed inside,
or > 1/ΛEW, the scale at which the electroweak coupling becomes large and instantons
become efficient. (This scale is enormous, 1/λEW > 1 meter.)

Furthermore, we will focus on the case mH ∼ mW , so the scalar self-coupling is of order
the gauge coupling. Smaller values of mH are experimentally excluded, and larger ones can
only decrease the efficiency of baryogenesis. In parametric estimates we will always write g,
meaning either g,

√
g2 + g′2, or

√
λ.

Except perhaps for superconducting cosmic strings, the width of the region of symmetry
restoration on a cosmic string is of order the Higgs field correlation length 1/gφ0, which
by no coincidence is the characteristic size of a sphaleron in the broken phase. So it is
not a priori clear that sphaleron processes are unsuppressed on cosmic strings. Rather, we
should check whether this is the case. We now endeavor to do so, case by case for various
symmetry-restoring types of strings.

2.1 Strings which force Φ = 0 on the string core

We begin with strings which force the Higgs condensate to zero along the core of the string,
assumed much thinner than 1/gφ0, but do not influence electroweak physics outside the
string core. There are two obvious examples of such strings.

In the first, the standard model is extended by a complex scalar field S, which is either
a singlet under all gauge interactions, or transforms under an extra U(1)′ symmetry for
which all the standard model particles are uncharged. The effective potential for S and the
standard model Higgs field Φ is

V (S,Φ) = λs
(
S∗S − S2

0

)2
− γ(S∗S − S2

0)(Φ†Φ− Φ2
0) + λ

(
Φ†Φ− Φ2

0

)2
, (6)
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where we have assumed that the coefficient of the interaction term between the S and Higgs
fields is negative; if it is not, electroweak symmetry will not be restored. Here and throughout
we will use the notation in which capital letters S and Φ denote complex fields, while lower
case s and φ are real components in the direction of the condensate, normalized such that
φ2

0 = 2Φ2
0.

Strings will form at some high temperature T ∼
√
λsS0 where the S field condenses.

If the S field has no gauge interactions, the strings are global; if it transforms under a
local extra U(1)′ then they are local (Abelian Higgs model) strings. In either case, by the

electroweak scale, the S field carries a condensate S0 ≡
√
|〈S〉|2. The doublet Higgs mass

parameter is −2λΦ2
0 + γ(S2

0 − |S|
2). In the bulk, where S = S0, electroweak symmetry will

break because the Higgs field mass term has the usual form, −2λΦ2
0. However, in the core of

a cosmic string where the S field condensate vanishes, the Higgs field feels a large positive
mass squared ' γS2

0 , which may be enough to force Φ = 0 inside the string core. Whether
it does so or not is determined by the competition between the Higgs field potential and
gradient energies. The outcome of this competition depends on the values of the quartic
couplings and S0, which also determine the thickness of the string core. We will discuss this
further, in particular the possibility that the S field string is fat, in the subsection on fat
strings below. In the present section we will restrict our attention to the case where the S
field string is thin compared to the inverse weak scale, 1/φ0, and the string does successfully
force Φ = 0 in its core.

Another type of string which forces Φ = 0 in its core was considered in ref. [12]. The
idea is that there is a new U(1)′ gauge symmetry, broken by a scalar S with charge qs under
U(1)′ but neutral under the SM gauge group. The SM Higgs field is assumed to also have
a charge qφ 6= 0 under U(1)′. The U(1)′ breaks at some scale above the electroweak scale,
where the S field condenses with S0 � Φ0. A cosmic string will carry a U(1)′ magnetic flux
of 2π/qs, and the phase of the Higgs field gets shifted on parallel transportation around the
string by 2πqφ/qs. For now we will assume that qφ/qs is an integer. If it is not an integer,
the Higgs field is forced to be small in a wider region around the string, and a Z magnetic
flux will also be established; we treat this special situation in the next section.

In the present case, the Higgs field minimizes gradient energies by having its phase wind
by −2πqφ/qs in going around the string, to compensate for the phase induced by the con-
nection. This prevents azimuthal gradient energies in the Higgs condensate from occurring
outside the string core. But inside, where a loop does not enclose the complete U(1)′ magnetic
flux, a nonzero Higgs condensate, if it existed, would possess a large, energetically expensive
azimuthal covariant gradient, so the Higgs condensate is forced to zero. Writing the U(1)′

field strength as Bθ = b(r)/(qsr) and the Higgs field as Φ(r, θ) = h(r)Φ0 exp(−iθqφ/qs), the
Higgs field gradient energy per unit length of string is

dEgradient

dL
= 2π

∫
rdr

{
Φ2

0(1− b(r))2q2
φ

q2
s

h(r)2

r2
+ Φ2

0h
′(r)2

}
. (7)

The very large coefficient on the first term at small r, where b 6= 1, forces h ' 0 here, but h is
free to rise away from the core. Far outside the cosmic string, we can redefine the Higgs field
to include the phase which compensates for the U(1)′ connection, and electroweak physics
then looks normal, even though Φ is pinned to zero inside the core of the string.
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The above scenario is phenomenologically constrained. Since the Higgs field is charged
under the extra U(1)′, and it couples to the standard model fermions, they must carry
U(1)′ charges as well . Because the Higgs field Yukawa couplings to fermions mix the
generations, these charges must be generation-independent. Then the only anomaly-free
charge assignment for the fermions is qφ times their hypercharges. Thus the U(1)′ gauge
field is a standard-model-like Z ′, which is experimentally excluded for masses up to about
700 GeV. The symmetry breaking scales of U(1)′ and the electroweak sector have to be
separated by at least one order of magnitude, which ensures that this string generation
mechanism will always fall into the “thin string” case. (In the case of a U(1)′ whose generator
is not proportional to that of hypercharge, anomalies might be cancelled by adding additional
heavy fermions. The mass limits on these other kinds of Z ′ bosons are similar.)

For either of the two possibilities described above, the SM Higgs field is forced to be
exactly zero inside the core of a narrow string of thickness r0, and it rises to its normal
condensate value (at the given temperature) outside. The Higgs field profile is that which
minimizes the energy

dE

dL
= 2π

∫ ∞
r0

rdr
{

Φ2
0h
′2(r) + V (hΦ0)

}
. (8)

If we assume that dh/dr ∼< h/r then the first term behaves as dr/r and the second
behaves as rdr. Hence the potential term dominates at large r but at small r it is negligible.
To see how the profile depends on r0 (the size of region where S � S0, which is the width
of the string), assume that the role of the potential is to force the Higgs field to reach its
condensate value within a radius of r1 ∼ 1/gΦ0, and can be neglected for r < r1. Then the
energy is roughly

dE

2πdL
∼ Φ2

0

∫ ln r1

ln r0

(
dh

d(ln r)

)2

d(ln r) . (9)

Each equal logarithmic interval of r contributes a comparable amount to the rise of Φ. Hence
the size of [h(r)− 1] near r = r1 will depend on r0 through

h(r)− 1 ∝
1

ln(r1 − r0) +O(1)
. (10)

The smaller the string core is, the more of the Higgs field’s rise occurs at small r, and the
weaker the symmetry restoration at r ∼ 1/gΦ0. But the dependence is only logarithmic in
r0.

At distances of order 1/gΦ0 the suppression of Φ below Φ0 is incomplete; rather than
Φ ∼ 0, we find Φ/Φ0 ∼ 1− 1/ log(r/r0). But r ∼ 1/gΦ0 is the physical scale important for
setting the sphaleron rate. This suggests that for r0 much less than 1/gΦ0, the energy of a
sphaleron on a string will not be significantly less than in the absence of a string.

To test this, we should determine the energy of a sphaleron in the string background. A
sphaleron in the broken phase has a high degree of symmetry; a sphaleron Ansatz with gauge
and Higgs field profile functions depending on radius alone [21] describes the saddle point
unless λ/g2 � 1 [22]. However the string breaks the spherical symmetry down to cylindrical
symmetry. A solution based on an Ansatz would need profile functions dependent on r and
z separately. We prefer to find the sphaleron solution on the lattice. One writes down a 3D
lattice Hamiltonian and seeks the saddle point solution corresponding to the sphaleron. We
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a× gφ0

√
1.6

√
0.9

√
0.4

B 1.24 1.30 1.37

Table 1: Dependence of sphaleron energy Esph = 4πBφ0/g, on lattice spacing for the thin
core string.

use an O(a2)-improved lattice Hamiltonian (a is the lattice spacing) so lattice spacing errors
will begin at O(a4).

