
Optimising and Extending the Geometrical

Modeller of a Physics Simulation Framework

Thesis for the Degree of Master of Engineering

Technical University of Budapest

Faculty of Electrical Engineering and Informatics

P�eter Urb�an

Supervisors:

Dr. Andr�as Pataricza

Department of Measurement and Information Systems

Jari Sulkimo

CERN European Laboratory for Particle Physics

Information Technology Division

May 20, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25246946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The design of highly complex particle detectors used in High Energy Physics
involves both CAD systems and physics simulation packages like Geant4.
Geant4 is able to exchange detector geometries with CAD systems, con-
forming to the Standard for the Exchange of Product Model Data (STEP);
Boundary Representation (B-Rep) models are transferred. Particle tracking
is performed in these models, requiring e�cient and accurate intersection
computations from the geometrical modeller. The results of extending and
optimising the modeller of Geant4 form the contents of this thesis. Swept
surfaces: surfaces of linear extrusion and surfaces of revolution have been im-
plemented. The problem of classifying points on surfaces bounded by curves
as being inside or outside has been solved. These tasks necessitated the ex-
tension and optimisation of code related to curves and lead to a re-design
of this code. Emphasis was put on e�ciency and on dealing with numerical
errors. The results will be integrated into the upcoming beta test release of
Geant4.

Contents

1 Introduction 1

2 Boundary Representation with STEP 5

2.1 Structure of the standard . 5

2.2 Representation of solids . 6

2.3 Geometry . 8

2.3.1 Points . 9

2.3.2 Curves . 9

2.3.3 Surfaces . 11

2.4 Topology . 12

3 The Geant4 simulation framework 15

3.1 Overview . 15

3.2 Geometry in Geant4 . 17

3.2.1 Detector representation 18

3.2.2 Particle propagation in detector model 19

3.2.3 Requirements for solids 21

3.2.4 Tolerances . 21

3.2.5 Overview of the B-Rep modeller 22

3.2.6 From alpha to beta . 23

i

4 Curves 25

4.1 Overview . 25

4.2 Parametrisation . 26

4.3 Construction . 27

4.4 Bounding box calculation . 29

4.4.1 Curve primitives . 30

4.4.2 Pcurve . 33

4.4.3 Other curves . 33

4.5 Parallel projection . 34

4.5.1 Conics . 34

4.5.2 Pcurve . 38

4.5.3 Other curves . 38

4.5.4 Problems of parametrisation 38

4.6 Intersection . 40

4.6.1 Curve primitives . 41

4.6.2 NURBS curve . 44

4.6.3 Composite curve . 44

4.7 Tangent calculation . 45

4.7.1 Conics . 45

4.7.2 NURBS curve . 46

4.7.3 Other curves . 46

5 Swept surfaces 48

5.1 Surfaces of linear extrusion . 49

5.1.1 Intersection . 49

5.1.2 Parametrisation . 50

5.1.3 Normal direction . 50

5.1.4 Bounding box calculation 51

ii

5.2 Surfaces of revolution . 52

5.2.1 Intersection . 52

5.2.2 Parametrisation . 56

5.2.3 Normal direction . 57

5.2.4 Bounding box calculation 57

6 Curve bounded faces 59

6.1 The topological point of view 59

6.2 The geometrical point of view 62

6.2.1 Pcurve boundaries and planes 62

6.2.2 Other elementary surfaces 63

6.2.3 Swept surfaces . 65

6.2.4 NURBS surfaces . 67

6.2.5 Rectangular composite surfaces 68

6.3 Operations on the boundary 69

6.4 Precision problems . 71

7 Conclusions 74

A Geant4 class categories I

B Design diagrams of the B-Rep code II

C STEP class diagrams X

iii

List of Figures

1.1 Layout of ATLAS detector, a proposed experiment on the
LHC. Note the height of the persons around the detector. . . . 2

2.1 EXPRESS speci�cation of the line STEP entity. 6

3.1 Simulation of the decay of a Higgs boson into 4 muons (straight
tracks). LHC experiments will be looking for this event, pre-
dicted by theory. 17

4.1 Conversions between the two representations of a point on a
curve. 27

4.2 Member functions for curve creation. Note that SetBounds

has 2� 2 di�erent signatures, for the two kinds of representa-
tion of two points. 28

4.3 Example for curve construction. 29

4.4 Parallel projection of a curve. 34

4.5 The curve { ray intersection operation. 41

4.6 Taking the tangent at a given point of the curve. 45

5.1 Nine control point NURBS circle. 56

6.1 The interior of a face. As the surface normal points towards
the reader, the outer loop runs counter-clockwise, and the in-
ner loops clockwise. 60

6.2 Testing if a point is on the interior of the face, by starting a
curve from the point. Three cases are distinguished. 61

iv

6.3 The test curve on a cylindrical and a conical surface. The
boundary is split into two by the dotted plane. 63

6.4 The test curve on a sphere. Projected view. 64

6.5 Test curve on a torus. The boundary is split into four parts
(dashed lines). The projection onto the plane P maps the test
ray (thick line) into line segments. 65

6.6 Adaptive subdivision of the boundary of a surface of linear
extrusion. The plane in the middle is the new splitting plane. 66

6.7 Problems with test rays on a rectangular composite surface. . 69

6.8 The two cases when the loop has no tangent de�ned at the ray
{ loop intersection point. 72

6.9 Candidate points and the order of testing when the surface
normal is unde�ned at the ray { loop intersection. 73

6.10 The two cases when the ray is locally a tangent to the loop. . 73

A.1 Categories and their interactions in Geant4 | coarse view. . I

B.1 Interface of the base class for curves. III

B.2 Classes managing the two representations of a point on a curve
and the three representations of a curve { ray intersection point. IV

B.3 Class storing a bounding box. V

B.4 Base class for conics. VI

B.5 The inheritance tree of curve classes. VII

B.6 Swept surfaces with the most important operations. VIII

B.7 Projection, 2D intersection and tangent calculation of a sur-
face of revolution. IX

C.1 Structure of application protocol Con�guration Controlled De-
sign. XI

C.2 Geometric entities. XII

C.3 Curves. XIII

C.4 Surfaces. XIV

v

C.5 Topological entities. XV

C.6 Possible shape representations. XVI

vi

List of Tables

2.1 Association of topological entities with geometric data in STEP 13

4.1 Conic tangents in the placement coordinate system. 45

4.2 Conic tangents at a parametric point. 46

vii

Chapter 1

Introduction

CERN, the European Laboratory for Particle Physics, is one of the world's
largest scienti�c research laboratories. An early European joint venture,
CERN was founded in 1954 and straddles the French-Swiss border west of
the city of Geneva. CERN's nineteen member states provide the budget
(870.1 million Swiss francs in 1997) in proportion to their national revenues.
Hungary has been a member state since 1992. Currently more than 6500
users, over half of the planet's experimental high-energy physicists, carry
out fundamental research at CERN. This user community represents 500
universities and over 80 nationalities.

CERN's business is pure research | studying Nature's tiniest building blocks,
the fundamental particles, to �nd out how our world and the Universe work.
The energy densities reached in head-on collisions of particles accelerated
in CERN's machines approach those which may have prevailed immediately
after the 'Big Bang', and are su�cient to create the elementary particles
which populated the early universe. Detectors, built around the collision
points, record the brief existence of these particles, re-enacting moments in
the evolution of the early universe.

CERN hosts the Large Electron Positron Collider (LEP), the largest particle
collider in the world with an accelerator ring 27 km in circumference, buried
about 100 m underground. The tunnel will be reused for the successor ac-
celerator, the Large Hadron Collider (LHC), starting operation in 2005. The
LHC will be the only machine capable of addressing problems far beyond
today's frontiers of high energy physics. The technological challenges of the
LHC demand breaking new ground in super-conductivity, high-speed elec-
tronics, cryogenics, computing and networking, vacuum technology, material

1

science and many other disciplines.

Particle detectors are large and highly complicated devices (Figure 1.1). Each
as high as a �ve-storey building, they are built like a Russian doll, with one
module �tting snugly inside the other around the beam collision point at the
centre. Each module, packed with state-of-the-art technology, is custom-built
to do a special observation job before the particles
y outwards to the next
layer. Computer Aided Design (CAD) and Computer Aided Manufacturing
(CAM) is used for engineering and manufacturing these complex machines.

Figure 1.1: Layout of ATLAS detector, a proposed experiment on the LHC.
Note the height of the persons around the detector.

The physics response of the detectors is normally estimated and optimised
with the aid of simulation packages like Geant3 [App93] orGeant4 [G+95,
G+97a]. Geant4 is a world-wide research and development project, aim-
ing at the creation of the successor to an old Fortran simulation framework
(Geant3), completely redesigned in C++, using an object oriented analy-
sis and design methodology. Of course, one needs to describe detectors for
Geant4; the most straightforward way is importing models directly from
CAD systems. This approach is hoped to speed up the overall detector de-
sign process and make it consistent on both the engineer's and the physicist's

2

side. The ISO Standard for the Exchange of Product Models[STEP1] pro-
vides a common method for model data transfer.

Since most modern CAD systems use Boundary Representation (B-Rep),
Geant4 has to include B-Rep data structures and implement e�cient par-
ticle tracking in B-Rep models | e�ciency is a crucial requirement of the
whole of Geant4. Geometrical objects have to provide the tracking scheme
with some key functionality. This includes bounding box and polyhedron
calculation, and computing the intersection point of a ray and an arbitrary
surface. The e�ciency of these implementations has a very signi�cant a�ect
on the overall performance of tracking.

The development e�ort of this Geant4 sub-domain has been going on for
three years[Sul95, Vuo96]. The results of extending and optimising it form
the contents of this thesis. The main areas of development are as follows:

� Swept surfaces have been implemented. These are obtained by linear
extrusion of a curve along an axis, or revolution of a curve about an axis.
The curve being swept may be of an arbitrary STEP type, including
the most complicated Non-Uniform Rational B-Splines (NURBS) class.

� In STEP, surfaces can be bounded by any collection of closed curves
lying on the surface. One has to be able to �nd out whether a point
on the surface lies within the surface boundary. This is an important
step in deciding if the intersection of a particle track with the surface is
a real intersection. Bounding curves and surfaces of every STEP type
had to be handled.

� The above developments are the heaviest users of code dealing with
curves in the B-Rep modelling part. Numerous extensions and opti-
misations were necessary. These involved the re-design of the curves
code.

The rest of the thesis is structured the following way:

� Chapter 2 presents the STEP standard, mainly its parts related to solid
modelling with Boundary Representation.

� Chapter 3 introduces the Geant4 framework, with emphasis on the
geometry, especially B-Rep code.

� Chapters 4, 5 and 6 describe the process and the results of extending
and optimising the B-Rep code. Curves come �rst, followed by swept
surfaces and curve bounded surfaces, since the latter topics are based
heavily on the former one.

3

� Chapter 7 revisits the main results and the status of implementation
and integration into the beta release of Geant4. It also highlights
further extension directions and optimisation possibilities of the B-Rep
modelling code.

I would like to express my sincere gratitude to Dr. Andr�as Pataricza and Jari
Sulkimo, my thesis advisors, for their invaluable encouragement and guid-
ance. I owe my best thanks to my colleagues, especially Anthony Osborne,
Simone Giani and John Apostolakis for their valuable comments on prelimi-
nary versions of this thesis; special thanks to Tony for revising my English.
Especially, I would like to thank to Simone and Tony for making my one year
long stay at CERN possible.

4

Chapter 2

Boundary Representation with

STEP

2.1 Structure of the standard

STEP, the STandard for the Exchange of Product model data[STEP1], is a
new international standard for representing and exchanging product model
information between CAD systems. Its advantages over its numerous pre-
decessors[Vuo96] are that it uses an object de�nition language, EXPRESS
[STEP11], for the representation of data, and that it is designed to cover all
aspects and the whole life cycle of products: geometry, topology, tolerances,
materials, production context, etc. . The �rst parts were approved by the
International Standards Organisation in 1992, and development has contin-
ued ever since. All major CAD system vendors already support STEP, thus
it was a straightforward choice for Geant4 to implement the exchange of
particle detector setups via STEP.

The standard is organised as a collection of parts, each of which falls into
one of the following categories:

Overview and fundamental principles De�nes the basics[STEP1].

Description methods The EXPRESS object de�nition language[STEP11],
used to represent product information. Automated translation to ob-
ject oriented languages is possible[Lib93]. See Figure 2.1 for a code
example.

Implementation methods The physical representation of exchange data.

5

ENTITY line

SUBTYPE OF (curve);

pnt : cartesian_point;

dir : vector;

WHERE

WR1: dir.dim = pnt.dim;

END_ENTITY;

Figure 2.1: EXPRESS speci�cation of the line STEP entity.

Data can be exchanged using ASCII �les or via an application pro-
gramming interface, which is accessible from C++, C and IDL.

Conformance testing A methodology and framework.

Integrated resources Product information common for di�erent applica-
tion areas. A few examples: Fundamentals of Product Description and
Support, Geometric and Topological Representation[STEP42], Repre-
sentation structures[STEP43], Materials and Shape Tolerances.

Application Protocols Product information speci�c for the application
areas. An application protocol is a combination of a suitable part of in-
tegrated resources with additional constraints and application speci�c
concepts. [STEP203] is the de facto standard, supported by all impor-
tant CAD system vendors. At the time of writing, several German car
manufacturers are pushing heavily for general acceptance of [STEP214],
which includes a great deal more of the integrated resources.

Abstract test suites Test cases for an application protocol to support the
conformance requirements.

2.2 Representation of solids

Integrated Generic Resources for geometric and topological representation
are described in [STEP42]. Their primary application is for explicit repre-
sentation of the shape or geometric form of a product model { in the context
of physics simulation this means solids which are parts of a detector setup.
The shape representation has been designed to facilitate stable and e�cient
communication when mapped to a physical �le, and a general philosophical
motivation behind is to support all the frequently used ways to describe geom-
etry, in order not to restrict the choices of the designer. Appendix C contains

6

class diagrams of the geometry and topology related part of [STEP203], i.e.
the parts taken from [STEP42].

[STEP42] is divided into three main parts:

geometry This part is exclusively the geometry of parametric surfaces and
curves, both two and three dimensional. The entities might even have,
and often do have, characteristics undesirable for product description:
they might be in�nite, for example.

topology This part is concerned with connectivity relationships between ob-
jects rather than with their precise size and shape. Topological entities
may have a geometry associated with them, and they may constrain
the geometry, thereby making it suitable for product description.

solid model This part provides resources for the communication of data
describing the precise size and shape of three dimensional solid objects.
This complete representation of shapes in many cases includes both
geometric and topological data.

Geometry and topology will be described in more detail in the subsequent
sections. This section introduces the available solid models.

The solid model part includes the two classical types of solid models, con-
structive solid geometry (CSG) and boundary representation (B-Reps). Also
included are a collection of entities providing less complete geometric and
topological information than the full CSG or B-Rep models. The use of
these entities is appropriate for communication with systems whose capabil-
ities di�ers from that of solid modelling systems.

The CSG models are represented by their component primitives | cones,
spheres and blocks, to name a few | and the sequence of Boolean operations
union, intersection and di�erence used in their construction. CSG models
do not form part of the application protocol[STEP203].

B-Rep models consist of solids represented by surfaces and their boundaries.
Solids must be �nite and connected; they might contain holes as well. They
correspond to manifold solid breps in STEP. There are several other kinds
of surface based models, dropping some restrictions of B-Rep. A more rigor-
ous de�nition of B-Rep models and their elements is the subject of the two
subsequent sections.