We make a starting guess for a sphaleron configuration by the same technique used in
[15]. Dissipative cooling will bring this configuration close to the sphaleron, but since the
sphaleron is a saddle point and there are always round-off errors and lattice artifacts, the
configuration will miss the sphaleron and cool to the vacuum. An algorithm to cool toward
saddle points was developed especially for dealing with sphalerons on the lattice in [14], but
its use becomes cumbersome for improved actions. We use a new algorithm for cooling to
saddle points, presented in Appendix A. We confirm that the candidate numerical solution
for the sphaleron really is one, by measuring its Chern-Simons number using the technique
developed in [23].

First, we confirm that the algorithm is working correctly by determining the sphaleron
energy in the bulk, for λ/g2 = 1/8. On parametric grounds the sphaleron energy can be
written as Esph = 4πBφ0/g, with B a pure number. We find B = 1.815 with good lattice
spacing independence, in excellent agreement with the result using the sphaleron Ansatz,
B = 1.82.

We include the string by pinning the Higgs field to zero along a line of lattice sites. The
value of B we obtain at three values of the lattice spacing are given in Table 1. By “sphaleron
energy” we mean the energy of a sphaleron in the string background, minus the energy of the
string background alone. The weak lattice spacing dependence occurs because the effective
core size is getting narrower, since our procedure makes it one lattice spacing wide. It is
worth commenting that the real space distribution of the magnetic energy associated with
the sphaleron remains fairly close to spherically symmetric; the sphaleron does not stretch
out along the string significantly. This is also true if we force Φ = 0 by hand in some wider
cylindrical region.

These results suggest that the best hope for electroweak symmetry restoration is to have
a fat string, which in turn requires symmetry breaking of the singlet field very close to the
electroweak scale. This case demands a more careful analysis because the back reaction of
electroweak fields on the fields generating the string cannot be neglected, and we will return
to it in a later section. As for the case where the Higgs field is charged under an extra U(1)′,
we note that none of our lattices had as narrow a core as is actually required by the Z ′ mass
bound, so the sphaleron energy is even higher than what we have found.

The conclusion is that Esph, with string ≥ 0.7Esph, broken phase, getting closer to the broken
phase value as the string’s core becomes narrower. The relation between the sphaleron
energy and the baryon number violation rate involves zero-mode contributions which will
also be smaller for the sphaleron on the string, since it has less symmetry. In particular,
the translational zero modes previously gave

∫
d3x, bounded by the region of consideration.
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This will become l2L, with L the length of the string and l given roughly by the distance the
sphaleron can be translated away from being centered on the string, at an energy cost of T .
We expect, roughly, l−2 ∼ (gφ0)

2(Esph, broken phase − Esph, with string)/T . This estimate follows
from assuming that displacing the center of the sphaleron slightly away from the string core
raises the sphaleron energy by an amount quadratic in the displacement, and a displacement
by the width of the sphaleron, ∼ 1/gφ0, changes the energy to the broken phase (no string)
value.

If we approximate the rotational zero mode contributions as being the same as for a
sphaleron in the broken phase, then we may take the values determined in [24]. This gives
κl ∼ exp(−12) for v/T = 1. In fact the rate is smaller because the rotational symmetry is
also broken, so the rotational zero modes will be partially removed. We made a preliminary
calculation using the nonperturbative techniques of [23]; the result was κl ∼ 10−6±0.5, which
is uninterestingly small, so we did not refine the calculation further.

We conclude that if a string only influences electroweak fields in its core, and the core
width is less than the weak scale m−1

W , then it fails completely to allow efficient baryon
number violation.

2.2 Strings of non-integer magnetic flux

In the previous subsection we saw that if the Higgs field transforms under an extra U(1)′

with charge qφ, and a string carries a U(1)′ magnetic flux of 2π/qs with qφ/qs an integer,
then the Higgs field is pinned to zero in the core of the string. The case where qφ/qs is not an
integer is much more interesting, and has been explored by Davis and Perkins [12]. Outside
of the string, if there are no other gauge field condensates, the Higgs field phase changes by
2πqφ/qs on parallel transport around the string, using the gauge field as the connection. If
the Higgs field condensate has a phase which changes by −2πn around the string, so that
Φ(r, θ) = Φ0h(r) exp(−niθ), and if n 6= qφ/qs, as will be the case if qφ/qs is not an integer,
then there will still be a gradient in the azimuthal direction, leading to a gradient energy of

2πΦ2
0

∫
rdr

{
h′2 + (n− qφ/qs)

2h
2

r2

}
. (11)

Since h(r) must eventually reach its asymptotic value of 1 to avoid an extensive potential
energy cost, this leads to a logarithmically divergent gradient energy, the logarithm arising
from

∫
(1/r2)rdr. This can only be removed by having a nonzero Z boson field, with a net Z

field magnetic flux of 2π(n− qΦ/qs)(2/g), to compensate. Since the total Z magnetic flux is
fixed by the requirement that the Higgs gradient energy vanishes at large distances,

∫
BZd

2x
is fixed. But the energy in the Z magnetic field is

∫
B2
Zd

2x, which is minimized (for fixed∫
BZd

2x) by spreading BZ out over a large region of space. This leads to a larger region
of symmetry restoration than in the previous section, and presumably a smaller sphaleron
energy.

The string is widest when qφ/qs = 0.5 modulo 1. For this case, writing the Z field as

Zθ =
z(r)

gr
, (12)
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Figure 1: Higgs and gauge field profile functions for the string and the sphaleron. The Higgs
field rises faster in the string, but the Z field rises more slowly than the gauge field of the
sphaleron. In each case, λ = g2/8.

(approximating that the weak hypercharge gauge coupling g′ is zero henceforth), the energy
per unit length of string is

dE

dl
= 2π

∫ ∞
0

rdr

{
1

2g2

z′2

r2
+ Φ2

0h
′2 +

(z − 1)2Φ2
0h

2

4r2
+ λΦ4

0(h2 − 1)2

}
. (13)

The solution is independent of the core radius of the string provided that it is small enough.
We have therefore taken the r0 → 0 limit in this equation.

We can solve for the profile functions z(r) and h(r) which minimize this energy, and
compare them to the gauge and Higgs profile functions of a sphaleron; see Figure 1. The
figure is slightly misleading for two reasons: first, the string profiles would rise somewhat
faster had we not made the approximation g′ = 0; and second, the string profiles are for
the radial direction in cylindrical coordinates, while the sphaleron profiles are for the radial
direction in spherical coordinates. Hence more of the sphaleron lies within the string than
the profile functions suggest. The string and the sphaleron are about the same size, and we
should expect an order unity shift in the sphaleron energy in the presence of the string. The
situation here is much more favorable than in the last subsection.

However, the above argument is too naive in the present situation. Unlike the case in
the last subsection, where the effect of the string could be treated as just a modification of
the Higgs potential along the string core (shifting the mass up enough to pin Φ = 0), here
the string background already contains large gauge magnetic fields and azimuthal Higgs field
gradients, which will influence the fields of the sphaleron configuration, potentially changing

10



the sphaleron energy substantially. Directly measuring the sphaleron energy shows that in
fact it is significantly lowered.

When the sphaleron energy becomes small (of order the temperature), the perturbative
computation of Γl by the saddle point method becomes less reliable, and we are better off
using a fully nonperturbative technique. If the rate is not too small, we can watch sphalerons
occur during a real time evolution by tracking Chern-Simons number topologically [15]. If the
rate is so small that no sphalerons will occur during a reasonable amount of Hamiltonian time,
we can use a new technique based on finding the sphaleron free energy nonperturbatively on
the lattice [23]. It turns out in our case that for parameters which give a Higgs condensate
of φ0/T = 1, the sphaleron rate is large enough on the string that the real time approach
can be applied.

We work on a lattice of spacing a = 2/(5g2T ), using (O(a)-improved [25]) scalar self-
coupling λ = 0.125g2 and a value of the Higgs mass squared parameter which gives v/T = 1
(technically, φ2 = 2.5g2T 2). We set the Weinberg angle ΘW = 0, that is, we ignore weak
hypercharge, so that we only have to deal with one U(1) gauge field. The volume is a
3D L1 × L1 × L2 torus. We use L1 = L2 = 12.8/g2T (a 323 lattice) and L2 = 14.4/g2T ,
L1 = 16/g2T (a 36 × 402 lattice). Both volumes are much larger than it takes to get
continuum-like behavior in sphaleron rates [26], but we need to check whether the string’s
presence changes this picture.