A variety of systems only allow boundary type solid representations in which
all faces are planar polygons. Such a representation is often used for rendering
3D models, e.g. in the popular OpenGL library[WNDO97]. Such models may

7

be represented by the general manifold solid brep, but STEP provides a
more compact representation called facetted brep.

Other surface based models are also available. These collections of surfaces
do not necessarily form a proper solid. However, CAD systems often use
these models for communication of proper solids. The STEP entities are
called shell based surface model and face based surface model.

The remaining STEP models do not provide a complete description of three
dimensional solids or make it di�cult to get the necessary information out of
the exchange �le. Thus they are not suitable for describing particle detectors
and need not be supported by Geant4. Entities include di�erent kinds
of wire-frame models and geometric set, geometric information without
topology.

2.3 Geometry

The subject of the geometry schema is the geometry of parametric curves
and surfaces. It is described in [STEP42], Clause 4.

For easier readability, STEP entity names will be typeset the following way
throughout the remaining chapters: step entity. Their EXPRESS names
are used[STEP11].

Geometric entities are all de�ned in a right-handed rectangular Cartesian

coordinate system with the same units on each axis. A common schema
has been used for the de�nition of both two dimensional (2D) and three

dimensional (3D) geometry. Detectors are 3D, hence so are Geant4models,
but 2D entities are used for some computations and entities in the parameter
space of a surface. geometric representation item is the base class to all
geometric entities[STEP43]; the coordinate system and the dimensionality
come from this class.

Many of the geometric entities provide the capability to de�ne an item of
geometry in more than one way, e.g. a curve on a surface can be de�ned
both in the 2D parameter space of the curve and in 3D space. One of the
representations must be nominated the master representation; all character-
istics for an entity must be derived from this one. This rule acknowledges
the impracticality of ensuring and checking if multiple representations are
indeed identical; consider the previous example with a curve and a surface
from the most complicated Non-Uniform Rational B-Spline (NURBS) class.

8

The alternative representations thus cannot be trusted, therefore they should
not be used. The same holds for attributes which are there for information
only, e.g. information if a B-Spline curve is self-intersecting or not.

The subsequent sections introduce points, curves and surfaces. The intent is
to give an overview; precise de�nitions will follow in the chapters which need
them. Only those entities occur which are important in practice or helpful
in demonstrating a concept.

Mathematical notions such as length and connectedness will not be de�ned
here; their common sense meaning is hoped to be enough for understanding.
De�nitions, which are intuitive rather than mathematically rigorous, can be
found in [STEP42], Clause 3.

2.3.1 Points

A point is a location in 2D or 3D Cartesian coordinate space. It can be
given in this space (cartesian point) or in the parameter space of a curve
(point on curve) or a surface (point on surface). Degenerate curves (e.g.
degenerate pcurve) are also subclasses of point, for a curve must have
non-zero length.

The subtype point replica is a replica of an existing point. The location
is de�ned by a cartesian transformation operator, composed of transla-
tion, rotation, mirroring and uniform scaling. Similar entities exist for curves
(curve replica) and surfaces (surface replica).

2.3.2 Curves

A curve can be envisioned as the path of a point moving in its coordinate
space. A curve is connected and has an arc length greater than zero. curves
have a well-de�ned parametrisation which makes it possible to trim the curve
or identify points on the curve by parameter value. Curves can be in�nite
or self-intersecting. See [Far93], a rather comprehensive guide to curves and
surfaces.

A line is de�ned by one of its points and its direction. The line is the whole
unbounded curve rather than a line segment or a half line. Half lines will be
called rays for simplicity.

9

conic curves can be produced by intersecting a plane with a cone. They
are de�ned in a placement coordinate system (axis2 placement) by their
intrinsic geometric properties. An example for a de�nition: a circle consists
of all the points satisfying x2+y2�R2 = 0, where x and y are coordinates in
the placement system and R is the radius. The other subtypes are ellipse,
parabola and hyperbola.

The general purpose parametric curve is represented by the b spline curve

entity. This is a general Non-Uniform Rational B-Spline curve (NURBS)
[BBB87]. All the other basic curves, including conics, can be represented
exactly with this entity. Special cases include uniform and quasi uniform

B-splines and B�ezier curves.

The other curve types refer to other geometric entities in their de�nitions:

trimmed curve Created by taking a selected portion of the associated basis
curve. Both end points must be speci�ed, by parametric value and/or
geometric position. trimmed curve is analogous to the topological en-
tity edge, to be introduced in the next section.

composite curve A collection of bounded curves joined end to end. The
parametrisation is an accumulation of the parametric ranges of the
components. The sense of components can be reversed, so that the
parameter range maps to an interval on the real line. composite curve

is analogous to the topological entity path, to be introduced in the next
section.

pcurve Lies on a basis surface and is de�ned in the 2D parameter space of
that surface.

intersection curve The result of intersecting two surfaces. It must contain
a description as a 3D or a parametric curve. This representation is used
everywhere, thus the di�cult task of surface-surface intersection need
not be implemented in Geant4.

seam curve Refers to a surface where the range of a parameter is \wrapped
around". On such a surface, the two extremes of that parameter range
denote the same curve; e.g. the one parameter of a cylindrical

surface goes from 0 degrees to 360 degrees, and these two parame-
ter values refer to the same points. This curve is the seam curve of the
surface.

o�set curve A curve at a constant distance from a basis curve. The basis
curve should have a well de�ned tangent direction at every point; the
points of the offset curve are at a �xed distance from that point,

10

in a direction perpendicular to the tangent. In 3D space, a reference
direction is needed to de�ne a unique direction for o�setting.

2.3.3 Surfaces

A surface can be envisioned as a set of connected points in 3D space which
is always locally 2-dimensional[Far93]. It can be in�nite, self-intersecting and
need not be embeddable into the plane. Surfaces are described in less detail
than curves, since for the purposes of this thesis, curves are more important
as building blocks.

An elementary surface is one of (unbounded) plane, cylindrical surface,
conical surface, spherical surface or toroidal surface.

swept surfaces are constructed by sweeping a curve along another curve.
The two subtypes are

surface of linear extrusion A generalised cylinder obtained by sweeping
a curve of any kind in a given direction. The result is an in�nite
surface.

surface of revolution Obtained by rotating a curve a complete revolution
about an axis.

The b spline surface entity provides the most general capability for the
communication of all types of polynomial and rational bi-parametric surfaces.
In general, it is a Non-Uniform Rational B-Spline Surface (NURBS)[BBB87].
Subtypes represent special cases, such as uniform and quasi uniform B-spline
surfaces and B�ezier surfaces. All the other basic surfaces can be represented
with this entity.

The other surface types refer to other geometric entities in their de�nitions:

curve bounded surface A parametric surface with a curved boundary de-
�ned by one or more boundary curves. These curves must be closed
and might be classi�ed as an outer bounding curve and some inner

bounding curves. They are analogous to the topological entity face; a
more detailed de�nition will be given there.

rectangular trimmed surface A special case where a rectangle in the 2D
parameter space forms the boundary.

rectangular composite surface A rectangular array of surface patches,
tiling a connected surface without holes. The parametrisation is an

11

accumulation of the parametric ranges of the components. The patches
can be linearly re-parametrised, so that the parameter range maps to
a rectangle on the real plane. rectangular composite surface is a
special case of the topological entity shell, to be introduced in the
next section.

o�set surface This is a surface o�set at a constant distance from a basis
surface. The basis surface should have a well de�ned normal direction

at every point; the distance is to be measured along this normal.

2.4 Topology

The topology part is the subject of Clause 5 of [STEP42]. It has its roots
in B-Rep solid modelling but can be used in any other application where
an explicit method is required to represent connectivity. The focus in this
section is on what constraints the topology of a product model imposes on
its geometry and what information is added, rather than on presenting the
whole of the topology part, along with all its mathematics.

The topological entities have been de�ned in a hierarchical manner. The
basic topological entities in order of increasing complexity are vertex, edge,
path, loop, face and shell. The entities will be described below in more
detail. Each entity has its own set of constraints and the higher level entity
may impose constraints on the lower level entity.

Many of the topological entities have a specialised subtype which enables
them to be associated with geometric data; see Table 2.1. The key concept
relating geometry to topology is the domain. The domain of geometric en-
tities are themselves viewed as sets of points. For topological entities, the
domain is the union of domains of the associated geometry | the associa-
tion is either direct or through the topological components of the entity. E.g.
for a loop, a sequence of edges joined end to end, the domain is the union
of the domains of all the vertexes and edges in the loop, i.e. the union
of the associated points and curves. Whenever a geometrical concept |
connectedness, �niteness, etc. | is discussed in relation to an entity, it is
understood that the concept applies to the domain of that entity.

Constraints are formulated in terms of domains. Recall that curves and sur-
faces can have some undesirable properties for solid modelling. E.g. they can
be in�nite, whereas all manufacturable products are �nite, or they can self-
intersect, which makes certain computations di�cult. Topology can restrict

12

Topological Geometric

supertype subtype entity

vertex vertex point point

edge edge curve curve

face face surface surface

Table 2.1: Association of topological entities with geometric data in STEP

the curve of surface by bounding it with points and curves, respectively, so
that they have none of the undesirable properties.1 This is the one major
\added value" coming from topology.

The other is related to orientation. All curves and surfaces have a tangent

direction and a surface normal assigned to almost every point. The tangent
direction agrees with the direction of the derivative with respect to the pa-
rameter, i.e. the direction of movement towards greater parameter values.
The surface normal is the cross product of two partial derivatives with re-
spect to the parameter variables. The closed surfaces used to bound a solid
(closed shell) are always orientable; so is the curve boundary of the faces
of a solid. Orientation de�nes inside { outside relations, vital for particle
tracking with these solids. The majority of topological entities can reverse
the directions of tangents and normals of their domains: the sense of the
curve or surface. Some are only there for this sole purpose.

The most important topological entities are:

vertex The topological construct corresponding to a point. Its domain,
if present, is a point in 2D or 3D space. Recall that the domain is
represented by the vertex point subtype.

edge corresponds to the connection between two vertices. Its domain is a
�nite, non-self-intersecting open curve. The bounds of the edge are two
vertexes, which need not be distinct. The edge is oriented by choosing
its traversal direction to run from the �rst to the second vertex. The
length of the curve segment is greater than zero.

For a lot of topological entities, there exists an oriented version, here
oriented edge. These serve the sole purpose to reverse the sense of
another topological entity, here an edge.

1Note that the same can be achieved by using geometric entities like trimmed curve

and curve bounded surface. Another example showing that there are multiple ways to

describe a concept in STEP.

13

path is an ordered collection of edges, such that the start vertex of each
edge coincides with the end vertex of its predecessor. Thus paths are
connected. The edges do not intersect, except at common vertices.

loop is the topological entity typically used to bound a face lying on a
surface. It might be a single point (vertex loop) or can be a closed,
but not necessarily non-self-intersecting curve (edge loop). Its domain
includes its bounds.

face is a topological entity of dimensionality 2 corresponding to the intuitive
notion of a piece of surface bounded by loops. Its domain is an oriented,
connected, �nite surface. The domain shall not have any handles, but
holes are permissible. Hence, a face is embeddable into the plane.

The bounding loops divide the underlying surface into one region
inside the face and possibly several regions outside. Consider a point
on one of the bounding loops and denote the topological normal of the
surface by n and the tangent to the loop by t. The cross product n� t
always points towards the interior of the face; see Figure 6.1.

A face shall have at least one bound, and the loops shall be distinct
and non-intersecting. One of the loops is optionally distinguished as the
outer loop of the face. If so, it establishes a preferred way of embedding
the face domain into the plane. Note that for some types of closed or
partially closed surface it might not be possible to identify such an
outer bound.

shell is a connected object of dimensionality 2, typically used to bound a
region of 3D space.2 The shell is constructed by joining faces along
edges. Its domain is a connected, oriented, �nite, non-self-intersecting
surface, which may be closed or open.

A closed shell serves as a bound for a region in 3D space; can be
used to model detector elements. It divides the 3D space into a �nite,
connected interior and an in�nite, connected exterior region. The
topological normal is directed from the interior to the exterior.

An open shell can be thought of as a closed shell with one or more
holes punched in it. It is more general as a face because its domain
can have handles.

2A 0 dimensional shell is a point and a 1 dimensional shell is a wire-frame. As mentioned

before, wire-frame models are of no interest to us.

14

Chapter 3

The Geant4 simulation

framework

3.1 Overview

TheGeant4 project has the objective of producing an object oriented frame-
work for the simulation of future and LHC experiments. It was started in
1994 by a few tens of scientists, from di�erent laboratories and experiments,
aiming to apply a rigorous approach to High Energy Physics simulation soft-
ware construction. Today Geant4 is a world-wide collaboration, consisting
of about 100 researchers including physicists, engineers and computer scien-
tists, working in di�erent areas of expertise. Strong importance is given to
the study of the software process in such a large, geographically dispersed,
development e�ort; the use of design and Quality Assurance tools has proven
to be a decisive factor during the lifetime of the project. The connection be-
tween open/transparent software and the scienti�c validation of the produced
results has been emphasised. Development is nearing its completion, with
the beta testing phase starting in July 1998 and the production phase in
January 1999.

The aim is to provide a
exible and extendible software toolkit. These re-
quirements are ful�lled by exploiting object oriented methodologies and C++
implementation technology. The Booch analysis and design method has been
used[Boo93], but transition to the Uni�ed Modeling Language, the emerging
standard [UML], will occur in the next few months; the diagrams in this
thesis use UML notation.

15

Another crucial issue is runtime performance. Geant4 is required to match
the speed of its Fortran predecessor[App93] which o�ered much less function-
ality.

Geant4 is managed in close collaboration with RD45, an R&D project
which is demonstrating the suitability of Object Data Base Management Sys-
tems for high energy physics data storage and selection, and with analogous
projects going on in the experiments to create an object oriented framework
for reconstruction and analysis. External packages are used for implementing
basic building blocks, such as container classes.

The structure of the framework is shown in Figure A.1. The categories are
explained in only a few words; see [G+95], [G+97a] and [G+97b] for more
details (in this order). Let us follow a particle through the detector and
observe which categories come into play:

� The particle is generated in the category Event Generator and passed
to Event Management.

� The particle starts traversing the detector. Track Management propa-
gates it step by step.

� Physics Processes may change the speed and direction of the particle.
They can also destroy it or generate new particles.

� Particle tracking interacts with Geometry to ascertain in which com-
ponent of the detector the particle is moving. One way to describe the
detector setup is to import via the CAD interface.

� Components are built of di�erent Materials. Physics processes act
di�erently depending on the material.

� Magnetic Fields bend the trajectory of the particle; this must be
taken into account by tracking.

� Sensitive detector elements respond to particles passing through them,
generating Hits.

� The generated signals are processed and Digitised.

� Visualisation shows tracks and digitised hits in the detector setup.
See Figure 3.1 for an example.

� These simulation results can also be stored in an Object Database
Management System via the ODMBS Interface.

16

� The whole process can be controlled via command line or graphical
user interfaces (UI GUI).

Figure 3.1: Simulation of the decay of a Higgs boson into 4 muons (straight
tracks). LHC experiments will be looking for this event, predicted by theory.

This thesis presents developments made in the Geometry category, which is
the subject of the next section.