We fix a U(1)′ background field appropriate for a half unit flux along a vertical line at
(L/2, L/2, z). For topological reasons the integral of magnetic flux across the cross section
of the box must equal zero, so there must be a return flux somewhere; we put it all on the
plane x = 0 (which is identified with x = L) or the plane y = 0 (identified with y = L) in
such a way that the connection is undisturbed from the string solution except along these
planes. Using two box sizes allows us to check that the return flux is not affecting the results.
Besides this fixed U(1) background, the approach is the same as used in [15]. In particular
we do not introduce extra degrees of freedom to generate hard thermal loop effects beyond
those induced by UV lattice modes, although the technology exists [19]. This makes our
results an overestimate, by of order a factor of 2.

We find diffusion constants of κl = 0.051±0.012 in the smaller box, and κl = 0.073±0.026
in the larger box, which agree within the statistical errors. Baryon number violation is about
30 times less efficient than it would be if the diameter of the symmetry restored region were
1/αWT , where the usual symmetric phase rate would be recovered [15]. The sphaleron rate
on the string is orders of magnitude larger than the rate in the broken phase, so the string
is strongly enhancing baryon number violation; however, the rate is not quite high enough
to say that sphalerons are fully unsuppressed along the string.

We also find that κ′ is strongly dependent on φ0, and hence on the temperature. Going
to φ0/T = 1.4, it falls to a value of κ′ = 0.028± 0.008. Since φ(T ) ' φ(T = 0)(1− T 2/T 2

c )
except very close to the phase transition temperature, and since Tc ' 100 GeV for a realistic
scalar self-coupling and top quark mass, changing φ0/T from 1.0 to 1.4 corresponds to a
decrease in temperature of approximately 8%. Thus κ′ is quite temperature sensitive at
φ0/T ' 1.
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2.3 Fat strings

Next we return to the first example of subsection 2.1, and investigate the possibility that the
resulting string is “fat,” with the Higgs field VEV suppressed in a large region surrounding
the string. We would like to find values of the quartic couplings and the singlet VEV S0

defining the potential (6) which give the largest rate of sphaleron processes inside the largest
possible strings. This requires that the doublet VEV φ(r) be close to zero near r = 0, the
center of the string, and throughout a region of space large enough to allow unsuppressed
baryon number violation.

Before examining this model’s suitability for baryogenesis, it may be worth pointing out
that it cannot be obtained from supersymmetry, because an F -term contribution to the
potential would give a positive |S|2|Φ|2 coupling, whereas we need it to be negative. A
D-term would give a negative coupling if the Φ and S fields had opposite charges under a
U(1) gauge symmetry, but this situation is not compatible with having a fat string, for the
following reasons. Certainly we should not identify the U(1) with weak hypercharge, since
the S field would break it at a high scale. On the other hand, if the standard model Higgs
field Φ transforms under a new U(1)′, the mass mZ′ of the corresponding Z ′ boson must be
greater than 800 GeV, as discussed in section 2.1; however the string width is of order m−1

Z′ ,
and so the string will be narrow, not fat, such as we wish to construct here.

Also, if the U(1)′ symmetry associated with S → Seiθ is gauged, then for fixed S0 and
λs, the resulting string is always thinner than if the symmetry is global. This is particularly
true if the new gauge coupling g′ satisfies g′2 � λs, as it must if λs is small and g′ is to unify
with the standard model gauge couplings at some high scale. As we will see, the case of
small λs is the most promising. We also observe that the global string’s fields approach their
asymptotic values at r = ∞ slower than those of a gauged string. The scalar condensates
have power-law behavior in global strings, φ(r) ∼ φ(∞) − ar−b, but exponential behavior
in local strings, φ(r) ∼ φ(∞) − ae−br. Therefore global strings also have a better chance,
qualitatively, of having a large region of symmetry restoration. For these reasons, we will
consider only global strings in the present section.

While searching for the parameters favorable to baryogenesis, we must keep in mind a
number of constraints:

1. The vacuum must be stable, implying that

4λλs > γ2 . (14)

2. The mass of the lightest Higgs boson must be above the experimental limit. While this
limit depends on the relative admixtures of the Φ and S fields in the light eigenstate,
it is safe to say that mh > 75 − 80 GeV. Solving for the mass eigenvalues gives the
constraint

m̂2
h ≡ m2

h/Φ
2
0

= 2y0z

(
x/y0 + y0/x−

√
(x/y0 − y0/x)2 + γ̂2

)
> 0.2 , (15)

where we have defined the useful combinations

x =
√
λ/λs
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y = (S0/Φ0)|T=Tc; y0 = (S0/Φ0)|T=0

z =
√
λλs

γ̂ = γ/z, (16)

and Φ0 = 246/
√

2 GeV = 174 GeV at T = 0, but it has a smaller value,
√

2Φ0 ≥ T ∼
100 GeV at the temperature where the bulk sphaleron rate first becomes negligible.

Really the condition should be stronger still; we should also demand that either the
lighter vacuum mass eigenstate must be almost purely Φ, or both eigenstates must be
fairly light. Otherwise electroweak radiative corrections could be generated that would
contradict precision tests. (Another way of evading precision electroweak test bounds
would be to make the heavier mass eigenstate almost pure Higgs field, with a mass of
∼ 100 GeV; but this turns out to require parameters that do not lead to electroweak
symmetry restoration in the string core.) However, in what follows we will be able to
rule out string-mediated baryogenesis without bothering to enforce this condition.

3. We require couplings to be perturbatively small, as otherwise the theory receives large
radiative corrections, and actually cannot be defined without a UV regulator close to
the energy scale of interest. Our condition (perhaps too generous) is

λ, λs, γ < 1 . (17)

4. Finally, a less obvious but crucial requirement is that the U(1)′ symmetry broken by
the VEV of S be restored at high temperatures. Otherwise the phase transition that
should have given rise to the strings will never have occurred. This means that the
thermal correction to the S field mass must be positive: δm2

s = (2λs − γ)T 2/6 > 0,
and hence

γ < 2λs . (18)

This condition might be evaded by adding extra particles to the theory which would
enhance the thermal mass of the S, about which we will say more below.

The search of parameter space can be simplified by noticing that a rescaling of the string’s
radial variable r by r→ r/z1/2 transforms the Hamiltonian density according to

H(r;λ, λs, γ)→ zH(r/z1/2, x, 1/x, γ̂). (19)

This implies that the solutions for the fields around a string can be obtained from the case
where z = 1 by simply stretching the spatial size by the factor 1/z1/2. The other important
measure of symmetry restoration, the smallness of h(r) at r = 0, is unaffected by this
transformation. So it is sufficient to vary just the three parameters x, y and γ̂ of eq. (16) to
generate all possible solutions.

The most favorable case for baryogenesis occurs when γ̂ is pushed close to its upper
limit of 2, coming from vacuum stability. Naturally one needs for γ to be large since in the
opposite limit of γ = 0 there is no coupling between the S and Φ fields, hence no possibility
for electroweak symmetry restoration in the strings. Just at the vacuum stability limit the
potential develops a flat direction, hence a massless Higgs boson. The experimental limit on
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the Higgs boson mass, together with Eq. (17), prevent one from taking γ̂ higher than about
1.8.

To make φ(0) small, one also needs to have S0 � Φ0 or y � 1. Otherwise the symmetry
is only weakly or not at all restored in the core of the string. On the other hand, we need a
wide string core to avoid the thin string case, which already proved unsuccessful in subsection
2.1. This requires that λsS

2
0 not be too large, hence λs must be small. To summarize, the

most favorable situation for baryogenesis is when

x ∼ y � 1; γ̂ ∼< 2. (20)

The field profiles in such a case which is favorable for baryogenesis are shown in figure
2. There we graph Φ(r) and S(r) versus r for the couplings λ = 0.35, λs = 8.8 × 10−5,
γ = 9.4 × 10−3, and S0 = 63φ0 (corresponding to x = 31, y = 63, z = 5.5 × 103 and
γ̂ = 1.7). The overall scale of the couplings is chosen to saturate the experimental bound on
the Higgs mass. One notices that the region of symmetry restoration is very wide compared
to the weak scale Φ−1

0
∼= 10−3 fm. In this example, the half-width r1/2, where the Higgs field

reaches a value of (Φ(0) + Φ0)/2, is nearly 20 times Φ−1
0 . To get such a wide Φ(r) profile, it

is essential that we use global rather than gauged strings. No radial field excitation in the
broken phase is light,1 and if the S0 field approached its asymptotic value exponentially, the
region of symmetry restoration could not be wider than the largest inverse mass.