3.2 Geometry in Geant4

The role of the geometry in Geant4 is to give the simulation user the ability
to describe the geometrical structure of a detector and to allow the simula-
tion system to propagate particles e�ciently in this model detector. The
geometrical model of Geant4 borrows concepts from previous simulation
packages and adds advances in key areas as well as re�nements.

Important considerations in the design were the need for performant navi-
gation and the requirement to exchange detector geometries with Computer
Aided Design (CAD) systems via the ISO Standard for the Exchange of Prod-
uct Model Data (STEP). The STEP related parts are discussed in Chapter 2.
The purpose of this section is to give an overview and highlight what services
the STEP related part should o�er to the geometry. The reader should refer
to [G+97b] and [Ken95b] for details.

17

3.2.1 Detector representation

The new feature of tracking in CAD models allows, for the �rst time, the
comparison between simulations of the \exact" engineering descriptions of
detectors and the more traditional, simpler, geometry descriptions used to-
day.

A detector's geometry is described by listing the di�erent elements it con-
tains and specifying their positions and orientations. The concepts employed
include:

logical volume An un-positioned detector element of a certain shape which
can incorporate other volumes and which has attributes, e.g. informa-
tion about the material.

physical volume An element positioned with respect to an enclosing logical
volume. It can be a simple placement, given by a transformation in the
reference coordinate system of the logical volume, or a replica, describ-
ing several placements with some parametrisation function. The latter
results in considerable memory savings for typical detector setups, as
these contain a lot of identical components.

touchable volume A uniquely de�ned detector element. Strictly speaking,
it is not part of the geometry description, but is created and destroyed
for e.g. physics processes which have to know about the surroundings
of the tracked particle.

A detector can be described by utilising a hierarchy of volumes, each of
which can contain smaller volumes. Or it can be speci�ed by listing all the
volumes one by one, with no volume containing another1. The former way
has been utilised successfully to provide performant simulations, for example
in Geant3 [App93]. The latter type of \
at" geometry structure is required
to interface to CAD systems where a hierarchy is not possible.

The shape and dimensions of volumes is placed in a separate entity, the solid.
Services which have to be provided by solids are described in Section 3.2.3,
after the motivations have been described.

Solids of simple shapes, including rectilinear boxes, trapezoids and spheri-
cal and cylindrical sections and shells, are available directly, allowing Con-
structed Solid Geometry (CSG) style modelling. More complex solids are
de�ned by their bounding surfaces, e.g. planes, second order surfaces or

1More precisely, with each volume placed in a single \world volume".

18

Non-Uniform Rational B-Spline (NURBS) surfaces. This style of modelling
is called Boundary Representation (B-Rep).

Modern CAD modellers use the latter approach, as they need an accurate
representation for engineering analysis and manufacturing purposes. For-
mer simulation packages like Geant3 employed the more compact CSG
approach, as such packages have to represent a large number of solids (up to
� 10; 000; 000 in future experiments) and perform e�cient particle tracking
in them.

Conversion of B-Rep models to CSG necessitates simpli�cations with a loss of
information, which are no longer acceptable for certain newly developed de-
tector types; precise conversion is impossible in the general case. In addition,
today's hardware and computer graphics algorithms are able to cope with
the higher memory and computation time requirements of particle tracking
in B-Rep models. Thus Geant4 has a hybrid modeller, including both B-
Rep and CSG models, the latter for reusing existing detector descriptions
and for simulation tasks not demanding extremely high precision. Utilities
converting old models to new ones are provided as well.

3.2.2 Particle propagation in detector model

The second task of geometry is to handle the geometrical propagation of
particle tracks. In addition, geometry has to be aware which volume each
particle is moving in.

Particles are propagated in discrete steps. Physics processes and geometry
compete to determine the step length:

� Each of the physics processes models a certain physical phenomenon,
e.g. scattering of particles on atomic nuclei. The process proposes a
step length which it considers to be small enough to model the physical
phenomenon at the desired accuracy.

� Geometry proposes a step length such that the step takes the particle
to the next volume boundary. Boundaries are important; the particle
may be just about to enter a sensitive detector element, and physics
processes may change their behaviour if the particle enters a di�erent
material. Some, e.g. light refraction, may even occur on the boundary.

The smallest of the proposed step sizes is taken. Once the step length is
known, physics processes may modify the direction, momentum and energy

19

of the particle, and can also destroy the particle or create new ones. This
process is repeated as often as necessary, i.e. until the particle exits the
detector, is destroyed or simply becomes uninteresting for the simulation
user.

Determination of the geometric step length, the distance to the next volume
boundary, involves the following:

1. The solid containing the particle is identi�ed, unless this information
is known already.

2. The intersection distance to volumes inside of the current solid, and
the distance to the boundary of the current solid are calculated.

3. The �rst intersection, i.e. the smallest intersection distance is taken.

It is important to note the similarity between ray tracing [Gla89] and particle
tracking. In both cases, straight lines | called light rays or viewing rays and
particle tracks, respectively | are followed to the next volume boundary.
The basic operation, intersecting a ray with a volume or a surface, is also the
same. In fact, all of Geant4 geometry has pro�ted greatly from techniques
developed for ray tracing and such techniques are omnipresent in this thesis.

An important class of algorithms exists for optimising ray tracing, those
exploiting the so called ray coherence, the fact that a lot of rays are nearly
parallel and close to each other. Unfortunately, particle tracks in a detector
are scattered too much, thus ray coherence techniques provide no bene�ts.

Until now, it was tacitly assumed that particle tracks are straight lines. How-
ever, charged particles moving in an electro-magnetic �eld do not follow linear
trajectories between interactions. In a uniform �eld their trajectories are he-
lical, while in non-uniform �elds the curves have no analytic description. The
problem is handled by numerical integration of the equations of motion. The
curve thus obtained is approximated by chords such that the approximation
is never farther from the curve than a given tolerance. Thus the task is solved
by using smaller but straight trajectory pieces. See [AGGon] for details.

In order to e�ciently traverse a detector model geometry, it is critical to
reduce the number of intersections of candidate volumes made in each step.
As intersections are potentially costly operations, an optimisation method
should minimise the number of candidate volumes. Di�erent methods can
be used for this | some of them inspired by techniques used in ray tracing.
A space subdivision method was developed to organise volumes into an ef-
�ciently searchable hierarchy: the \smart voxels" method[Ken95b]. Thanks

20

to its adaptive nature, this copes well with detector geometries where the
complexity of the parts varies to a great extent.

3.2.3 Requirements for solids

The geometry requires solids to o�er some basic services. These services
constitute the interface of an abstract class. This interface is described here.
It is particularly important, for it is the only link between the STEP related
code and the rest of the geometry category.

B-Rep solids are described in terms of their bounding surfaces, thus it is
indicated for every operation which surface operations it is based on.

bounding box A simple shape surrounding the solid. Computation uses
the bounding boxes of the surfaces.

inside A point is classi�ed as being inside or outside the solid. A ray is shot
from the point and its intersections with the surfaces are examined.

surface normal The normal vector pointing outside the solid. It is the
normal vector of one of the surfaces at the given point.

distance from a point The distance from the closest surface. It can be
an underestimate, as this operation is not essential for tracking, it just
makes optimisations possible. It is often implemented as the distance
to the bounding box of the solid.

distance from a point along a ray Essential. The same operation exists
for surfaces.

3.2.4 Tolerances

Geant4's propagation methods were designed to provide accuracy and ef-
�ciency. To minimise the number of geometrical calculations, tracks are
propagated exactly to boundaries and their state is stored: whether they are
on a boundary, whether they are exiting the current volume, etc.

Tolerances in Geant4 geometry[Ken95a] were introduced to avoid problems
when the track crosses a volume boundary. Due to precision problems, the
intersection point does not lie precisely on the boundary, and this could result
in a boundary being intersected several times or even incorrect physics, e.g.

21

no re
ection when a particle should be re
ected, because it was reversed an
even number of times. The solution adopted is the following:

Boundaries are e�ectively given a \thickness", called kCarTolerance. The
tolerance is chosen to be very small compared to detector features but much
larger than the expected arithmetic errors. Intersection operations are al-
lowed to return any point within this boundary. Boolean operations, such
as classifying a point being inside or outside, are required to return \on
boundary" whenever the point is within the thick boundary.

This concept of tolerances is generalised and is present throughout the code.
Whenever a geometric object is returned by an operation, it need not be
precise; locations and lengths have a tolerance of kCarTolerance and angles
have one of kAngTolerance. In conditions formulated with such objects,
one must take the tolerances into account. Special cases might need to be
handled | an \if" with two branches can become one with three branches.
An example: when a decision depends on the sign of a rotation angle �, the
special case � � 0, i.e. j�j < kAngTolerance must also be investigated.

Precision problems are highlighted whenever algorithms are presented in this
thesis. Their handling usually involves these tolerances.

3.2.5 Overview of the B-Rep modeller

This section sketches an outline of how STEP geometric and topological
entities are mapped to classes in Geant4.

The STEP standard was created to provide a solid modeller with all the
convenient notions in modelling. As such, a geometry described in STEP
tends to be verbose and often, there are multiple ways to describe the same
concept.

Geant4, on the other hand, must be able to perform particle tracking in the
detector models. Verbosity is undesirable because it compromises e�ciency,
a crucial requirement, and multiple ways of describing the object tend to
increase code size and implementation e�ort unnecessarily. Thus the internal
object structure in Geant4 will di�er signi�cantly from the object structure
in the STEP exchange �le.

In fact, there is another class tree which roughly corresponds to the tree of
STEP entities. Objects of these classes takes care of STEP input/output,
creating the objects which perform tracking and writing them out. This

22

architecture minimises the amount of coupling between tracking and STEP
input/output.

The geometric entities are implemented to the full extent. There are enti-
ties which can be represented with other entities, e.g. any �nite part of a
parabola can be represented with a NURBS curve (b spline curve), or a
rectangular trimmed surface is equivalent to a curve bounded surface

with pcurve bounds, but the conversion is never worthwhile, for reasons of
e�ciency. Simpli�cations have to come from the topology.

Note that surfaces only appear as domains of faces. Therefore they are
trimmed either explicitly by geometry, or implicitly by topology. There exist
no surfaces without bounds, thus something equivalent to a collection of
loops can be included in the most basic curve class. The same holds for
curves and their two end points. With this implementation strategy, trim-
ming geometric entities, and thus one of the major functionalities of topology,
is handled.

The other major functionality of topology, reversing the senses of surfaces
and curves, can also be put into the curve base class. One just has to tra-
verse the topology structure down to the geometric entity, thereby collecting
all the reversal
ags, and in the end, the sense of the geometric entity is
either reversed or not. All this can be done while building the Geant4
object structure. Nothing will remain of the topology structure except the
information which faces belong to the same solid.

3.2.6 From alpha to beta

The beta release of Geant4, scheduled for July 1998, is going to include the
developments presented in this thesis. Let us summarise these developments
once again, this time more precisely with the aid of STEP terms.

� Swept surfaces, surfaces of linear extrusion and surfaces of revolution,
have been implemented. This is the topic of Chapter 5.

� One has to be able to �nd out whether a point on a surface lies within
the bounding loops of the associated face. This is vital for the correct
operation and the e�ciency of tracking. General methods are spe-
cialised whenever this enables improvements in performance. Perfor-
mance is further improved by optimising the special cases implemented
in the alpha versions. This is presented in Chapter 6.

23

� The above developments are the heaviest users of curves code in the
B-Rep modelling part. As a result, the code of the alpha versions has
been extended, optimised and re-designed. This is presented �rst, in
Chapter 4, for it forms the basis of the other chapters.

24

Chapter 4

Curves

4.1 Overview

Curves in STEP are used to form swept surfaces (Chapter 5) and the bound-
ary for faces of solids (Chapter 6). This chapter de�nes their basic operations
and discusses motivation for them, their design from an object oriented point
of view, and also presents the algorithms used.

Each section presents a basic operation. These are listed below, along with
at least one reason why they are necessary. Chapters 5 and 6 try to reuse
these operations for their purposes, rather than introduce new ones. Detailed
motivation for the operations is given there.

� Curves must be constructed in the �rst place (Section 4.3).

� Each point on a curve has a representation as a 3D point and one as a
parameter value. STEP has both representations, and for certain oper-
ations the missing representation might be more convenient, therefore
conversions are implemented (Section 4.2).

Functions for handling the start and end point are provided. Recall
(Section 3.2.5) that almost all curves are bounded by points; this is
why they are curve operations rather than a separate class.

� The basic operation of ray tracing, surface intersection with a ray, must
be implemented for swept surfaces as well. These are speci�ed in terms
of a general curve, therefore ray intersection must be implemented for
all types of curves. Intersection of these 1D entities in 3D is best done
by intersecting them in 2D (Section 4.6); the 3D intersection point is

25

easily computed from the 2D one. This is in accordance with an impor-
tant principle in computer graphics, namely that the dimensionality of
any problem should be reduced whenever this is possible.

� The simplest way of transforming curves to 2D is parallel projection to
an arbitrary plane (Section 4.5).

� As with solids (Section 3.2.3), intersection with a ray can be optimised
by intersecting with a bounding box �rst (Section 4.4).

� The de�nition of the interior of a face (Sections 2.4 and 6.1) involves
the tangent to a curve at a given point (Section 4.7).

The operations are normally pure virtual functions in the abstract curve base
class G4Curve. Figure B.1 shows the interface of this class.

When describing an operation, special attention is given to

� whether the operation is time critical. Ine�cient implementation of
a time critical operation is likely to a�ect the overall performance of
geometry signi�cantly.

� precision problems. The tolerance constants (Section 3.2.4) are used
extensively throughout the chapter.

� generic testing procedures for the operations.

The sections are divided into parts speci�c for the curve types: line, circle,
ellipse, parabola, hyperbola, b spline curve, composite curve, pcurve
and offset curve. The �rst six are termed curve primitives. Operations for
the remaining curve types have a trivial implementation and therefore these
are not described in the subsequent sections:

intersection curve always has a 3D representation. The operations are
delegated to that representation.

seam curve is also available as a pcurve, of which it is a special case.

4.2 Parametrisation

Each point on the curve has two representations: one as a 3D point and
one as a parameter value. Conversions between them are implemented. The
conversion from 3D is only guaranteed to work when the point is su�ciently

26

close to the curve, i.e. within a distance of kCarTolerance. Member func-
tions related to any point and the start and end point are shown in Figure
4.1.

G4Curve

GetStart() : const G4Point3D&
GetEnd() : const G4Point3D&
GetPStart() : G4double
GetPEnd() : G4double
GetPMax() : G4double
GetPoint(param : G4double) : G4Point3D
GetPPoint(p : const G4Point3D&) : G4double

Figure 4.1: Conversions between the two representations of a point on a
curve.

In time critical operations, the number of conversions should be minimised, to
avoid degrading performance. Consider a NURBS curve: in the one direction,
one needs evaluations of polynomials, and in the other, the solution of a
non-linear equation! However, it is inconvenient for a function to remember
which representations it has already calculated. This functionality can be
moved to a class holding both representations and evaluating the one from the
other when needed. This class with \lazy evaluation" is called G4CurvePoint

(Figure B.2).

In other operations, all representations can be computed in advance. This is
done for the end points.

4.3 Construction

The construction of curve objects takes place in three phases:

1. A call to the constructor (without parameters).

2. Passing the shape information. The parameters correspond directly to
the attributes in the EXPRESS description of the curve; this makes
STEP input/output and documentation easier.

3. Passing the boundary information, i.e. the two end points. They can
be given either as parameter values or as 3D points.

27

See Figure 4.2 for the function signatures and Figure 4.3 for an example.
Motivations for this scheme are given below.

G4Curve

G4Curve() : G4Curve
~G4Curve()
GetStart() : const G4Point3D&
GetEnd() : const G4Point3D&
GetPStart() : G4double
GetPEnd() : G4double
SetBounds(p1 : G4double, p2 : G4double) : void
SetBounds(p1 : G4double, p2 : const G4Point3D&) : void
SetBounds(p1 : const G4Point3D&, p2 : G4double) : void
SetBounds(p1 : const G4Point3D&, p2 : const G4Point3D&) : void
IsBounded() : G4bool
InitBounded() : void
Init(...) : void
Get...() : ...

Figure 4.2: Member functions for curve creation. Note that SetBounds has
2� 2 di�erent signatures, for the two kinds of representation of two points.

Note that not all curves have boundary information. The curve might be
closed or �nite, just ready for use after its shape is known. Also, in�nite
curves can be used in the de�nition of swept surfaces; see Chapter 5.

Curve objects are usually constructed when the STEP interaction part reads
a STEP format �le. In general, the shape of the curve and its endpoints are
not available at the same time: the shape always comes from the geometry
schema, whereas the endpoints might come from topology. A one phase
construction would require that STEP creator classes store one half of the
information until the second half becomes available. This would complicate
their implementation unnecessarily, whereas curve objects are required to
store all this information | no matter if it comes in pieces.

The question remains why the shape information is not passed to the con-
structor. The short answer is:
exibility. Properties of curves might have to
be changed after construction; it is foreseen that simulation users modify the
geometry inside Geant4. The approach that users have to destroy a given
object, construct another and update all the references to the object is not
feasible. Moreover, construction is not time critical, extra function calls are
a�ordable.

28

G4Ellipse e;

// the standard coordinate system (1,0,0) (0,1,0) (0,0,1)

G4Axis2Placement3D pl;

pl.Init(G4Point3D(0,0,0), G4Vector3D(0,0,1), G4Vector3D(1,0,0));

// semi-axes: 5 and 8

e.Init(pl, 5, 8);

// a quarter of the ellipse

G4Point3D p(0, 8, 0);

e.SetBounds(p, pi/2);

Figure 4.3: Example for curve construction.

The Init function is, naturally, di�erent for each class, whereas SetBounds
can be generic. However, a part of the intersection and bounding box cal-
culations can be moved here. These tasks must be implemented in the pure
virtual InitBounded member.

The STEP interaction part also outputs curves, beside reading and construct-
ing them. Read only access | \Get" functions | must be implemented for
all attributes corresponding to the non-derived EXPRESS attributes, i.e. the
attributes used for construction. These are also used for interacting with the
visualisation category.

4.4 Bounding box calculation

Bounding boxes are used to optimise intersection algorithms. Frequently, a
negative answer can be obtained by intersecting with the box �rst, which
is an extremely fast operation. The main requirements for bounding box
calculation | not necessarily just that of curves! | are the following, in
decreasing order of importance:

� Some bounding box should always be calculated if one exists. See
Section 5.1.4 for a case when even this is a rather complicated problem.

� The bounding box should wrap the object as tightly as possible. Ideally,
the bounding box is the smallest box still containing the object.

29

� Computation should be reasonably fast. In fact, the bounding box can
and should be pre-computed during construction, i.e. in InitBounded

at latest; this is why the speed of computation is not critical issue.

A G4BoundingBox object (Figure B.3) takes care of storing the bounding
box, and provides support for a frequent method of construction:

1. start from a box speci�ed by two points, or from a point, a \box" of 0
extent;

2. specify points and/or boxes which must lie inside. The box grows as
necessary.

4.4.1 Curve primitives

Circle and ellipse

As the circle is a special case of ellipse, no separate implementations
exist. This is the case with all operations but the construction and the time
critical operations.

The bounding box is the tightest box including

� the start and end points;

� those points of the full ellipse which have the minimum or the maximum
x, y or z coordinate. Of course, only those of the six points are taken
which happen to lie on the curve.

The points of the ellipse are given by

�(u) = C+ (R1 cos u)x+ (R2 sinu)y (4.1)

where u is the parameter value, C is the centre of the ellipse and x and y
are coordinate axes of the placement coordinate system.

We will look for the parameter values of the extreme points. One can exploit
the fact that extrema lie on opposite sides of the centre, i.e. if the one
extreme value is at parameter value u, the other is at u+ �.

Computing the extreme point is only shown for x coordinates (subscript 1);
for the other coordinates it is analogous. Extrema are computed by setting
the derivative of �1(u) equal 0.

30

�
0
1(u) = 0

(C1 + (R1 cos u)x1 + (R2 sinu)y1)
0 = 0

�R1x1 sinu+R2y1 cos u = 0

tan u =
R2y1

R1x1

The inverse tangent of a quotient is always computed with the Standard C
function atan2, which handles the special case when the denominator is 0.

Parabola

The method of computation is similar here, except that only one extreme
point exists for each coordinate. The parametric representation is

�(u) = C+ F (u2x + 2uy) (4.2)

where F is the focal distance of the parabola. Once again, the derivative is
set to 0:

�
C+ F (u2x+ 2uy)

�0
= 0

2Fx1u+ 2Fy1 = 0 = 0

u = �y1
x1

The case x1 = 0 is uninteresting, the bounding box need not be extended. If
y1 = 0, the the parabola is in the yz plane (of the global coordinate system)
and all points are extreme, thus so is the starting point, which is used to
extend the bounding box anyway. If y1 6= 0, the parabola is symmetric to
an axis in the yz plane and there is no extreme point.

Also small values for denominators can cause numerical problems; and a
0 stored in a variable is almost never exactly 0. It is better to have the
comparison

jx1j < kAngTolerance

The use of the angle tolerance is appropriate here because small x1 values
are almost identical to the angle of x to the yz plane, as jxj = 1.

31

Hyperbola

The parametric representation is

�(u) = C+ (R1 cosh u)x+ (R2 sinhu)y (4.3)

where R1 is the real and R2 is the imaginary semi-axis. The parameter value
for the extreme point is computed as follows:

�1(u) = 0

(C1 + (R1 cosh u)x1 + (R2 sinhu)y1)
0 = 0

R1x1 sinhu+R2y1 cosh u = 0

tanh u = �R2y1

R1x1

If x1 � 0, the bounding box need not be extended, the hyperbola is symmetric
to an axis in the yz plane. The same holds when the right hand side is outside
the range of tanh,]� 1;+1[; the equation has no solution.

NURBS curve

A NURBS curve[Far93] is a parametric rational curve described in terms of
control points and basis functions. It is given by

Pk
i=0wiPiN

d
i (u)Pk

i=0wiN
d
i (u)

(4.4)

where wi > 0 are the weights, Pi are the control points, u is the parameter
value and d the degree of the NURBS curve. Nd

i (u) are called basis functions

and are de�ned in terms of values called knots:

u�d � : : : � u�1 � u0 � u1 : : : uk+1

and the recurrence

32

N1

i (u) =

(
1 if ui � u < ui+1
0 otherwise

Nd
i (u) =

ui+d � u

ui+d � ui+1
Nd�1

i+1 (u) +
u� ui

ui+d�1 � ui
Nd�1

i (u)

After the de�nition, let us return to the problem of the bounding box. The
convexity property of NURBS curves (and surfaces) states that the curve lies
within the convex hull of its control points. A bounding box of the control
points is thus a bounding box of the curve, and a reasonably tight one.

4.4.2 Pcurve

A pcurve is described in 2D, in the parametric space of an associated surface.
The bounding box is a notion in 3D space. In order to compute it, data from
both the surface and the 2D curve are needed. The 2D bounding box of the
pcurve determines a surface patch. This patch contains the curve, therefore
its (3D) bounding box is a bounding box of the pcurve. This simple solution
avoids the complicated conversion into 3D space.

4.4.3 Other curves

Line

The two end points specify the best possible bounding box.

Composite curve

The bounding box must contain the bounding boxes of all components. One
box has to be extended repeatedly by each other box.

O�set curve

The bounding box should be extended by the absolute value of the o�setting
distance, as the latter can be negative as well.

33

There is no straightforward implementation for the other operations. O�set
entities are rarely used in modelling detectors; none of the detector descrip-
tions available at the time of writing contain them. Therefore their imple-
mentation is postponed for later.

4.5 Parallel projection

The parameter of this operation is the plane to which the curve is parallel
projected: the image plane. The image plane is speci�ed with a placement
coordinate system; it is the xy plane of that coordinate system. The result
is a 2D curve. See Figure 4.4.

G4Curve

Project(tr : const G4Transform3D& = G4Transform3D::Identity) : G4Curve*

Figure 4.4: Parallel projection of a curve.

Parallel projection to an arbitrary plane is an a�ne transformation, preserv-
ing many important properties of transformed objects[FvDFH90]. Hence the
result can always be one of the STEP curve types, or a slight modi�cation
of those; hardly any new curve types had to be created. The fact that the
result is 2D is normally not shown explicitly in the curve object. All kinds of
curves can be conceived as 2D curves, if all their points lie in the xy plane.

Time critical operations need parallel projections, but in most cases the pro-
jection is known in advance, thus the result can be pre-computed. Therefore
parallel projection itself is not time critical; one can strive for a simple and
understandable implementation.

Parallel projection must preserve the parametrisation of curves: the image of
the point with parameter value u must have the parameter u in the projected
curve. Problems might arise as parallel projection is a many to one mapping,
thus a point on the projected curve might not have a unique parameter value.
This problem and its solution is presented in Section 4.5.4.

4.5.1 Conics

The implementations for conics have a lot a features in common. These are
described �rst in this section.

34

It is tempting to try implementing a generic parallel projection operation for
all conics. This is possible for the shape when one uses the generic equation
for conics, valid in projective 3D space[PP86], but the parametrisations of
the curves must be preserved as well, and these di�er from the parametri-
sation which can be handled naturally in projective geometry; recall that
the parametrisations for the ellipse and the hyperbola (Equations (4.1) and
(4.3)) involve trigonometric or hyperbolic functions. Thus parallel projection
has a di�erent implementation for each of the three types of conics.

Parallel projection of a conic | ellipse, parabola or hyperbola | produces
a conic of the same type. The parametrisation, however, di�ers in general:
the point with parameter value 0 does not coincide with a vertex of the
conic, as it is the case in STEP. The solution is to introduce a shift in the
parametrisation. This shift is managed by the conics base class G4Conic,
shown in Figure B.4.

Note that, besides shifting, both the original and the projected conics must
have the same sense when viewed along the direction of projection. The
z axis direction of the placement coordinate system (znew) must be set to
(0; 0; 1) or (0; 0;�1) for the projection, accordingly. The sense is given by
transforming the z axis of the placement coordinate system of the conic into
the coordinate system specifying the projection. This vector (ztransformed) and
znew must point to the same side of the image plane.

The special case when ztransformed lies in the image plane must be handled.
It is characterised by

jztransformed 3
j < kAngTolerance

the angle of the vector to the plane being smaller than the tolerance. In this
case, the conics map to a line. See Section 4.5.4 for how this case is handled.

The intersection fails in this case and no 2D curve is returned.

Note that this special case ensures that all conics map to non-degenerate
conics, thus no similar \special cases" can occur when computing the shift.

The projection algorithm sets znew �rst, then �nds the shift by computing
which parametric value maps to the point which would have parametric value
0 if the projection was parametrised the STEP way, i.e. a vertex of the conic.
Given the shift, attributes of the projected image are computed.

35

Circle

In general, the result is a 2D ellipse (and not a 2D circle!). To simplify the
implementation, the operation is just delegated to ellipse.

Ellipse

The shift for the ellipse, u, is characterised by the following: the point of
the original curve corresponding to u becomes an endpoint of one of the axes
of the projection when projected to the image plane. Therefore its distance
from the centre is an extreme value:

n
[(R1 cos u)x

0 + (R2 sinu)y
0]
2
o0
= 0 (4.5)

where x0 and y0 are the projections of x and y; see also Equation 4.1.

With the shorthands a
def
= R1x

0 and b
def
= R2y

0 this becomes

n
a2 cos2 u+ b2 sin2 u+ 2ab sinu cos u

o0
= 0(

a2 + b2

2
+
a2 � b2

2
cos 2u+ ab sin 2u

)0
= 0

�
�
a2 � b2

�
sin 2u+ 2ab cos 2u = 0

2ab

a2 � b2
= tan 2u

The �rst and the second semi-axis are the distances of the parametric point
u and u+ �=2 from the centre, respectively.

Parabola

The shift is determined with the aid of the derivative vector of the curve
(with respect to the parameter). The length of the derivative is maximised
at the vertex of the parabola, i.e. at u = 0, as is shown below.

The derivative vector is (see Equation 4.2)

36

�
C+ F (u2x+ 2uy)

�0
= 2F (xu+ y) (4.6)

The maximum length is found by setting the square length of the derivative
to 0.

n
[2F (xu+ y)]2

o0
= 0n

(xu+ y)2
o0

= 0n
x2u2 + 2xyu+ y2

o0
= 0

2x2u+ 2xy = 0

u =
�xy
x2

As x and y are perpendicular, this becomes u = 0.

The similar derivation can be used to �nd the u value for the vertex of the
projected parabola, with x0, y0 and C0 instead of x, y and C:

u =
�x0y0
x02

This is exactly the value of the shift.

Hyperbola

The derivation of the shift is analogous to the one for ellipses, except that
hyperbolic functions are used:

n
[(R1 cosh u)x

0 + (R2 sinhu)y
0]
2
o0

= 0n
a2 cosh2 u+ b2 sinh2 u+ 2ab sinh u cosh u

o0
= 0(

a2 � b2

2
+
a2 + b2

2
cosh 2u+ ab sinh 2u

)0
= 0

�
a2 + b2

�
sinh 2u+ 2ab cosh 2u = 0

� 2ab

a2 + b2
= tanh 2u

37

4.5.2 Pcurve

Projection of pcurves is di�cult; so is their intersection in 2D (Section 4.6).
The problem is that projection is a 3D operation and does not make sense in
the parameter space of a surface. One may think of solutions like converting
the pcurve into 3D; this is a di�cult task, as the result depends on both the
surface and the pcurve itself.

Fortunately, there is hardly any need for implementing these operations: the
problems arising in Chapter 6 only deal with geometric entities on a surface,
and can be more naturally formulated and solved in the parametric space of
the surface.

4.5.3 Other curves

Line

Projecting the two end points is su�cient here.

NURBS curve

It is su�cient to project the control points, as parallel projection is an a�ne
transformation.

Composite curve

The components must be projected one by one.

4.5.4 Problems of parametrisation

Parallel projection might map several points onto one. One of the uses of
parallel projection is intersecting two 3D curves (Section 6.2): the curves
are projected, intersected in 2D, and the parameter value of the intersection
point is used to �nd the intersection in 3D. Clearly, this might fail if multiple
parameter values are mapped to the same 2D point.

The set of points which maps to the same point is a union of single points
and line segments. One can ensure that line segments never occur, as STEP

38

curves only contain a �nite number of line segments, and we have at least
one degree of freedom when choosing the projection in all our algorithms (see
Chapter 6). Projections which would map a line segment to a point must
signal this fact by returning no 2D curve. Detection is easy:

� Conics have no line segments.