Figure 3 shows how Φ(0), r1/2 and m̂2
h depend on x and y for the choices γ̂ = 1.7 (same

as in figure 2) and z = 1. The crucial observations are that Φ(0) tends rapidly toward zero
(maximum symmetry restoration in the string) as S0/Φ0 gets large, and the Higgs mass

1There is, however, an axial excitation–the axion–which creates cosmological problems for these models
when the symmetry-breaking scale is low.
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Figure 2: Doublet and singlet Higgs field profiles around a string, for the parameters λ = 0.35,
λs = 8.8× 10−5, γ = 9.4× 10−3, and S0 = 63φ0, where Φ0 = 174 GeV. These parameters do
not allow thermal symmetry restoration of the S field.
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increases most rapidly along the direction of increasing x ∼ y, while the half-width varies
relatively slowly. To increase r1/2 dramatically, as in figure 2, one should go to large values
of m̂2

h and x ∼ y, and then rescale all the couplings by z = 0.2/m̂2
h, so as to decrease the

Higgs mass to the point of saturating the experimental bound. This increases r1/2 by the
factor z−1/2 without changing Φ(0).
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Figure 3: (a,b) Dependence of the Higgs field central value and half-width, φ(0), r1/2 respec-

tively, on the potential parameters x =
√
λ/λs and y = S0/Φ0, for γ̂ = 1.7 and z = 1. The

logarithm is base 10. (c) Contours of the dimensionless Higgs mass m̂2
h = m2

h/Φ
2
0 for the

same parameters.

However we have not yet taken into account the symmetry restoration bound, Eq. (18),
which does not allow one to make λs much smaller than γ. If we saturate this bound, we find
that γ̂ = 2/x, forcing us to give up at least one of the two baryogenesis-favoring conditions,
either that γ̂ ∼ 2 or x� 1. If we give up the latter condition, so that x ∼ 1 and log x ∼ 0,
figure 3 shows that mh does not grow with y, giving no leverage to rescale z and hence
to widen the Higgs field profile. Indeed, eq. (15) shows that in the fixed-x, large-y limit,
m̂2
h = xz(2 − γ̂2). Thus the smallest we can make z is 0.2/(2− γ̂2), which is of order unity

or greater if γ̂ is close to 2. The region of symmetry restoration is of order the weak scale in
this case, which is too small to comfortably contain a sphaleron. In fact, the large-y, x ∼ 1
case gives the thin strings we have already considered above. And if we choose x ∼ 1 and
y ∼ 1, then Φ(0) is not close to zero; the Higgs field does not lose its condensate even in the
core of the string.

If, on the other hand, we try to keep x large while decreasing γ, the electroweak symmetry
restoring effects of the string rapidly diminish, as shown in figure 4, which is the same as
figure 3 but for the smaller coupling γ̂ = 0.1. As the figure shows, it takes a very large value
of y (S0) to suppress Φ(0) in this case; however r1/2 decreases with y for fixed x, while m2

h

reaches an asymptotic value. Taking for instance x = 20, the largest value allowed by the
symmetry restoration bound at this value of γ, we get a string of radius r1/2 < 3.5/φ0 and
φ(0) = 0.1φ0 when y = 100. Both quantities decrease monotonically with y, which must
be large in order to suppress the Higgs field in the string core, but the radius over which it
is suppressed shrinks at large y. For this value, x = 20, y = 100, and γ = 2λs, we find a
sphaleron energy 0.492 times the broken phase value. The string cuts the sphaleron energy

15



-1 -0.5 0 0.5 1
0

0.2
0.4
0.6
0.8

1

0.96

0.9

0.8
0.7

0.8

0.5
  

log x

log y
φ(0) /φ0

-1 -0.5 0 0.5 1
0

0.2
0.4
0.6
0.8
1.0

   

0.8

  
0.6

0.8

0.4

1
1.4

1.8
1

0.6

log x

r1/2 φ0

-1 -0.5 0 0.5 1
0

0.2
0.4
0.6
0.8
1.0

0.5 1.5 3 6

10 6

18
24
30

3

log x

m̂ h
2

Figure 4: Same as figure 3 but with γ̂ = 0.1

in half, so the sphaleron rate will be substantially faster than the broken phase rate, but still
much slower than the symmetric phase rate, because of the Boltzmann suppression factor
e−Esph/T . The situation does not improve if we vary y in either direction.

It is possible to contrive to evade the symmetry restoration bound, eq. (18). One could
add another scalar field f with a positive quartic coupling γ′|f |2S∗S, whose sole purpose is
to increase the thermal mass of the S field. The constraint is then relaxed to γ < 2λs + γ′

if f is complex and γ < 2λs + γ′/2 if f is real. But adding f introduces new problems:
λs receives radiative corrections of order (γ′)2, which requires fine-tuning of the ultraviolet
couplings to preserve the hierarchy λs � |γ|. Furthermore we must either tune mf < 1
KeV, or give the f particles a direct decay channel by adding a cubic term of form f |Φ|2

and making mf > 4mb; otherwise they leave an excess relic abundance which overcloses the
universe.

It appears possible, then, to allow for “fat” strings with large regions of symmetry restora-
tion, but it requires a highly-tuned hierarchy of couplings in a very artificial model. Aside
from this possibility, “fat” global strings do not appear to provide an effective means of
restoring electroweak symmetry in a suitably large string core to allow efficient baryon num-
ber violation.

To conclude this section, there are two nonsuperconducting string models which allow
significant baryon number violation along strings. The case where an extra U(1)′ is broken
by a complex scalar works if the SM Higgs field has a charge qφ under the U(1)′ which is
incommensurate with the charge qs of the scalar responsible for breaking the U(1)′ symmetry.
The baryon number violation along such a string is much faster than in the broken phase,
but is not completely unsuppressed. It is also possible to violate baryon number efficiently
in a global string model if the coupling between scalar and Higgs is negative and if there is a
large hierarchy of scales between the Higgs self-coupling, the Higgs-singlet coupling, and the
singlet self-coupling. However it is also necessary to add a real scalar with cubic couplings
and to tune them in a way which is unstable to radiative corrections; thus the model appears
to be rather unnatural.
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3 Generation of CP asymmetry inside the string

As we saw at the beginning of the last section, the baryon number production is proportional
to the product of the sphaleron rate along the string and a CP-odd sum of particle chemical
potentials, averaged over the volume in which the sphalerons occur along the string. So
besides the sphaleron rate, discussed in the last section, we also need to know how the string
biases particle populations, so as to create an asymmetry between particles and their CP
conjugates inside the string.

Chemical equilibrium together with CPT ensures that CP-odd combinations of chemical
potentials must vanish, so the string only generates such particle distributions if it drives
the plasma out of equilibrium, which occurs if the string is moving relative to the plasma.
The main goal of this section is to show that, if the string moves slowly, any CP violating
chemical potential it generates depends quadratically on the string velocity vs. The fact that
it goes as v2

s and not vs is easy to understand; a string has no natural “front” and “back”
sides, so there is no distinction between it moving forward or backward; hence the chemical
potentials averaged over the string volume must be even functions of vs. Assuming only that
the chemical potential on the string has analytic behavior in vs, we get that µ ∼ v2

s for small
vs. It remains to check whether this picture is really right, and to see how big the coefficient
is.

We will treat this problem in three different ways. First, we will consider an unrealistic
model where all parameters are pushed to the extreme values that give the most favorable
outcome for baryogenesis. This will be used in the following sections to make a robust
argument against the viability of string-mediated baryogenesis. We will then make more
realistic estimates of the CP-violating chemical potentials, µCP , using a purely quantum
mechanical treatment for the particle-string interaction, as well as a semiclassical one. It
will be seen that both of these give smaller predictions for the size of the CP violating effects
than does the toy model. A crucial aspect of these results is the dependence of µCP on vs,
the string velocity. In particular, for small vs we will show that µCP ∝ v2

s .

3.1 Model-independent upper limit on µCP

CP violation at the string wall comes about when the probability for particles to reflect
from the wall differs from that of antiparticles. The most extreme situation imaginable for
maximizing this effect would occur if the string walls totally reflect particles, and perfectly
transmit the corresponding antiparticles. We will make this radical assumption now, in order
to get a robust upper limit on µCP , hereafter simply denoted by µ. Let us now consider
how this affects the particle distributions inside the string, where baryon number violation
can occur. Since the antiparticles do not see the wall, they are continually refreshed by the
equilibrated population outside of the string, so their distribution functions remain thermal.
We thus have

f− =
1

eE/T ± 1
= ff , (21)

where ff denotes the equilibrium Fermi population function.
The particles, on the other hand, have in addition the effects of the reflections, which in

the rest frame of the plasma causes their distribution functions to be boosted by the string
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velocity (taken to be in the x direction). It is also possible that they acquire a chemical
potential, but other departures from equilibrium are damped by collisions. Assuming only
that collisions with plasma particles are less frequent than collisions with the walls of the
symmetry restored region, which is reasonable for the relatively narrow strings considered
in this paper, we get

f+ =
1

eγv(E−vspx+µ)/T ± 1
; γv = (1− v2

s)
−1/2 . (22)

For definiteness we will henceforth assume the particles are fermions, and denote them by
F , since only fermions enter in the anomaly equation and bias baryon number violating
processes.