� A line must check if its two end points map to the same point, or,
considering precision problems, if the end points are closer to each
other than kCarTolerance.

� Line segments in NURBS curves are always between control points.
Error must be signalled if these control points map to the same point.

Self intersecting projections cannot be avoided. After eliminating line seg-
ments, the 2D space { parameter value conversion should still return a �nite
number of values. To simplify the implementation, 2D curves are only re-
quired the return one of these parameter values, but the choice has to be
deterministic and close parameter values must map to close points, as it is
the case with all STEP curves. E.g. if two segments of the map onto the same
curve, the implementation must discard one of them, rather than choose one
point / segment from the one and another from the other.

Now the special case of projecting conics when the image is a line segment can
be handled. Modelling the image with a line results in incorrect parametri-
sation. Using conics with degenerate (0) attributes would cause numerical
problems in computations and the 2D space { parameter value conversion
would be erratic. The solution is to implement a new type of STEP curve,
called G4DegenerateConic2D. This is generic to all conics, therefore a mem-
ber of G4Conic takes care of its creation.

This curve type does not need to implement its operations e�ciently, for it
is expected to be created very rarely. It is solely there to protect against
numerical problems.

The conic is projected to P 0, the plane perpendicular to P, the image plane
of the original projection, containing L, the line resulting from the original
projection. The projection to P 0 as well as L are stored. The implementation
of the intersection operation (Section 4.6) is interesting:

The ray, which lies in P, is intersected with L. A ray going through the in-
tersection and perpendicular to P is shot on P 0. This ray might intersect the
projected image on P 0; the parameter value for this intersection is returned.

39

If the ray in P 0 is started from far enough, the choice of the parameter value
is consistent, close values map to close points.

4.6 Intersection

This operation should only be called for 2D curves | recall that most curve
types can represent either a 2D curve or a 3D curve. The 2D curve is inter-
sected with a 2D ray. The result is the intersection closest to the ray starting
point, if the ray and the curve intersect at all. The intersection must be
performed e�ciently.

The points of the ray are given by

S+ id where i � 0 and jdj = 1

in this section. Note that i is the intersection distance from the starting
point S of the ray.

An intersection point has three possibly useful representations:

� a 3D point;

� a parameter value, as the intersection lies on the curve;

� the intersection distance i.

Most intersection routines have some functionality in common. It is often
more convenient to intersect with the line containing the ray rather than the
ray. In this case, the intersection might lie behind the starting point, and
all intersections must be computed to subsequently take the one closest to
the starting point. Moreover, most algorithms intersect with the unbounded
curve, i.e. they use no information about the end points intrinsically. Hence,
each intersection must be checked to see if it lies on the bounded curve.

All this functionality and the management of the three representations, with
lazy evaluation for e�ciency, is moved to the G4CurveRayIntersection

class. Each intersection operation initialises such an object with the intersec-
tion distance set to kInfinity, a very large number, meaning no intersection.
Candidate intersections are passed to the Update methods as they are found,
and if they are real intersections and are closer to the starting point than the
best candidate so far, the intersection object is updated. The intersection
object is returned by the operation (Figure 4.5).

40

G4Curve

IntersectRay2D(ray : const G4Ray&, is : G4CurveRayIntersection&) : void

Figure 4.5: The curve { ray intersection operation.

Some of the intersection calculations are rather basic. Despite this fact, they
are present in order to demonstrate how precision problems are handled.

4.6.1 Curve primitives

Line

A line is parametrised as follows:

P+ uV

A point X lies on the line if and only if

det
�
X�P V

�
= 0

Let us use a unit vector v = V=jVj with the same direction as V; reasons
will be given later on.

Let us substitute the equation of the ray into X:

det
�
S�P+ id V

�
= 0

(S1 �P1 + id1)v2 � (S2 �P2 + id2)v1 = 0

i =
(S1 �P1)v2 � (S2 �P2)v1

d2v1 � d1v2

This candidate intersection can then be passed to G4CurveRayIntersection.

Care must be taken to handle special cases. The denominator might be close
to 0; this corresponds to parallel or identical lines. As the denominator is
the angle between the vectors d and v | recall that these are of unit length
| a test against kAngTolerance is appropriate.

41

The ray falls on the line if and only if both the numerator and the denomi-
nator are 0. The numerator is a length, to be tested against kCarTolerance.
This special case is handled by providing three candidate intersections: the
starting point of the ray and the two end points of the line.

Circle

2D circles are represented as ellipses. Real 2D circle objects can be added
when this proves to be important for e�ciency. Note that also projection
code, the creator of 2D curves, must be modi�ed (Section 4.5).

Ellipse

Once again, separate algorithms are implemented for all types of conics. The
generic representation would lead to a performance loss.

An a�ne transformation is pre-computed which maps the ellipse into the
unit circle centred at the origin. This is composed of the transformation to
the placement coordinate system and scaling with the reciprocals of the two
semi-axes in x and y direction.

This transformation is applied to the starting point S and the direction d of
the ray, resulting in S0 and d0. For the intersection distance i, the following
must hold:

1 = (S0 + id0)
2

(4.7)

0 =
�
d0

2
�
i2 + (2S0d0) i+

�
S0

2 � 1
�

(4.8)

i =
�S0d0 �

r
(S0d0)2 � d02

�
S02 � 1

�
d02

(4.9)

The formula for i gives 0, 1 or 2 candidate intersections. The case of one
intersection is expected to occur rarely, therefore it is handled by the code
for two intersections.

Hyperbola

The basic idea is the same as with the ellipse: let us transform the hyperbola
into the hyperbola x2 � y2 = 1. If we take into account the y coordinates of

42

S0 and d0 as imaginary coordinates, the equation to be solved is Equation
4.7.

There is, however, no need to perform ine�cient complete arithmetic. The
result (Equation 4.9) only contains

S0
2

= S01
2 � S02

2

d0
2

= d01
2 � d02

2

S0d0 = S01d
0
1 � S02d

0
2

The special case d02 = 0 must be handled. Note that this special case never
occurs for the ellipse, with a d0 having real coordinates. Of course, testing
against 0 means testing the absolute value < kCarTolerance2.

In this special case, Equation 4.8 becomes a �rst order equation, thus

i =
S0

2 � 1

2S0d0

It might occur that also S0d0 = 0, becoming jS0d0j < kCarTolerance2 in the
code. Geometrically, this means that the transformed ray is either x = y or
x = �y, i.e. an asymptote to the transformed hyperbola. No intersection
exists in this case.

Parabola

A more direct geometric solution is taken for the parabola (Equation 4.2).
A point X on the parabola is equidistant from its focus F and its directrix
L0 + �l:

det
�
X� L0 l

�
= (X� F)2

For a point on the ray this becomes

det
�
S� L0 + id l

�
= (S� F)2 + 2(S� F)di + d2i2

i2 +

i
n
2(S� F)d� det

�
d l

�o
+n

(S� F)2 + det
�
S� L0 l

�o
= 0

43

This equation is solved for i, giving the candidate intersections. The missing
quantities are

F = C+ Fx

L0 = C� Fx

l = y

4.6.2 NURBS curve

The ray { NURBS surface intersection method is reused[Sul95]. At �rst, a
conversion from NURBS to B�ezier curves is performed[RHD89]. The B�ezier
curve { ray intersection problem is solved with a technique called B�ezier

clipping, described in [NSK90]. The technique uses the convex hull property
of B�ezier curves to identify regions of the parameter axis where no intersection
with the ray can occur. These regions are discarded, and the remaining region
is clipped repeatedly until the region is su�ciently small. The intersection
point is any point of the remaining region. The method normally has stronger
than linear convergence to the intersection point, outperforming most other
subdivision methods.

For the ray { surface intersection, clipping was performed �rst in u parametric
direction, then in v direction, then again in u direction, always alternating
the direction. There is no need for this in the ray { surface algorithm.

4.6.3 Composite curve

It is possible to intersect the ray with each of the constituting curves but
this might be ine�cient when the number of these is large. Therefore the
bounding boxes of the curves are intersected �rst and only the curves passing
this test are examined further. Several optimisations are possible; they are
worthwhile to consider for an extremely large number of curves:

� The bounding boxes could be sorted by their distance along the ray.

� Once an intersection is found on a nearby curve, curves whose bounding
boxes do not contain the intersection can be eliminated.

� Even sorting bounding boxes can be expensive. A space subdivision
method, with pre-computed subdivision, can be used instead.

44

Type of conic C(x; y; z) Tangent

Circle x2 + y2 � R2 (�y; x; 0)
Ellipse x2=R2

1 + y2=R2
2 � 1 (�R2

1=R
2
2 � y; x; 0)

Parabola 4Fx� y2 (y; 2F; 0)
Hyperbola x2=R2

1 � y2=R2
2 � 1 (R2

1=R
2
2 � y; x; 0)

Table 4.1: Conic tangents in the placement coordinate system.

4.7 Tangent calculation

The tangent to a curve is a vector. Only the direction of the vector is
interesting; implementations are free to choose the magnitude. The tangent
is de�ned everywhere, except at singular points. By convention, the vector
(0; 0; 0) is returned at these.

Computation of the tangent may involve derivation of the parametric equa-
tion of the curve and taking the value of the derivative at the given point,
speci�ed as a parameter value. In other cases, using the 3D representation
of the given point might be more convenient or more e�cient. For this rea-
son, the point is represented by a G4CurvePoint object; see Section 4.2 and
Figure 4.6.

G4Curve

Tangent(pt : G4CurveRayIntersection&) : G4Vector3D

Figure 4.6: Taking the tangent at a given point of the curve.

4.7.1 Conics

If a 3D point is given, the tangent is easily computed in the placement coordi-
nate system. Let (x; y; z) be a point. [STEP42] speci�es a function C(x; y; z)
for each conic; the points with C = 0 are on the conic. The tangent is always

�dC

dy
;
dC

dx
; 0

!

Table 4.1 shows C and the tangent for each type of conics.

45

Type of conic Derivative

Circle � sin u � x+ cos u � y
Ellipse �R1

R2

sinu � x+ cos u � y
Parabola ux+ y

Hyperbola R1

R2

sinh u � x+ cosh u � y

Table 4.2: Conic tangents at a parametric point.

The tangent to all conics is (�C2;C1; 0), where C is the location of the
point in the placement coordinate system. The cost of the operation is just
a conversion to the placement coordinate system.

If a parameter value is given, it is more e�cient to compute the deriva-
tive than to convert the parameter into a 3D point: the conversion to the
placement coordinate system is avoided. Table 4.2 shows the derivatives,
sometimes scaled by a constant. See Section 4.4.1 for the parametric equa-
tions.

4.7.2 NURBS curve

For NURBS curves, the tangent is the derivative of the parametric equation
(4.4). The resulting expression is a polynomial of the parameter. The co-
e�cients can be pre-computed for each parametric range determined by the
knots of the curve.

Normally, tangents at intersection points are determined. The intersection
algorithm computes the parameter value of the intersection, thus there is no
need for the expensive 2D point { parameter value comparison.

4.7.3 Other curves

Line

The direction of the line is taken.

Pcurve

Each surface class provides tangent vectors: one in positive u direction and
one in positive v direction. However, these are unde�ned if no surface normal

46

exists at the given point. If this occurs, the pcurve tangent is unde�ned as
well.

Composite curve

The composite curve delegates this operation to the component curve on
which the given point lies. Only the end points of the components are special.
The tangent may become unde�ned for the following reasons:

� Two curves join there and their tangents are di�erent.

� More than two curves join there, i.e. there is a self intersection. Section
6.3 explains why self intersections are permitted.

47

Chapter 5

Swept surfaces

Swept surfaces are obtained by moving a curve along a trajectory in 3D space.
The curve may change its shape or remain the same during sweeping. Also,
its orientation may be unchanged or follow the trajectory. Swept surfaces
where a 2D contour is swept along a 3D curve are also called generalised

cylinders. STEP only de�nes the surface of linear extrusion, where a curve
is swept along a line, and the surface of revolution, where a curve is revolved
about an axis.

A key operation of surfaces is the intersection with a ray. Literature exists
for ray tracing swept surfaces. [BK85] handles the case where the trajectory
is a continuous 3D curve; this method is too expensive for the special STEP
swept surfaces. The essence of the specialised methods in [Kaj83] and [vW84]
is the same: the problem of intersection is reduced to the intersection of two
2D curves, using the properties of the construction of swept surfaces. The
same principle is followed here. The papers di�er in their curve { curve
intersection methods. A discussion follows in the subsequent sections.

The section of each surface type presents the implementation of four basic
operations for surfaces (Section 3.2.3): intersection with a ray, parametric
point { 3D point conversion and tangent and bounding box computation.
The problem of bounding boxes is di�cult due to the numerous possibilities
o�ered by STEP to trim surfaces.

For a pcurve, the 3D curve itself is swept, rather than the 2D curve in the
parametric space of the basis surface. The type of the 3D curve depends
on both the type of the 2D curve and the type of the surface, and there is
no simple relation between these three types in general. The only feasible
approach is computing the 3D representation. It is proposed that this is

48

not implemented for each 2D curve { surface type. The 2D curve should be
converted into NURBS curve segments, and the surface into NURBS surface
patches. Computing the 3D representation then has to be implemented only
for 2D NURBS curves in the parametric space of NURBS surfaces. Using
this approach, � c + s rather than � c � s operations are written, where c
and s are the number of curve and surface types, respectively.

5.1 Surfaces of linear extrusion

A surface of linear extrusion is a simple swept surface or a generalised
cylinder obtained by sweeping a curve in a given direction. The resulting
surface shall not self intersect. The parametrisation is as follows:

�(u; v) = �(u) + vV (5.1)

where �(u) is the parametrisation of the swept curve and Vis the extrusion
direction. The parametrisation range for v is �1 < v < +1 and for u is
de�ned by the curve parametrisation.

Note that nothing prevents the swept curve from being in�nite.

5.1.1 Intersection

The task is to �nd the �rst intersection of the surface with a ray. As with
the curves (Section 4.6), it is su�cient to �nd one representation out of the
following three:

� point in 3D space;

� point in the 2D parameter space of the surface;

� the intersection distance.

The surface and the ray are projected along the extrusion direction to a per-
pendicular plane. The image of a swept point is thus single point, therefore
the image of the surface is the image of the swept curve. The swept curve
can be any 3D curve, in contrast to [Kaj83] and [vW84] where 2D contours
are swept. Of course, the resulting surface is the same as the one obtained by
sweeping the 2D projected image,but parametrisation is di�erent. Parallel

49

projection of curves is discussed in Section 4.5. Note that the projection of
the swept curve can be pre-computed.

The image of the ray is either a ray or a point. If the image is a point,
the original ray is either non-intersecting or a tangent to the surface; in the
latter case, tolerances allow us to choose any point within the boundary of
the surface as the intersection. Otherwise, if the image is a ray, a 2D ray {
curve intersection must be determined; see Section 4.6 for a discussion. Sub-
sequently, the 2D intersection distance is mapped easily to a 3D intersection
distance, given the direction of the 3D ray.

The resulting intersection might lie outside the boundary of the surface; see
Section 6.2.3 for methods to perform the test. This does not mean that
there is no intersection at all: there may be multiple intersections of the
projected curve and ray, one of which might lie within the boundary. In
order to determine further intersections, the projected ray is re-started, this
time from the most recent intersection. This procedure repeats until there is
no (2D) intersection or a 3D intersection inside the boundary is found.