The generation of the chemical potential µ is due to annihilation (FF̄ → GG) and pair-
production processes, (GG→ FF̄ ), involving gauge bosons G, for example. The size of the
equilibrium value of µ which is generated can be deduced from the Boltzmann equations for
the F and F̄ distributions: it is that value of µ which causes the production rate of particles
via GG → FF̄ and the destruction rate from FF̄ → GG to cancel each other. This is the
right condition because particles inside the string can never get out; if the production and
destruction rates did not balance, the particle number would adjust until it did. Let fb =
(eE/T − 1)−1 denote the thermal distribution functions for the gauge bosons, M the matrix
element for annihilation or pair production, and dΠ ≡ δ(p1 +p2−p3−p4)

∏4
i=1 d

3pi/(16π3Ei)
the phase space measure. The condition that the collision term vanishes is∫

dΠ|M|2 [f+(p1)f−(p2)(1 + fb(p3))(1 + fb(p4))

−fb(p3)fb(p3)(1− f+(p1))(1− f−(p2))] = 0. (23)

Expanding f± in powers of µ and vs, and using that E1 +E2 = E3 +E4, we find after menial
algebra that the term in brackets involving population functions is

[ff (p1)ff (p2)(1 + fb(p3))(1 + fb(p4))]

(
µ

T
+ vs

p1z

T
−
v2
s

2

E2

T 2
+
v2
s

2

p2
1z

T 2
(1− 2ff(p1))

)
, (24)

plus corrections of order µ2, v3
s , or µvs. Since the integration measure contains an average

over angles, pz averages to zero and p2
z averages to (1/3)p2. It is because pz averages to zero

that no vs term appears in the expression for µ. It is also clear that for all higher order
processes, the term proportional to vs will involve an integration over a vector quantity and
will vanish on angular integration; so the v2

s dependence of µ is not an accident of expanding
to leading parametric order.

Now, defining

〈X〉M ≡

∫
dΠ|M|2ff (p1)ff(p2)(1 + fb(p3))(1 + fb(p4))X∫
dΠ|M|2ff(p1)ff (p2)(1 + fb(p3))(1 + fb(p4))

, (25)

then the result for the chemical potential can be simply expressed as

µ =
v2
s

2

(
〈E2〉M −

1

3T

〈
|~p2|

2 e
E2/T − 1

eE2/T + 1

〉
M

)
(26)
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Notice that the result is independent of the overall strength of the interaction, M. This
will be true so long as the interaction is faster than the Hubble expansion rate, so that it
remains in equilibrium. The answer does involve the energy dependence ofM, but the fact
that µ ∝ v2

s does not.
To give a concrete estimate for the size of µ, we can simplify the integral by considering the

leading logarithmic behavior in the gauge coupling constant g, which comes from t-channel
exchange at low momentum transfer, whereM∼ 1/t. Using the same approximations as in
Appendix A of ref. [27], we obtain

µ =
ζ(3)

6ζ(2)
v2
sT
∼= 0.12v2

sT, vs � 1, (27)

in the small-velocity limit. The value of µ, relevant to baryogenesis, is the sum of 1/2 this
quantity, over all left handed doublets coupled to SU(2) which scatter from the wall in this
way.

While we have only performed the calculation in the small vs case, where it is valid to
make an expansion about equilibrium population functions, we expect that, for relativistic
strings,

µ ∼< T, γvvs ∼ 1 . (28)

since parametrically there is nothing that can enhance µ to the point of getting a highly
degenerate gas of CP-asymmetric particles. In fact, it will be seen that the arguments to be
made below would not be invalidated even if µ diverged like γv in the ultrarelativistic limit.

Eqs. (27-28) are sufficient for making our estimate of the maximum string-mediated
baryon asymmetry possible, as will be done below in section 4. To bolster and complete the
argument, however, we shall give some more realistic computations of the CP asymmetry in
the following subsections.

3.2 Initial chiral flux in a realistic model

We will now consider the generation of a CP-violating particle flux in a specific theory. The
simplest example is a two-Higgs-doublet model including [28] a complex mass term m2

φΦ†1Φ2

and quartic interaction h(Φ†1Φ2)2. The unremovable CP-violating phase θ0 is defined by
m2
φh

1/2 = |m2
φh

1/2|eiθ0. In the string wall, the two VEVs can be parameterized as Φ1(r) =

φ1(r)eiθ(r)/2 and Φ2(r) = φ2(r)e−iθ(r)/2, where the φi functions are real and δθ ≡ θ(∞)− θ(0)
is of order θ0. Solutions for θ(r) have been found for domain (bubble) wall backgrounds in
ref. [28], where φi(r) has the form tanh(r/r0), and we expect the solutions to look similar in
the case of strings since the shape of our Higgs doublet profiles are qualitatively the same.
We will therefore borrow results from ref. [28] to make the following estimates. This is done
to be as quantitative as possible, but our main conclusions will not depend on fine details of
this particular model, but rather on parametric dependences that we expect to hold in any
model.

If each fermion couples only to one of the two Higgs doublets, as is beneficial for avoiding
flavor-changing neutral currents, then they will have CP-violating reflections from the string
wall as a result of the spatially varying phase θ(r). Those particles with the largest Yukawa
couplings will be reflected most strongly. For simplicity we will model the string as having
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a square rather than round cross section, moving through the plasma perpendicularly to
one of the sides (2 → x) with velocity ~vs = vsx̂. While this approximation is far from
perfect, it can only change the answer by a geometrical factor of order 1. It allows the use of
planar wall calculations for the difference in reflection probabilities, which can be adequately
parameterized in terms of the fermion momentum perpendicular to the string wall (which
we will take to be px) by an exponential,

∆R(px) ∼= Aδθ e−px/δp (29)

(the linear dependence on δθ being correct for δθ� 1), where A and δp depend on the mass
mf of the fermion outside the string and the width of the Higgs field profile. The dependence
of δp was found to be

δp
mf

=


−1.1 ln(mfr1/2)− 0.54, mfr1/2 < 0.3;
0.19 (mfr1/2)−1.2, 0.3 < mfr1/2 < 0.7;
0.15 (mfr1/2)−1.8, mfr1/2 > 0.7;

(30)

It should be noticed that, although large values of r1/2 are desirable for enhancing the rate of
sphaleron interactions in the string, they at the same time suppress the quantum reflections
of heavy particles. For this reason lighter particles like the τ lepton can be more important
than top quarks despite their smaller Yukawa couplings.

The amplitude of the asymmetry, A, depends not only on mfr1/2 but also on m2
φ/m

2
h.

For mfr1/2 ∼ 1, A is also of order 0.1, but for larger mfr1/2 it decreases exponentially,
A ∼= e−cmr1/2 , where c ranges from 0.5 to 2 as m2

φ/m
2
h goes from 0.3 to 8.

Once ∆R is known, the next step is to compute the flux of CP asymmetry going into the
string. The flux of CP current per unit length of the string is given by

J =
1

2

∫
d2p⊥dpx

(2π)3

∣∣∣∣pxE
∣∣∣∣∆R(px)

(
f(γv(E + vs

√
p2
x −m

2
f )/T )− f(γv(E − vspx)/T )

)
, (31)

where f is the distribution function of the particles, boosted by ±v (the wall velocity)
depending on whether they are approaching from the right or the left, and γv = (1−v2

s)
−1/2.

Making the Maxwell-Boltzmann approximation for the distribution functions, and ignoring
the dependence on mf (since the particles are assumed to be relativistic) we can easily
evaluate J to be

J = vsAδθ
δ3
p

π2

1 + γvδp/T

(1 + 2γvδp/T + (δp/T )2)2 (32)

In another theory the form of J might differ, but it must always be proportional to the string
velocity, vs, because at vs = 0 everything is in equilibrium. Furthermore, it is bounded by
J ≤ vsT

3/π2, which is the forward-backwards difference in total incident particle numbers.
This bound would be saturated only if the string were a perfect reflector of one CP state and
a perfect transmitter of the other; any realistic wall will give currents that are much smaller.