5.1.2 Parametrisation

Evaluating Equation 5.1 is straightforward. The other direction, converting
a 3D point P to a 2D parametric point, is more interesting. The parallel
projection and 2D intersection of the previous section is used to �nd the u
parameter | recall that the de�nition of the surface guarantees that the
projection of the swept curve is a one-to-one mapping, thus the u value is
unique. The result is substituted into Equation 5.1:

P = �(u) + vV

P� �(u) = vV

jP� �(u)j = vjVj
jP� �(u)j � jVj = vjVj2

v =
(P� �)V

V2

5.1.3 Normal direction

The normal direction of the surface at a given point P is computed here.
Recall that the normal atP, parametrised asP(u0; v0), has the same direction

50

as the cross product of the tangent vectors to the parametric curves u = u0
and v = v0. In our case, u = u0 is a line with direction V; the tangent is
V. v = v0 is the swept curve with tangent t(P). The resulting expression is
V � t(P). The normal is unde�ned if and only if the tangent to the swept
curve is unde�ned.

5.1.4 Bounding box calculation

The bounding box calculation is di�cult, for it must involve the boundary
of the surface, as the unbounded surface of linear extrusion is in�nite in v

direction and may be in�nite in u direction as well. The goal is to �nd a
correct and reasonably tight bounding box; see Section 4.4 for the detailed
requirements on bounding box calculation.

The bounding box calculation is performed in a coordinate system whose z
axis is the extrusion axis. Both the swept curve and the surface boundary
are transformed to the coordinate system. A box containing the bounding
box computed in that coordinate system is returned.

Let us ensure �rst that the surface is bounded in u direction. To achieve
this, the swept curve must be trimmed if it is unbounded. Also, trimming of
bounded curves might prove useful, if the curve is in fact trimmed, because
this may lead to a smaller bounding box.

The curves which constitute the boundary might be described in the param-
eter space of the surface or in 3D space. Curves of the former type, i.e.
pcurves, provide bounds on u in a straightforward manner. A box which
includes all their 2D bounding boxes must be taken; its u range determines
the part of the swept curve whose extrusion the pcurves lie on.

A similar strategy is chosen for 3D bounding curves. They are projected
onto a plane normal to the extrusion direction and a (2D) box including the
bounding box of each image is computed. The boundary of this box, four
line segments, are intersected with the projected image of the swept curve.
A range including the parameter value of each intersection, as well as the u
range of pcurves gives correct bounds on u. The swept curve is trimmed
with this range.

Now we are ready to compute the bounding box. The bounding boxes of
pcurve bounding loops specify a v range [vmin ; vmax]. The bounding box must
include the (3D) bounding box of the trimmed swept curve, translated once
by vminV and once by vmaxV. The bounding box of all 3D bounding loops is

51

computed, denoted by B. The bounding box must include the bounding box
of the swept curve, once put on top of B | i.e. the maximum z coordinate
of B is the minimum z coordinate of the other box | and once put below B.

5.2 Surfaces of revolution

This surface is obtained by rotating a curve one complete revolution about
an axis. The parametrisation is as follows:

�(u; v) = C + (�(v)�C) cosu (5.2)

+ ((�(v)�C) �V)V(1� cos u)

+ V � (�(v)�C) sinu

where V is the direction of the axis, P is a point on the axis and �(v)
is the parametrisation of the swept curve. The parametric range for u is
0 � u � 360� and for v is de�ned by the curve parametrisation.

Many the algorithms presented are parallel to the ones for the surface of
linear extrusion in Section 5.1. This fact will be often referred to, explicitly
or implicitly.

5.2.1 Intersection

It is natural to view the surface in the cylindrical coordinate system whose
axis is the axis of revolution. The radius, angular position and the position
along the axis will be denoted by r, � and z. We will also utilise a Cartesian
coordinate system with the same z axis and x = r sin�, y = r cos�. Thus
x2 + y2 = r2.

In the cylindrical coordinate system, sweeping a point (r0; �0; z0) produces
(r0; �; z0) with � going from 0 to 2�. Thus the projection produced by
considering only r and z coordinates takes the surface and the swept curve
into the same 2D curve on the rz plane | the dimensionality of the problem
is reduced.

This projection is not a projection in its usual meaning | it does not preserve
cross ratios[PP86], for instance | but the word will be used nevertheless,

52

as the operation is analogous to the parallel projection used for surfaces of
linear extrusion.

The ray is also projected to the rz plane | half plane, to be precise, for r � 0
| and is intersected with the image of the swept curve. The intersection
point(s) are transformed back into 3D easily | the z coordinate is known.
They are checked for lying within the boundary of the surface, similarly as
with the surface of linear extrusion.

Problems are twofold:

� The image of the ray is not a ray but, as we will see later, a hyperbola.
The intersection algorithms of Section 4.6 cannot be used.

� The images of the curves are not STEP curve entities, or representing
them with STEP curves is ine�cient. E.g. conics become fourth order
curves.

For these reasons, the design of the projection and intersection operations is
di�erent from parallel projection and 2D ray { curve intersection; see Figure
B.7. Projection produces an object which implements intersection, but this
object is not a G4Curve. This has the advantage that fundamentally di�erent
approaches to surface of revolution { ray intersection can be implemented:
\intersection" implements the parts of the algorithm depending on the actual
ray and projection implements parts that can be computed in advance, by
just knowing the surface.

Most curves implement the above projection approach, coming from [Kaj83]
and [vW84]. The articles present di�erent curve { curve intersection meth-
ods: [Kaj83] has a recursive subdivision method, whereas [vW84] deals with
curve equations directly. Also, the usage of the (r2; z) coordinate system is
preferred to (r; z). The right choice of these methods depends on the type of
the curve; details follow in the subsequent sections.

It must be noted that the above articles only consider curves lying in a plane
containing the revolution axis. Thus the problem of projecting the swept
curve is avoided.

Some general remarks on the algorithms:

� No e�ort was made to preserve the parametrisation. This would have
introduced additional complications.

� As with the 2D ray { curve intersection, there are common tasks to in-
tersection algorithms. The G4CurveRayIntersection class mentioned

53

in Section 4.6 is reused. Intersections with the line containing the ray
are computed, not just the ones with the ray.

� The de�nition of surfaces of revolution ensures that projection is a one
to one mapping; no problems similar to those in Section 4.5.4 arise.

Sweeping lines

A line can be described as

x = a � z + b; y = c � z + d; z 2 R (5.3)

The special case where the line is in the xy plane is handled later.

Let us express the projection of a line in terms of r and z:

x2 + y2 = r2

(az + b)2 + (cz + d)2 = r2

(a + c)z2 + 2(ab + cd)z + (b2 + d2) = r2 (5.4)

The coe�cients of z will simply be denoted by K, L and M . For an inter-
section point (r; z) of two lines their equations of hold simultaneously:

K1z
2 + L1z +M1 = K2z

2 + L2z +M2

Solving this quadratic equation yields at most 2 z values. r is obtained by
substitution. Of course, only z values yielding r2 � 0 are valid.

Sweeping conics

Let us project the conic onto the xy plane. The image is a conic. The general
form of its equation is

Ax2 + by2 + Cxy +Dx+ Ey + F = 0 (5.5)

54

All points of the conic lie in the same plane. This yields the equation

Gx +Hy + Iz + J = 0 (5.6)

As with the line, we would like to have Equation 5.5 expressed in terms of x
and r | recall that r2 = x2 + y2. This is possible and yields a fourth order
polynomial of r and z, such that r is always at an even exponent, i.e. r0 = 1,
r2 and r4.

Let us now substitute r2 = Kz2 + Lz +M , the equation of the ray, into the
fourth order polynomial. The substitution results in a fourth order equation
of z. This can be solved analytically, but this is not worthwhile. A numerical
method is better at �nding zeroes. The choice of numerical methods in gen-
eral involves a trade-o� between e�ciency and safe convergence behaviour.
Laguerre's method is used, with subsequent polishing of the roots, as imple-
mented in the popular Numerical Recipes package[PTVF92]. This method
is not fast but it always converges for practical problems. Note that some of
the roots might be wrong z values; this must be checked for.

Sweeping NURBS curves

The projection { 2D intersection approach involves serious di�culties: the
projection of a NURBS curve to the rz half plane is not a NURBS curve. It
does not seem worthwhile to implement a curve type even more complicated
than NURBS just for the sake of this operation. Instead, the surface of
revolution is constructed as a NURBS surface with the following method:

1. A NURBS representation is chosen for the unit circle. [PT89] contains a
review of possible circle representations. Figure 5.1 shows an example.

2. The u direction knot vector and weights are taken from the unit circle
representation.

3. The v direction knot vector and weights are taken from the swept curve.

4. The control points of the swept curve give the �rst column of the control
points array.

5. A row of the control points array is obtained as follows: the control
points of the unit circle are transformed to a circle symmetric to the
revolution axis, such that the �rst control point of the circle falls on the

55

�rst control point of the row. The thus obtained control points form
the row.

P3

P4

P5

y

weights: 1;
p
2

2
; 1;

p
2

2
; 1;

p
2

2
; 1;

p
2

2
; 1

knots: 0; 0; 1
4
; 1
4
; 1
2
; 1
2
; 3
4
; 3
4
; 1; 1; 1

P1

x

P2

P6

P0 = P8

P7

Figure 5.1: Nine control point NURBS circle.

Sweeping composite curves

Intersection should be attempted with each component curve. Testing the
bounding boxes of the curves usually speeds up this process.

5.2.2 Parametrisation

The direction parametric point to 3D point is trivial substitution into Equa-
tion 5.2. We will focus on the other direction, even though that conversion is
not needed very frequently. Usually, the conversion is done at the intersection
point, in order to obtain the tangent to the swept curve. But as we will see
in the next section, tangent computation is a by-product of the intersection
calculation.

v, the parameter along the swept curve is determined �rst. Projected curves
lose their parametrisations, thus projection and the sequence of conversions
2D point { parameter { 3D point cannot be applied now.

Let the 3D point have r0 and z0 as r and z coordinates. The task can be
formulated as looking for a point on the swept curve with r = r0 and z = z0.
Let us project the swept curve to a plane containing the axis of revolution,
an ordinary parallel projection this time. The plane determined by z = z0

56

becomes a line in this projection. The intersection operation of Section 4.6
can thus be used to determine the set of points and curve segments with
z = z0.; these are checked one by one for intersections.

The case of sweeping NURBS curves is di�erent. v can be obtained by
performing the 3D point { parametric point conversion on the NURBS surface
representing the surface of revolution. The u parameter resulting from that
conversion must be discarded, since there is no NURBS representation of a
circle having the desired uniform representation.

5.2.3 Normal direction

Once again, the normal is the cross product of the tangent to the curve u = u0
and the tangent to v = v0 where (u0; v0) is the parametric representation of
the given point. v = v0 is the swept curve rotated by v0 about the axis of
revolution, thus its tangent is the tangent of the swept curve rotated by v0.
u = u0 is a circle, with tangent (�y; x; 0) in a coordinate system having the
axis of revolution as its z axis where (x; y; z) are the coordinates of the given
point.

For conics and lines, the tangent tto the swept curve at an intersection point
can be obtained without using the parameter value, as a by-product of the
intersection calculation, using the relation

t =

dC

dx
;
dC

dy
;
dC

dz

!

where C = 0 is the implicit equation of the curve. The direction might be
reversed, but this is not a serious di�culty | one can also remember where
a special point of the curve was projected and reverse the direction based on
its relative location.

5.2.4 Bounding box calculation

The main problem is that the surface of revolution might be in�nite in the
v parametric direction, if the swept curve is in�nite. In this case, the curve
must be trimmed using the curve boundary of the surface. This trimming
might be useful for bounded curves as well.

57

Curves which form the surface boundary can be parametric curves or 3D
curves. pcurves can be handled easily. A box including all their 2D bounding
boxes must be taken; its v range determines the part of the swept curve whose
revolution includes all the pcurve 3D boundaries.

The 3D bounding curves are projected to a plane containing the axis of
revolution. A common 2D bounding box is determined on that plane. The
swept curve is projected to the same plane and is intersected with the four
line segments forming the bounding box of the projected boundary. The
minimum and maximum parameter values belonging to intersections specify
a v range whose revolution includes all the 3D bounding curves. The swept
curve can thus be safely trimmed by the union of the two v ranges.

Once the swept curve is �nite, the task is simple. Let us project the swept
curve to the xz and the yz planes (z is the axis of revolution). The 2D
bounding boxes give the following bounds: z0 � z � z1, jxj < x0 and jyj < y0.
The cylinder about the z axis with radius

p
x2 + y2 and z0 � z � z1 contains

the surface of revolution. The bounding box of that cylinder is the result of
the operation.

58

Chapter 6

Curve bounded faces

The key functionality of solids is the ray { solid intersection. B-Rep solids are
bounded by faces. For them, this operation involves ray { face intersections.
Recall (Section 2.4) that a face is part of an associated surface, bounded by
one or more loops, i.e. closed curves lying on the surface. It is not enough to
determine the ray { surface intersection | the intersection point must also
lie within the boundary. Surface intersection algorithms almost never make
use of boundary information intrinsically, therefore we have two separate
tasks. The latter task, called henceforth inside operation, is the subject of
this chapter. The chapter is subdivided as follows:

� The interior of a face is de�ned precisely, and the inside operation is
considered from a purely topological point of view. The de�nition and
usage of topological notions relies on intuition rather than rigorous
mathematics, both in this thesis and [STEP42].

� The object-oriented design of the inside operation and associated ob-
jects is presented.

� Guiding principles of the implementation are given, followed by the
implementation for most surface and curve types. Surface types are
de�ned there in detail.

6.1 The topological point of view

Being a topological notion, the interior of a face is de�ned in topological
terms. Each loop of the face, i.e. a connected and closed, but possibly self-

59

intersecting curve divides the surface into two parts; the one part is inside
the loop, the other outside. The interior of the face consists of the points
inside all loops. Note that there is no di�erence in the semantics of \inner"
and \outer" bounding loops. These notions only de�ne a preferred way of
embedding the face into the plane. Neither the STEP de�nition of interior
nor the inside operation in Geant4 make the distinction.

The precise de�nition of the interior of a loop involves a point P on it and a
direction d which is a tangent to the surface, but not a tangent to the loop
at P. d points towards the interior of the face if and only if

(n(P)� t(P)) � d > 0 (6.1)

where n(P) is the normal to the surface and t(P) is the tangent to the loop
at point P . Figure Figure 6.1 demonstrates this de�nition.

n

t

n� t

Figure 6.1: The interior of a face. As the surface normal points towards the
reader, the outer loop runs counter-clockwise, and the inner loops clockwise.

The topological tangent and normal used here more or less agree with the
corresponding geometrical notions. However, the tangent to a loop may not
exist at singular points. In other words, a STEP curve may have knicks.
Also, for some curves on the surface no normal can be de�ned. Such special
cases are dealt with in Section 6.4.

This de�nition of the interior cannot be used directly; it o�ers no straight-
forward test to decide if a point on the surface lies in the interior or not.
The solution adopted exploits the fact that the interior is connected and is
inspired by the inside-outside algorithms on the plane[FvDFH90]. Let us
consider a curve lying on the surface, starting from the point on the surface,
and investigate which points it passes through. The curve will be referred to
as the test curve. Three cases are worth distinguishing (see also Figure 6.2:

60

1. The test curve intersects at least one bounding loop. In this case,
take the intersection closest to the starting point. De�nition 6.1 allows
testing if the test curve comes from the interior or the exterior, when
plugged in the intersection point and the tangent of the test curve. We
obtain a de�nitive answer in any case.