3.3 Subsequent diffusion of the source

Now we are ready to use the current as a source for the diffusion equation to find the steady-
state density of chiral asymmetry at the center of the string. It must be understood that the
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flux J actually represents a positive flux entering the front wall and going into the string,
and an equal and opposite flux leaving the string through the front wall and entering the
plasma. To apply the diffusion equation, it must be assumed that these fluxes penetrate the
plasma by some distance λ (the mean free path) before diffusive behavior sets in. Otherwise
the diffusion equation sees only two equal and opposite, hence canceling, local densities at
the string wall, giving no net source of chiral charge. As explained in references [28, 29], this
can be modeled by a source term in the diffusion equation which is a difference of two delta
functions:

∂n

∂t
−D

(
∂2

∂x2
+

∂2

∂y2

)
n+ Γn = J (δ(x+ λ− vst)− δ(x− λ− vst)) (33)

Here y is the transverse direction along the cross-section of the string, D is the fermion’s
diffusion constant, and Γ is the rate of chirality-damping processes, like spin-flip interactions.

However, the above equation gives only the contribution from the front wall. There
is another contribution from the back wall which has the opposite sign. Taking this into
account, and changing coordinates to the rest frame of the string, where x = y = 0 denotes
the center, we find that the solution for n can be expressed as a sum of four contributions,
two for each wall:

n(x, y) = J
[
N(x+ w/2 + λ, y)−N(x+ w/2− λ, y)

+N(x− w/2 + λ, y)−N(x− w/2− λ, y)
]
, (34)

where w = 2r1/2 is the width of the string and N is the Green’s function of the 2-D diffusion
equation. The first line represents the front wall contribution and the second is that of
the back wall. Although the explicit signs in the equation are the same for both walls, the
contributions to the chemical potential at the center of the string are of opposite sign; it is
the second and third contributions in the equation which are injected inside of the string.
It is only because the string’s motion leads to an asymmetric solution N of the diffusion
equation that the expression for n is nonzero at the center of the string; in fact as the string
velocity vs goes to zero N becomes a symmetric function and the average over the string
interior of the term in brackets goes to zero linearly in vs; this is whence the second power
of vs arises.

Using the Green’s function for the two-dimensional diffusion equation, the individual
contributions are given by

N(x, y) =
1

4πD

∫ ∞
0

dx′

x′

∫ w/2

−w/2
dy′e−(v/4Dx′)((x+x′)2+(y−y′)2)−Γx′/v, (35)

which satisfies a two-dimensional diffusion equation like (33) with source term

δ(x)
∫ w/2

−w/2
dy′δ(y − y′). (36)

The derivation of eq. (35) is not completely obvious. For a stationary source, the Green’s
function for the 2-D diffusion equation is G(x, y, t) = t−1 exp(−(x2 + y2)/4Dt − Γt). Now
we are considering a moving source, whose trajectory can be described by x′ = vt′. At
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a given position (x, y) and time t, an observer sees a contribution from when the source
was at position x′ at the earlier time t′, proportional to

∫
dy′G(x − x′, y − y′, t − t′). We

must integrate all these contributions from t′ = −∞ to the present time t: N(x, y, t) ∝∫ t
−∞ dt

′ ∫ dy′G(x− x′, y− y′, t− t′). Here N is still in the rest frame of the plasma; replacing
x→ x + vt takes us to the rest frame of the source, so that x now measures how far one is
in front of the source, and the solution becomes time-independent. The change of variables
x′ = v(t − t′) in the integral gives eq. (35). As for the normalization, it is chosen to insure
that the rate of particle creation by the source equals that of particle loss by decay when
the system reaches a steady state:

Γ
∫
J N(x, y) dx dy = Jw. (37)

At the center of the string (y = 0), where the effect is maximized, the answer simplifies
somewhat, and can be expressed as

N(x) ≡ N(x, 0) =
e−vx/2D

4D
√
π

∫ ∞
0

dz
√
z

erf(w/
√

4z)e−x
2/z−(v/4D)(v/4D+Γ/v)z . (38)

Substituting this result into eq. (34) and evaluating it as a function of x, we find that the
chiral density in the string is almost antisymmetric about the core, but is skewed slightly by
the nonzero velocity, which distinguishes front from back. This behavior (and the fact that
we have idealized the string by four delta function sources, eq. (34)) is shown in figure 5.
Because n(x) varies significantly inside the core of the string, and the rate of baryon number
violation at position x is proportional to n(x), we should average it over the core, i.e., the
region x ∈ [−w/2, w/2]:

n̄ =
1

w

∫ w/2

−w/2
n(x, 0) dx. (39)

We should also average over y, but n is a smooth function of y, peaking at y = 0, so using
y = 0 only slightly overestimates the average. This approximation, in any case, errs in favor
of the mechanism we are ruling out.

In Figure 6 we show how the spatially averaged chiral asymmetry at the center of the
string varies with the string velocity, for several choices of parameters. Set 1: D = 6/T ,
λ = D, Γ = T/100, w = 6/T , δp = 0.1T , which is a realistic choice for quarks [30]. Set 2:
same as set 1 but with D = λ = 100/T , which might be reasonable for leptons. Set 3: same
as set 1 but with δp = T , to show what happens when the bubble surface efficiently reflects
particles with higher momenta. Set 4: same as set 1 but with w = 100/T , to show what
happens for a very thick string. In all examples we have assumed that T = 100 GeV, which
is the temperature where the electroweak phase transition is known to occur, and that CP
violation is nearly maximal, δθ = 1.

In every case the number density, and hence the chemical potential (related by n = µT 2/6
times the number of spin degrees of freedom), varies quadratically with the string velocity,
µ/T = Kv2

s , with K significantly less than 1. One power of vs arises from the injected flux,
while a second power comes from a front-back cancellation.

To understand why the coefficient of the v2
s law is so small, it is important to realize

that the string core width is typically not much larger than the quark diffusion constant,
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Figure 5: The chiral asymmetry as a function of distance from the center of the string, for
the parameters D = 6/T , λ = D, Γ = T/100, w = 6/T , δp = 0.1T , and v = 0.1.

and so an asymmetry generated on the string fairly rapidly diffuses away from it into the
plasma at large. Since baryon number violation is only efficient right on the string, any
chiral asymmetry outside the core is wasted, as far as baryogenesis is concerned, which helps
to explain why the coefficient of µ is so small. Even if we took the flux to be maximal the
coefficient K would still be of order 10−2. This is to be contrasted with the situation in the
conventional scenario with a first order phase transition; here the wall is planar, so there is
only one direction to diffuse away from it, and baryon number is efficiently violated in one
of the half-spaces.

It should be mentioned that the vs-dependence of the chemical potential would be
different for a very thick string. When the string width satisfies both r > D/vs and
r > T 3/Γsph ∼ 106/T (where Γsph ∼ 10−6T 4 is the rate per unit volume of sphaleron
interactions in the symmetric phase) then the baryon number asymmetry from the front
side vanishes; any baryons produced fall into the string and are inevitably destroyed by
sphalerons [10]. In this case the baryon number production can scale linearly with vs (al-
though at small enough vs, the r > D/vs condition will eventually break down). However,
the nonsuperconducting strings we have considered have radii nowhere near this large, and
µ ∝ v2

s holds up to vs ∼ 1.
Our treatment becomes less good for vs approaching 1, but we do not expect a large CP

asymmetry in this case either. At such large velocities, the flux impinging on the back side
of the string can be ignored compared to that which hits the string’s front side and escapes
through the back. In the string rest frame, this incident flux is composed of very hard
particles. The reflection probability for hard particles drops very quickly with momentum,
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Figure 6: The chiral asymmetry averaged over the string cross section, as a function of the
string velocity, treating particle reflections from the string quantum mechanically. See text
for description of parameter sets.

as was mentioned above, and so therefore does the CP-violating difference in reflection
probabilities. In any case, even in a scaling string network where friction is negligible, almost
none of the strings are traveling ultrarelativistically; the mean value of v2

s (with the average
weighted by the energy and not the length of string) is less than 1/2 [32]. For a scaling-regime
network what is relevant is an appropriate average of µ(vs) over the velocities represented by
the scaling network, for which we expect µ ∼ T with a constant of proportionality roughly
of the same order as K the coefficient in the v2

s law discussed above.

3.4 WKB estimate of the chiral asymmetry

It has been pointed out that when defect boundaries are sufficiently thick compared to the
mean free path for particles to scatter in the plasma, a semiclassical treatment of chiral
asymmetry generation is more appropriate than the quantum mechanical one given above
[30, 31], and gives a larger answer. The distinction arises because CP violation in the defect
creates a classical, CP-violating force on particles as they cross the wall. In addition, the
scatterings themselves can be CP-violating, giving rise to what has been called “spontaneous
baryogenesis” in earlier literature.