2. There is no intersection with the bounding loops but the test curve
passes through a point known to be outside the face. Such points are
on the boundary of a \naturally" bounded surface, bounded even when
bounding loops are ignored. An example is an open NURBS surface.
Points \at in�nity", the ideal points in projective geometry[PP86] are
also outside any face. An answer \outside" is obtained in this case.

3. There is no intersection with any of the bounding loops and no outside
point is touched. The problem of being inside remains unsolved.

Figure 6.2: Testing if a point is on the interior of the face, by starting a curve
from the point. Three cases are distinguished.

The test curve may be chosen freely among the curves lying on the surface.
One can thus ensure that case 3 never occurs, by taking a curve going through
either a boundary point or an outside point. This curve must then be tested
with every bounding loop for intersection. This is the general schema for
each of the inside operations.

The main problem is that the test curve, as well as curves forming boundaries,
can be of any STEP type. The general curve { curve intersection problem is
di�cult to implement, and algorithms are unacceptably slow. The next sec-
tion shows how the general intersection problem can be avoided for di�erent
types of surfaces.

61

6.2 The geometrical point of view

[NSK90] describes a general algorithm for the inside operation but it requires
that the surface is present as a NURBS surface and all bounding curves are
present as NURBS curves. This would require a lot of implementation work,
and the resulting method is slow due to its generality. (See Section 6.2.4 for
a more detailed description of the algorithm.) This section approaches the
problem from the practical side: the e�ciency of methods is valued higher
than their generality. Therefore the general method will be avoided whenever
possible by suitable choices for the test ray. Curve { curve intersections are
always reduced to basic operations on curves: parallel projection onto a plane
(Section 4.5), such that the one curve is mapped to a ray, then intersection
of this ray with the other curve (Section 4.6). Projections are pre-computed
whenever possible. Intersection tests should start with checking against the
bounding box (Section 4.4).

The choice of a test curve is largely constrained by the surface it must lie on,
therefore it depends on the type of the curve. The subsequent sections show
and analyse these choices for each surface type. The test curve will be called
C and its starting point, the ray { surface intersection, P.

6.2.1 Pcurve boundaries and planes

If the surface is a plane, the boundary should be projected to it. The inside
operation is reduced to projecting Ponto the plane and shooting a (2D) ray
into any direction. Either an intersection occurs or the ray shoots o� into
in�nity.

A similar problem occurs when all bounding loops are available as pcurves.
Pmust be represented in the 2D parameter space of the surface and a ray in
that space is shot. However, some care must be taken, when choosing the
direction, as the parameter space might be closed in one or both of the u
and v directions and C might not go o� to in�nity. The simplest solution is
to shoot C towards a point on one of the bounding loops.

\Mixed" boundaries, containing both pcurves and 3D curves, do not pose
serious problems. Projections and intersections of projected images are not
available for pcurves, but all the test curves used for di�erent kinds of sur-
faces are either rays or connected ray segments in the parameter space of the
surface.

62

6.2.2 Other elementary surfaces

Cylindrical surfaces

A cylindrical surface consists of the set of points at a constant distance
from a straight line, the axis. The choice for C is the ray starting from Pand
parallel to the axis. This ray goes to in�nity. Let us project the boundary to
a plane P containing the axis and intersect them with the projected image
of C.
The problem is that projection is a many to one mapping (Section 4.5.4).
Two di�erent points of the boundary might be mapped to one on P, coming
from the two di�erent sides of P. The solution is to split the boundary with
the plane P and to intersect only with the part of the boundary lying on the
same side of P as the ray. Figure 6.3 visualises all of the above.

Figure 6.3: The test curve on a cylindrical and a conical surface. The bound-
ary is split into two by the dotted plane.

Splitting boundaries is described in Section 6.3.

Conical surfaces

A conical surface is the in�nite surface produced by revolving a line about
an intersecting line, the axis. The intersection point is called apex. Again,
there is a choice for a C going o� to in�nity, the ray going through the apex.
Projection is to a plane containing the axis, and the boundary is split with
that plane; see Figure 6.3.

63

Spherical surfaces

The sphere is a closed surface; the only right choice for C is a curve going to
a point on a boundary. The boundary is projected to a plane containing the
centre of the sphere; they are split by this plane. Now we will show that it
is possible to go from any point on the sphere to any other along arcs which
are line segments on the projected image, which is a disk. The projection of
C consists of line segments on diameters of the disk only:

� If both points are on the same side of the plane, move to the centre on
that side. Otherwise, �rst move to the disk boundary, then move on
the other side to the centre.

� Move from the centre to the destination.

See also Figure 6.4.

2

3

1

Figure 6.4: The test curve on a sphere. Projected view.

Toroidal surfaces

A toroidal surface has a doughnut shape. It could be produced by re-
volving a circle about a non-intersecting line in its plane. This line is the
symmetry axis of the torus.

Projection of the boundary is again to a plane containing the symmetry axis,
and the boundary should be split with this plane. The parts should be split
again into inner and outer parts | a point closer to the symmetry axis than
the centre of the revolved circle is in the inner part | to make sure that no
self-intersecting projected images occur.

64

Similarly as with the sphere, C must go to a point on a boundary, preferably
along curves whose images are line segments:

� Move to the image of the axis along a normal to the axis. If the start
and end point are on di�erent sides of the image plane, move to the
image boundary �rst and get to the axis on the other side.

� Move on the image of the axis to the point where the normal going
through the destination point meets the axis. If necessary, get from
the inner part to the outer part by moving to the boundary �rst.

� Move to the destination point along the normal.

Note that the second split, separating the inside and outside parts of the
torus, is splitting with a cylinder. See also Figure 6.5.

1

4

32

P

Figure 6.5: Test curve on a torus. The boundary is split into four parts
(dashed lines). The projection onto the plane P maps the test ray (thick
line) into line segments.

6.2.3 Swept surfaces

Surfaces of linear extrusion

This case is analogous to that of the cylinder (Section 6.2.2): a ray parallel
to the extrusion axis is shot and intersection is tested on the projected image

65

of the boundary. Projection is to a plane containing the axis, called P. The
di�culty lies in determining which planes are appropriate for splitting the
boundary.

Complex algorithms are necessary to determine the splitting planes in ad-
vance, and implementation is likely to di�er for all curve types. An adaptive,
generic procedure is proposed instead. It exploits the fact that false or possi-
bly false intersection points can be characterised in a simple manner, resulting
in the following algorithm:

1. Find the closest intersection of the boundary with the ray in the pro-
jection. If the boundary was split already, take the part which might
contain the ray. This is a simple task, as the boundary is only split
with planes parallel to P.

2. Determine the intersection point on the 3D ray as well as on the in-
tersected boundary. The latter task is done by 2D point { parameter
value { 3D point conversion.

3. Terminate if these two points are the same { a true intersection was
found.

4. A possibly false intersection was found. Split the boundary with the
plane equidistant from the two points and parallel to P (see also Figure
6.6). Now the two points are in di�erent space partitions. Proceed with
step 1.

Figure 6.6: Adaptive subdivision of the boundary of a surface of linear ex-
trusion. The plane in the middle is the new splitting plane.

It is expected that this method does not perform much more subdivisions
than necessary. Note that even if the boundary is split into many parts,

66

�nding the appropriate part is fast: binary search with logarithmic execution
time can be used.

Surfaces of revolution

This case is analogous to that of the torus (Section 6.2.2), but a general
curve is revolved about the axis rather than a circle. Projection is performed
onto a plane containing the revolution axis, and the boundary is split with
this plane. However, the parts on the two sides of the plane cannot be split
further in a trivial way to avoid false intersections.

It is possible to invent an adaptive method with the
avour of the method in
Section 6.2.3. However, it would require a general algorithm of splitting the
boundary with a cylinder, and the method presented in Section 6.3 cannot be
generalised. We would have to resort to generic curve { circle intersections,
and that would result in signi�cant additional implementation e�ort. The
problem of false intersections is resolved in a di�erent way:

1. Another projection is performed, to a plane chosen at random. The
resulting projections can be preserved between executions of this algo-
rithm.

2. A ray is shot through the image of the candidate intersection, denoted
by P0. If the ray does not intersect the projected boundary at P0, the
candidate intersection is a false one. Note that an intersection at P0

may only occur if the distance of P0 from the ray starting point is at
least 2 � kCarTolerance.

3. The intersection is checked as in Section 6.2.3. If it proves to be a true
intersection, we may terminate. Otherwise, let us proceed from step 1.

A disadvantage is that the algorithm does not \learn" in the same way as the
one for the extruded surface. Whole segments of the boundary may overlap
in the projection, and the resolution for false intersections may need to be
performed frequently.

6.2.4 NURBS surfaces

On a NURBS surface, it is often impossible to �nd a test ray and a plane
such that the image of the test ray is a 2D ray. Even if there is such a ray,
it is di�cult to �nd. We have to resort to test curves which are general

67

NURBS curves, e.g. the curve u = u0 if u0 is the coordinate of the point to
be classi�ed.

One choice is converting all bounding curves to NURBS curves and imple-
ment the general NURBS curve { NURBS curve intersection. There are so-
lutions of di�erent nature: subdivision algorithms and numerical algorithms.
There is also a technique called B�ezier clipping, a method based on subdivi-
sion, but converging faster than other subdivision methods. It can be termed
as a geometrically based numerical method.

[NSK90] presents a method using B�ezier clipping but cannot exploit the fact
that one test { ray boundary intersection is enough in STEP (see De�nition
6.1). Instead it determines if the number of intersections is even or odd,
without actually performing the intersection. Performance comparisons are
needed to decide if this method or the NURBS { NURBS intersection is more
e�cient.

6.2.5 Rectangular composite surfaces

Rectangular composite surfaces consist of a 2D array of surface patches which
are rectangular in their own parameter spaces, such as untrimmed NURBS
surfaces. They are glued together by mapping their parameter spaces onto
the parameter space of the rectangular composite surface in the following
way: the patch with indices (i; j) is re-parametrised linearly to become the
parametric rectangle (i� 1; j� 1; i; j). The resulting surface might be closed
in one or both parametric directions.

The problem is that bounding loops do not \respect" the boundaries of
patches. A bounding loop might intersect a patch boundary or might en-
close the patch completely. The patch with the point to be classi�ed might
have to communicate with its neighbours to classify the point.

Methods in this chapter choose the test curve which is most appropriate to
them. One might try to follow the test ray to a patch boundary, determine
a test ray on the other patch, starting from the intersection, and follow that
test ray; see Figure 6.7. This process is repeated until a bounding loop (case
1 in Section 6.1) or an outside point (case 2) is hit. The problem is, as the
patches do not communicate, the test ray might be re
ected to the patch
where it comes from or form a loop in some other way (case 3).

68

Figure 6.7: Problems with test rays on a rectangular composite surface.

6.3 Operations on the boundary

Let us �rst examine how a single bounding loop is best modelled. A bounding
loop consists of several curves where the end point of a curve joins the start
point of the next curve. It is closed. Curves do not intersect, except at
common end points. This is almost the de�nition of the composite curve,
with the following di�erences:

� A composite curve might be open.

� The bounding loop may self intersect at some points.

� A bounding loop may be a vertex loop, a single point surrounded
completely by the interior of the face.

The curve operations parallel projection, intersection in 2D as well as bound-
ing box and tangent calculations can thus be reused; the boundary class
G4Boundary can contain a G4CompositeCurve. Only the tangent operation
(Section 4.7.3) has to be changed slightly: the tangent must be unde�ned at
the self intersections.

Note that the above operations are implemented for every curve, therefore
the more general G4Curve class can be used. This has the advantage that the
vertex loop can be implemented as a subtype of G4Curve. The implemen-

69

tation of all operations is rather straightforward: the tangent is unde�ned
and no ray should intersect the vertex loop. The latter convention only
causes problems when the test curve of the inside operation is chosen to go
to the vertex loop, as the expected test curve { boundary intersection does
not occur. The algorithm must answer \inside" in this case.

Now let us design the class for the whole boundary of the face. The preceding
sections showed the need for the following operations:

� It contains a collection of G4Curves, as it must hold the bounding loops.

� Parallel projection onto a plane, i.e. projecting the loops one by one.
The result is a collection of 2D curves. As 2D and 3D curves im-
plemented by the same classes, so should boundaries; this operation
returns a new boundary.

� Intersection in 2D is implemented the same way as the intersection for
composite curves in Section 4.6.3.

� Splitting the boundary with a plane. The one half of the result is the
part in front of that plane and the other is the part behind the plane.

� Splitting the boundary with a special cylinder. This operation requires
that the boundary is located on a torus and the cylinder must be the
one containing the path of the centre of the revolved circle.

Splitting deserves a few more words. In the �rst case:

� The boundary is projected along a direction in the splitting plane. Thus
the image of the splitting plane is a line.

� Each curve in the boundary is intersected with this line, i.e. with a ray
starting far enough from the curves. Multiple intersections may occur;
the ray must be moved forward, in front of the intersections already
found and be intersected again.

Once again, there is the problem of multiple points mapped to the
same point, thus we might miss some intersections obscured by other
intersections. The solution is to repeat the whole process with another
projection and try again. It is likely that the missing intersections are
found.

� The curves are split with the intersections and the pieces are classi�ed
to be lying on the one or the other side of the line, the image of the
splitting plane. The tangent of the curve is used for this purpose; see
Section 6.4 for dealing with special cases.

70

Non-intersecting curves lie entirely on one side of the splitting plane.
Classifying an arbitrary point is enough to classify the entire curve.

The other case of splitting with a cylinder is similar. The intersection of the
cylinder with the torus which contains the boundary is two parallel circles;
these become line segments when projected to a surface containing the sym-
metry axis of the torus. Unfortunately, these line segments are tangents to
the bounding curves, hence the intersection algorithms are allowed to ignore
them. To avoid this problem, the line segments are moved towards each other
by kCarTolerance.

The classi�cation of the pieces coming from the intersection also di�ers. The
3D tangent is needed, obtainable by the conversions 2D point { parameter
value { 3D point { 3D tangent. Classi�cation is based on the fact whether the
tangent points away from the symmetry axis or not. For the non-intersected
curves, the criterion involves the distance of an arbitrary point from the
symmetry axis.

6.4 Precision problems

Precision problems may arise when the test curve meets a bounding loop. Let
us call the intersection point P. Some examples from the previous sections:

1. The tangent t to the loop is unde�ned at P.

2. The surface normal n is unde�ned at P.

3. The left hand side of De�nition 6.1 is near 0, i.e. the test curve is very
close to being a tangent to the loop at P.

All of these problems can be handled by moving the intersection point to the
test curve by a small amount. As the test curve { bounding loop problem
is always transformed to a ray { curve intersection in 2D, this amounts to
moving the ray by lengths in the magnitude of kCarTolerance.

If the tangent is unde�ned, the ray might intersect the curve or be a tangent
to the it, as shown in Figure 6.8. In the �rst case, it does not matter from
which side the tangent is taken, moving the ray by kCarTolerance is safe. In
the second case, the shift causes either that the tangent of the closer part of
the curve is taken or that the ray misses the curve. This is correct behaviour.

71

Figure 6.8: The two cases when the loop has no tangent de�ned at the ray {
loop intersection point.