If θ(x) is the background CP-violating phase, such as appears in the two-Higgs-doublet
model discussed above, then these two classical effects generically give rise to a source term
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Figure 7: The chiral asymmetry at the center of the string as a function of vs, using the
WKB approximation, and the parameters D = 6/T , Γhf = T/100, w = 6/T , δθ = 1, yf = 1.

in the diffusion equation (replacing the r.h.s. of eq. (33)) of the form

S(x) ∼ vs
y2
fT

2

6
(Dθ′′′ + Γhfθ

′) , (40)

where yf is the Yukawa coupling of the fermion to the Higgs field. The primes denote spatial
derivatives, and Γhf is the rate of helicity-flipping interactions. The first term is due to
the classical force, and the second is the origin of spontaneous baryogenesis. The size of
the chemical potential thereby generated can be roughly estimated just as in the previous
section if we approximate θ as a step function, so that θ′ ∼= δθ δ(x). Taking into account
the separate contributions from the front and back walls of the string is accomplished by
replacing the above source term by

S2(x) = S(x+ w/2)− S(x− w/2) (41)

The minus sign occurs because the shape of the θ(x) profile on the back wall is the mirror
image of that on the front wall, and S(x) involves an odd number of derivatives of θ(x). This
behavior is in contrast to the quantum mechanical calculation, where front and back walls
gave same-sign contributions. This difference between the quantum and classical treatments
stems from the fact that quantum reflection probabilities are the same for particles crossing
a potential step, regardless of the direction of motion, whereas the sign of the classical force
exerted on the particle by such a step does depend on what direction it is going.

25



With the delta-function approximation for θ′, we can immediately write the spatially av-
eraged solution for the chiral asymmetry in the string, in analogy to the quantum mechanical
treatment of the preceding section. n̄ is given by eq. (39), using

n(x) = vs δθ
y2
fT

2

6
(DN ′′(x′) + ΓhfN(x′))|x

′=x+w/2

x′=x−w/2 , (42)

and the definition of N(x) given by eq. (38). The results for the previously-described param-
eter set 1 (D = 6/T , Γhf = T/100, w = 6/T , δθ = 1), assuming yf = 1, are shown in figure
7. The two terms, due to the spontaneous baryogenesis and classical force effects, respec-
tively, are shown separately. The classical force contribution is larger than the spontaneous
baryogenesis contribution, and is also significantly larger than the quantum mechanical pre-
diction for the same set of parameters. The v2

s dependence is evident over most of the range
of velocities. To convert from density to chemical potential, one uses

µ =
6n

gT 2
(43)

for a fermion with g helicity states.

4 Efficiency of baryogenesis by a string network

We have now seen how efficiently baryon number is violated along cosmic strings. Namely,
the production of baryons per unit length of string is

dNB

dLdt
= 1.5κlα

2
WT

2
∑
i

−µi
T

, (44)

where the µi are the chemical potentials for the ith species of left-handed (SU(2) doublet)
fermions. Henceforth we will write

∑
i µi simply as µ. We have already seen that κl < 0.1,

falling fairly rapidly as the temperature drops, and that µ varies as v2
s , the square of the

string velocity, when vs is small. To estimate the baryon number produced, we still need
to know the density and velocity of the string network, however. These quantities depend
crucially on one model-dependent parameter of the strings, namely their tension.

Let us denote the string tension by τ , the typical string’s radius of curvature at the
electroweak epoch by R, and the typical velocity of propagation of a string, in the rest frame
of the plasma, by v. On dimensional grounds we have that

v ∼ HR , (45)

with H the Hubble constant at the electroweak epoch.
The string experiences a velocity-dependent friction as it moves through the plasma,

arising from particles bouncing off the electroweak-symmetry-restored core of the string.
For small velocities one can define a frictional constant η, such that the force per unit length
of string is d~F/dL = −η~v. If w is the width of the symmetry-restored region, then

η ∼ wηb ∼
1

gφ0
g3φ3

0T , (46)
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where ηb is the friction constant of a moving electroweak bubble wall, ~F/area = −~vηb, and
its parametric dependence, ηb ∼ g3φ3

0T , was argued in ref. [33]. If we take φ0 ∼ T , as
needed to prevent baryon number violation in the bulk from erasing the baryons produced
by strings, then η ∼ g2T 3; if instead we make the parametric estimate appropriate right
after a weak phase transition, φ0 ∼ gT , we get η ∼ α2

wT
3. This is the friction on the string

just from its dragging a region of restored electroweak symmetry through the plasma; there
may also be additional sources of friction, so the η given above is a lower bound.

The force (per unit length) pulling a string forward is given by τ/R. If v � 1 then inertia
is not important and we can equate the forces, and using eq. (45), obtain the estimates

τ

R
= vη → v ∼

√
Hτ

η
, R ∼

√
τ

Hη
, (47)

valid whenever the resulting velocity is small. This situation is called the friction-dominated
regime. On the other hand, if the above estimate gives v ≥ 1, then friction is not important;
instead the string evolution will be dominated by the tension, expansion of the universe, and
loss of closed loops due to self-intersections. In this scaling regime, R ∼ 1/H and v ∼ 1,
with a mean squared value 〈v2〉 < 0.5 [32]. The crossover tension between the two cases for
T ∼ 100 GeV is τ ≥ (109 GeV)2.

To obtain the rate of baryon number production per unit volume from eq. (44), we must
calculate the total length of string per unit volume. One expects on dimensional grounds
that the mean separation between strings is O(R), so the length of string per unit volume is
1/R2, and the baryon density production rate is

dNB

dV dt
∼
(

1

R2

)
κlα

2
wT

2 µ

T
. (48)

As was discussed in the last section, at small velocities the chemical potential behaves like
µ = v2KT , with K a pure number depending on φ0/T but not on v. It was shown that K
cannot be larger than O(1), and realistically is much smaller. Similarly, in the large-velocity
case, we expect µ ≤ T , say, µ = K ′T .

The two regimes of string evolution can now be considered in turn. First consider the
friction-dominated case. Using µ = Kv2T and eq. (45) in (48) gives

dNB

dV dt
∼ κlα

2
wKH

2T 2 . (49)

This expression must be integrated from the time when the Higgs condensate first becomes
large enough to preserve baryon number in the broken phase, φ0 ' T , to the present time.
The right hand side depends on time through the temperature, d(lnT )/dt ∼ H. The most
strongly temperature-dependent term is κl, which decreases quickly with falling tempera-
ture. Even making the generous assumption that it takes one Hubble time for κlK to fall
sufficiently to cut off baryon number production, we still get a final baryon density of order

NB

V T 3
∼ κlKα

2
w

H

T
∼ κlKα

2
w

T

mpl
. (50)

The last step follows from the Friedmann equation, H2 = (8π/3)(ρ/m2
pl), using ρ ∼ T 4, so

H ∼ T 2/mpl. In this expression, all dependence on the density of the string network, i.e., on
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1/R, has dropped out. This happens because, although a denser network of strings produces
baryons along a greater total length of string, these strings are moving more slowly and are
therefore less efficient at baryon number production.

The above argument neglects the effects of small closed loops of string, yet the string
velocity in a friction-dominated network can become large for a loop just as it collapses.
One may wonder whether such loops can enhance the baryon production. To answer this,
consider a loop initially of radius r = R, the characteristic curvature length of the network,
which subsequently shrinks. Its velocity is v(r) ∝ 1/r, and the radius evolves as dr/dt = −v.
Hence r ∝ (t0−t)1/2, with t0 the time of final collapse. The baryon production is proportional
to ∫ t0

Lv2dt = 2π
∫ t0

rv2dt ∝
∫ t0

(t0 − t)
−1/2dt , (51)

which is well-behaved at the upper limit of integration and dominated by r ∼ R. Hence
the collapse of loops contributes approximately as much to the baryon asymmetry as the
evolution of the rest of the network, parametrically no more.

Putting in the most optimistic values, κl ∼ 10−1, K ∼ 10−2, T/mpl ∼ 10−17, we
find a baryon asymmetry about 13 orders of magnitude smaller than the physical value,
NB/(V T

3) ∼ NB/Nγ ∼ 10−10.
If the string network is in the scaling regime, the previous argument changes as follows.

Rather than µ = Kv2T , with K ≤ 1, we have µ = K ′T with K ′ ≤ 1. Also, R ∼ 1/H
rather than R ∼ v/H. The final expression is the same with K ′ substituted for K, and the
generated baryon number is still too small by at least 13 orders of magnitude.

These estimates are optimistic, in the sense that κl falls quite quickly with temperature,
so there is much less than one Hubble time for baryon number to be created; moreover
K is realistically much less than 10−2. The treatment of the defect network is somewhat
pessimistic, though, since numerical studies show that the mean separation of cosmic strings
is closer to 1/10 of the Hubble length, rather than the full Hubble length [32]. This could
enhance our estimate of the baryon asymmetry by a factor of 102. Also, the coefficients of
order unity in the Friedmann equation imply that H ∼ 10T 2/mpl, winning us an additional
factor of 10. But this still leaves the mechanism too weak by 10 orders of magnitude, even
using the most optimistic assumptions.

Interpretation: Free Energy

There is another way of understanding our result, by considering the available free energy
in a network. Think of the out of equilibrium requirement of baryogenesis as the statement
that a baryogenesis mechanism must be a way of converting available free energy into baryon
number.

The available free energy density in the conventional electroweak baryogenesis scenario,
with bubble walls converting supercooled symmetric phase into broken phase, is the free
energy difference between the phases, which is (Tc−Tnuc)∆S, the temperature drop between
equilibrium and nucleation times the entropy difference of the phases. The numerical value
is parametrically O(α3

WT
4) for λ ∼ g2, but it is always at least 10−3T 4 when the phase

transition is strong enough to prevent subsequent erasure of the baryon number.
For the string network, the available free energy is the free energy contained in the net-

work, which is the length of string times the tension (times the mean value of the relativistic
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γ factor for the scaling network, but this is order 1). For the friction dominated network,
the density of the network is ∼ 1/R2, which together with Eq. (47) gives a free energy
density ∼ Hη ∼< T 4(T/mpl), independent of the tension. Since the baryogenesis mechanism
is the same or similar as that in the conventional first order case, it would be surprising
if this much smaller available store of free energy were able to produce anything like the
same number of baryons. For the scaling network the available free energy is larger, though
observational constraints require it to be less than 10−6T 4. However, most of the free energy
loss is not due to friction against the plasma. In fact, the amount which is being lost to
heating the plasma directly is independent of the tension of the network, since the width of
the symmetry restored region does not depend on the string width. In fact the free energy
loss to the plasma is about η times the area swept out by the network in a Hubble time,
∼ Hη, which is parametrically the same as for the friction dominated network. In either
case, the network is just not capable of generating anywhere near the amount of departure
from equilibrium needed to produce enough baryons.

The situation might be different for a superconducting network, but the above reasoning
suggests that even for this case, baryogenesis can only get close to the efficiency of the con-
ventional first order mechanism if the free energy of the network is close to the observational
limit and much or most of the network’s energy is lost to the plasma.

5 Conclusion

String networks do not provide a viable scenario for electroweak baryogenesis if the strings
are not superconducting. While they are capable of generating baryons, they do so far too
inefficiently to account for the existing abundance.

The first problem is that baryon number violation along a string, while certainly faster
than in the broken phase, is not entirely unsuppressed. The core where electroweak symmetry
is restored is never wide enough to allow symmetric phase sphaleron-like events; at best it
brings the sphaleron rate to 1/30 of what it would be in the unsuppressed case, i.e., if the
core region was 1/αwT in diameter.

Given the actual width of the region of symmetry restoration around a cosmic string,
we find that if the network is in the scaling regime, it violates baryon number in far too
small a total volume for it to add up to the observed abundance. If the network evolution
is friction-dominated, the network is denser, but the denser is the network, the more slowly
moving the strings are. This in turn makes them very inefficient at creating baryon number,
since the production rate goes as v2 for small velocity. In either case the generated baryon
number is at least 10 orders of magnitude smaller than the observed abundance.

The case of superconducting cosmic strings merits more careful study. The main challenge
here is finding a realistic estimate of the hypercharge current carried by a typical string at
the electroweak epoch. We have not attempted to study this problem here. However, our
results make it clear that unless the region of symmetry restoration proves to be much wider
than 1/g2T , the superconducting scenario will also fail.
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A Cooling to a saddle point

Here we discuss an algorithm for numerically finding a saddle point of a Hamiltonian on
a many-dimensional space, which we used for determining the energy for a sphaleron in a
string background in Section 2.

Suppose that we have a Hamiltonian system with degrees of freedom Φα and Hamiltonian
H(Φ). We require only that the coordinates Φ are continuous. They could for instance be
real numbers, or members of a compact manifold.

Ordinary gradient flow cooling of the fields means evolving the fields under a cooling time
τ according to

dΦα

dτ
= −

∂H(Φ(τ))

∂Φα

. (52)

When the Φ take values on a manifold the derivatives are understood in terms of the tangent
space at the current location. A typical discrete implementation of this algorithm is

Φα(τ + ∆)− Φα(τ) = −∆
∂H(Φ(τ))

∂Φα

. (53)

When Φ is a point on a manifold, the right hand side is a point in the tangent space of Φ(τ)
and we determine Φ(τ + ∆) by starting at Φ(τ) and following the geodesic curve of starting
direction and length indicated by the right hand side.

Provided that we make ∆ small enough, this algorithm will reduce the energy until it
hits a local minimum.2 “Small enough” means that ∆ < 2/ω2

max, where ω2
max is the largest

eigenvalue of the matrix of second derivatives of H. In many cases we can actually compute,
or at least bound, ω2

max over the entire space, and ensure stable dissipation.
What if we want an algorithm which will flow to the nearest extremum, even if it is a

saddle point and not a minimum? If we can guess a starting point which is fairly close to
the desired extremum then it makes sense to analyze algorithm behavior in terms of small
deviations about the extremum. Write the fields as Φ0 + δΦα, and expand the Hamiltonian
to second order in δΦα;

H ' H(Φ0) +HαβδΦαδΦβ . (54)

The matrix Hαβ is diagonalized by the basis of eigenvectors ξα, with eigenvalues λα. It is
convenient to write the distance from the extremum Φ0 in this basis, as δαξα.

The action of the algorithm, Eq. (53), on δα is

δα(τ + ∆) = [1−∆λα]δα(τ) , (55)

2It could in principle hit a saddle point and stick there, but it would have to land exactly on it and the
space of starting points which would do so is measure zero.
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which shrinks those perturbations in directions with positive eigenvalue and stretches per-
turbations in directions with negative eigenvalue. This is fine if you want to find a minimum
but it will carry you away from a saddle point.

If on the other hand we take N steps with step length ∆ and one step with step length
−N∆, the departure from the saddle point is

δα(after) = [1 +N∆λα][1−∆λα]Nδα(before) ' (1 +N∆λα)e−N∆λαδα(before) , (56)

where the last approximation holds for ∆λ� 1. We plot the function (1+x)e−x in Figure 8.
The algorithm reduces the deviation in every basis direction provided that the most negative
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Figure 8: The function (1 + x)e−x. The algorithm converges for all eigenvalues λ provided
N∆λ ≡ x satisfies −1 < (1 + x)e−x < 1.

eigenvalue λneg satisfies 1 + N∆λnege
−N∆λneg > −1, which requires N∆λneg > −1.2784645.

If we choose N∆ too large, the deviation in the unstable direction will alternate in sign and
grow in magnitude; otherwise every departure from the saddle point will shrink.

For our application we can tell if we have chosen too large a value for N∆ by cooling
the configuration towards vacuum and finding the sign of TrE ·B as the configuration slides
out of the saddle towards the vacuum. If N∆λneg < −1 then the sign of the excitation in
the unstable direction switches each step, and so will the direction of approach towards the
vacuum. If the sign switches we may be driving the system dangerously. If it does not, we
are being too conservative and the algorithm will be inefficient. We can adjust N∆ as we go
to achieve optimal stable performance. If we did not have such a clear signature for the sign
of the unstable mode, we could still determine λneg, once we get close to the saddle point,
by tracking the energy during cooling from near the saddle to the vacuum. After transients
from stable modes have decayed, but before the configuration gets far from the saddle, the
energy behaves like Esph −K exp(τλneg), and λneg can be determined by fitting.

Also note that, if we know λneg, and also know that there is only one unstable mode, we
can increase the efficiency with which the algorithm eliminates low frequency stable modes
by applying extra cooling. For instance we can perform a backwards step of length 1/λneg

and several small forward steps of total length 2/|λneg|, so the departure from the saddle
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point obeys
δα(after) = (1 + λα/λneg) exp(−2λα/λneg)δα(before) . (57)

However, if we expect there to be more than one negative eigenmode then this is may make
the other one grow unstably. In general, if there are more than 1 negative eigenmodes and
there are low lying positive eigenmodes, the algorithm becomes quite inefficient. Also note
that the algorithm will not necessarily find a saddle point if it starts out very far from it.
Both of these limitations are quite general limitations of saddle point finding algorithms.
The algorithm’s charm is its simplicity; all we need to be able to do is take first derivatives
of the Hamiltonian in order to apply it, though we should try to determine λneg if we want
to apply it well. No more coding is necessary than it takes already to search for minima.
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