In case the tangent at the new intersection is unde�ned, the procedure should
be repeated. Note that this is unlikely due to the choice of kCarTolerance;
see Section 3.2.4.

Self intersections of the loop may also cause problems. Fortunately, this
condition is easily detectable, as loops may only self intersect at the end
points of their constituting curves. The ray is shifted when this occurs, in
order to move it away from the end point.

After the tangent was obtained, we can check if the surface normal is de�ned.
If not, the intersection point is moved back along the ray to ensure that it
is de�ned. Entire curves on the surface might have the normal unde�ned,
hence this might fail when the ray lies on such a \sharp edge". In this case,
also the ray should be moved. Figure 6.9 shows which points are tested and
in what order. Note that the �rst candidate already has its normal de�ned,
except for pathological cases, as the fact that the tangent is de�ned implies
that the loop is part of a \sharp edge".

Finally, the case when the ray is a tangent to the loop should be tested.
More precisely, the angle between the ray direction d and the curve tangent
t d � t provided jdj = jtj = 1, should be 0 � kAngTolerance. This case is
analogous to the case of the unde�ned tangent: wither the ray is a tangent
or it is intersecting. Compare Figures 6.8 and 6.10.

72

1

2 3

6 ...54

Figure 6.9: Candidate points and the order of testing when the surface normal
is unde�ned at the ray { loop intersection.

Figure 6.10: The two cases when the ray is locally a tangent to the loop.

73

Chapter 7

Conclusions

The Boundary Representation based geometric modeller of the particle de-
tector simulation package Geant4 has been extended with swept surfaces:
surfaces of linear extrusion and revolution, as well as with a solution for the
problem of classifying a point on a surface as being inside or outside the
curves bounding the surface. The implementation of parametric curves has
been extended and optimised; this involved a re-design of the curve related
code. Thus a major step was taken towards full ISO 10303 STEP compliancy
of the geometric modeller.

Throughout the thesis, the following key requirements for Geant4 were
respected when taking decisions:

E�ciency This requirement often resulted in specialising the algorithms for
the individual types of STEP entities.

Accuracy This requirement was achieved by systematically considering spe-
cial cases and the e�ects of numerical errors.

Development is continuing as the beta release of Geant4 approaches. Im-
plementation of the surface of revolution must be �nalised and classifying
points lying on curve bounded NURBS and rectangular composite surfaces
must be handled.

Numerous improvement and optimisation ideas have appeared in this thesis.
Some additional, more general ideas are listed below. It must be noted that
STEP allows for a variety of descriptions for a given object, only a subset of
which will be used in the design of detectors. Assessing the value of these
ideas is di�cult without knowing that particular subset.

74

Future optimisation e�orts shall consider employing numerical methods for
NURBS curve and surface intersection. These methods solve the equations
describing the intersections directly, rather than try to exploit geometrical
properties of the objects involved. They are e�cient algorithms in general,
but often fail to converge to a solution and are sensitive to issues of numerical
stability; see e.g. [MD94]. These algorithms shall be implemented, their
performance evaluated in comparison with other approaches, e.g. recursive
subdivision and B�ezier clipping. Even combining numerical methods with the
others may be worthwhile, e.g. an intersection point obtained by subdivision
could be polished with numerical methods. Finally, the method considered
best should be integrated into Geant4.

Bounding polygons and polyhedra could be employed instead of bounding
rectangles and boxes. Intersecting the ray with the bounding object would
become more expensive, but intersecting the ray with the object could be
avoided more frequently.

STEP allows for multiple descriptions of the same object. E�ciency of track-
ing often depends on which representation is chosen; consider a line segment
represented with a NURBS curve. The geometric modeller should make an
e�ort to recognise when a conversion to a cheaper representation is possible.

75

Appendix A

Geant4 class categories

UI GUI GEANT4

Event
management

Digi Track
management

Event
generator

Hit Physics
processes

Track Particle
definition

Geometry

CAD
interface

Magnetic
field

Materials

ODBMS
interface

Visualisation

Base class

Figure A.1: Categories and their interactions in Geant4 | coarse view.

I

Appendix B

Design diagrams of the B-Rep

code

These diagrams provide an overview of the development presented in this
thesis. All the appearing classes are within the Geometry category, B-Rep
sub-category.

II

#b
B

ox 1
G

4B
ou

nd
in

gB
ox

3D
1

−
st

ar
t

1

1

−
en

d

1
G

4P
oi

nt
3D

1

G
4C

ur
ve

pS
ta

rt
 :

G
4d

ou
bl

e
pE

nd
 :

G
4d

ou
bl

e
bo

un
de

d
: G

4b
oo

l

G
4C

ur
ve

()
 :

G
4C

ur
ve

~
G

4C
ur

ve
()

P
ro

je
ct

(t
r

: c
on

st
 G

4T
ra

ns
fo

rm
3D

&
 =

 G
4T

ra
ns

fo
rm

3D
::I

de
nt

ity
)

: G
4C

ur
ve

*
In

te
rs

ec
tR

ay
2D

(r
ay

 :
co

ns
t G

4R
ay

&
, i

s
: G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: v
oi

d
G

et
S

ta
rt

()
 :

co
ns

t G
4P

oi
nt

3D
&

G
et

E
nd

()
 :

co
ns

t G
4P

oi
nt

3D
&

G
et

P
S

ta
rt

()
 :

G
4d

ou
bl

e
G

et
P

E
nd

()
 :

G
4d

ou
bl

e
S

et
B

ou
nd

s(
p1

 :
G

4d
ou

bl
e,

 p
2

: G
4d

ou
bl

e)
 :

vo
id

S
et

B
ou

nd
s(

p1
 :

G
4d

ou
bl

e,
 p

2
: c

on
st

 G
4P

oi
nt

3D
&

)
: v

oi
d

S
et

B
ou

nd
s(

p1
 :

co
ns

t G
4P

oi
nt

3D
&

, p
2

: G
4d

ou
bl

e)
 :

vo
id

S
et

B
ou

nd
s(

p1
 :

co
ns

t G
4P

oi
nt

3D
&

, p
2

: c
on

st
 G

4P
oi

nt
3D

&
)

: v
oi

d
Is

B
ou

nd
ed

()
 :

G
4b

oo
l

Is
P

O
n(

pa
ra

m
 :

G
4d

ou
bl

e)
 :

G
4b

oo
l

G
et

P
M

ax
()

 :
G

4d
ou

bl
e

G
et

P
oi

nt
(p

ar
am

 :
G

4d
ou

bl
e)

 :
G

4P
oi

nt
3D

G
et

P
P

oi
nt

(p
 :

co
ns

t G
4P

oi
nt

3D
&

)
: G

4d
ou

bl
e

B
B

ox
()

 :
co

ns
t G

4B
ou

nd
in

gB
ox

3D
*

In
itB

ou
nd

ed
()

 :
vo

id
T

an
ge

nt
(p

t :
 G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: G
4V

ec
to

r3
D

1
1

1

1

1
1

Figure B.1: Interface of the base class for curves.

III

1

G
4P

oi
nt

3D
1

1
G

4C
ur

ve
1

G
4C

ur
ve

P
oi

nt
u

: G
4d

ou
bl

e

G
4C

ur
ve

P
oi

nt
(c

 :
G

4C
ur

ve
&

)
: G

4C
ur

ve
P

oi
nt

In
it(

c
: G

4C
ur

ve
&

)
: v

oi
d

G
et

C
ur

ve
()

 :
G

4C
ur

ve
&

R
es

et
()

 :
vo

id
R

es
et

(u
 :

G
4d

ou
bl

e)
 :

vo
id

R
es

et
(p

 :
co

ns
t G

4P
oi

nt
3D

&
)

: v
oi

d
R

es
et

(u
 :

G
4d

ou
bl

e,
 p

 :
co

ns
t G

4P
oi

nt
3D

&
)

: v
oi

d
G

et
P

P
oi

nt
()

 :
G

4d
ou

bl
e

G
et

P
oi

nt
()

 :
co

ns
t G

4P
oi

nt
3D

&
Is

C
om

pu
te

d(
)

: G
4i

nt

1

1

1
1

1
G

4R
ay

1

G
4C

ur
ve

R
ay

In
te

rs
ec

tio
n

d
: G

4d
ou

bl
e

G
4C

ur
ve

R
ay

In
te

rs
ec

tio
n(

c
: G

4C
ur

ve
&

, r
 :

co
ns

t G
4R

ay
&

)
: G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n
In

it(
c

: G
4C

ur
ve

&
, r

 :
co

ns
t G

4R
ay

&
)

: v
oi

d
R

es
et

()
 :

vo
id

R
es

et
P

P
oi

nt
(u

 :
G

4d
ou

bl
e)

 :
vo

id
R

es
et

(P
 :

co
ns

t G
4P

oi
nt

3D
&

)
: v

oi
d

R
es

et
(u

 :
G

4d
ou

bl
e,

 p
 :

co
ns

t G
4P

oi
nt

3D
&

)
: v

oi
d

R
es

et
D

is
ta

nc
e(

d
: G

4d
ou

bl
e)

 :
vo

id
R

es
et

(u
 :

G
4d

ou
bl

e,
 d

 :
G

4d
ou

bl
e)

 :
vo

id
R

es
et

(p
 :

co
ns

t G
4P

oi
nt

3D
&

, d
 :

G
4d

ou
bl

e)
 :

vo
id

R
es

et
(u

 :
G

4d
ou

bl
e,

 p
 :

co
ns

t G
4P

oi
nt

3D
&

, d
 :

G
4d

ou
bl

e)
 :

vo
id

G
et

D
is

ta
nc

e(
)

: G
4d

ou
bl

e
U

pd
at

e(
is

 :
G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: v
oi

d
U

pd
at

eW
ith

P
oi

nt
O

nC
ur

ve
(is

 :
G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: v
oi

d

1
1

Figure B.2: Classes managing the two representations of a point on a curve
and the three representations of a curve { ray intersection point.

IV

+
m

ax

1
1

+
m

in
1

G
4P

oi
nt

3D

1

G
4B

ou
nd

in
gB

ox
3D

G
4B

ou
nd

in
gB

ox
3D

()
 :

G
4B

ou
nd

in
gB

ox
3D

G
4B

ou
nd

in
gB

ox
3D

(
: c

on
st

 H
ep

P
oi

nt
3D

&
)

: G
4B

ou
nd

in
gB

ox
3D

G
4B

ou
nd

in
gB

ox
3D

(
: c

on
st

 H
ep

P
oi

nt
3D

&
,

: c
on

st
 H

ep
P

oi
nt

3D
&

)
: G

4B
ou

nd
in

gB
ox

3D
In

it(
 :

co
ns

t H
ep

P
oi

nt
3D

&
)

: v
oi

d
In

it(
 :

co
ns

t H
ep

P
oi

nt
3D

&
,

: c
on

st
 H

ep
P

oi
nt

3D
&

)
: v

oi
d

~
G

4B
ou

nd
in

gB
ox

3D
()

E
xt

en
d(

 :
co

ns
t H

ep
P

oi
nt

3D
&

)
: v

oi
d

G
et

M
in

()
 :

H
ep

P
oi

nt
3D

G
et

M
ax

()
 :

H
ep

P
oi

nt
3D

E
xt

en
d(

 :
co

ns
t G

4B
ou

nd
in

gB
ox

3D
&

)
: v

oi
d

1
1

1

1

Figure B.3: Class storing a bounding box.

V

G4Curve

1
G4Axis2Placement3D

1

G4Conic
pShift : G4double = 0

G4Conic() : G4Conic
~G4Conic()
GetPosition() : const G4Axis2Placement3D&
GetPShift() : G4double
SetPShift(shift : G4double) : void

11

Figure B.4: Base class for conics.

VI

G
4C

irc
le

G
4E

lli
ps

e
G

4P
ar

ab
ol

aG
4H

yp
er

bo
la

1
G

4S
ur

fa
ce

0.
.*

G
4P

C
ur

ve

10.
.*

0.
.*

G
4C

ur
ve

1.
.*

G
4C

om
po

si
te

C
ur

ve

0.
.*

1.
.*

1
G

4P
oi

nt
3D

1

G
4B

S
pl

in
eC

ur
ve

11

1

G
4P

oi
nt

3D
1

1
G

4V
ec

to
r3

D
1

G
4L

in
e

1
1

1
1

1
G

4V
er

te
xL

oo
p

1
G

4P
oi

nt
3D

1
1

1
1

G
4A

xi
s2

P
la

ce
m

en
t3

D

0.
.*G

4D
eg

en
er

at
eC

on
ic

2D

1
G

4C
on

ic

1
1

0.
.*

1

Figure B.5: The inheritance tree of curve classes.

VII

G
4S

ur
fa

ce

G
et

P
oi

nt
(u

 :
G

4d
ou

bl
e,

 v
 :

G
4d

ou
bl

e)
 :

G
4P

oi
nt

3D
G

et
P

P
oi

nt
(p

 :
co

ns
t G

4P
oi

nt
3D

&
)

: G
4P

oi
nt

2D
N

or
m

al
(p

 :
co

ns
t G

4P
oi

nt
3D

&
)

: G
4V

ec
to

r3
D

In
te

rs
ec

t(
r

: c
on

st
 G

4R
ay

&
)

: G
4d

ou
bl

e
B

B
ox

()
 :

G
4B

ou
nd

in
gB

ox
3D

G
4L

in
e

1
1

G
4V

ec
to

r3
D

1
1

G
4S

ur
fa

ce
O

fR
ev

ol
ut

io
n

In
it(

sw
ep

tC
ur

ve
 :

G
4C

ur
ve

&
, a

xi
sP

os
iti

on
 :

G
4L

in
e&

)
: v

oi
d

1
1

1
G

4C
ur

ve
1

G
4S

ur
fa

ce
O

fL
in

ea
rE

xt
ru

si
on

In
it(

sw
ep

t_
cu

rv
e

: G
4C

ur
ve

&
, e

xt
ru

si
on

_a
xi

s
: c

on
st

 G
4V

ec
to

r3
D

&
)

: v
oi

d
1

1

11

Figure B.6: Swept surfaces with the most important operations.

VIII

+
cr

ea
te

s

G
4C

ur
ve

P
ro

je
ct

(t
r

: c
on

st
 G

4T
ra

ns
fo

rm
3D

&
 =

 G
4T

ra
ns

fo
rm

3D
::I

de
nt

ity
)

: G
4C

ur
ve

*
In

te
rs

ec
tR

ay
2D

(r
ay

 :
co

ns
t G

4R
ay

&
, i

s
: G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: v
oi

d
T

an
ge

nt
(p

t :
 G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: G
4V

ec
to

r3
D

P
ro

je
ct

C
yl

in
dr

ic
al

(t
r

: c
on

st
 G

4T
ra

ns
fo

rm
3D

&
 =

 G
4T

ra
ns

fo
rm

3D
::I

de
nt

ity
)

: G
4C

yl
in

dr
ic

al
P

ro
je

ct
io

n*

G
4C

yl
in

dr
ic

al
P

ro
je

ct
io

n

In
te

rs
ec

tR
ay

(r
ay

 :
co

ns
t G

4R
ay

&
, i

s
: G

4C
ur

ve
R

ay
In

te
rs

ec
tio

n&
)

: v
oi

d
La

st
T

an
ge

nt
()

 :
G

4V
ec

to
r3

D

G
4S

ur
fa

ce
O

fR
ev

ol
ut

io
n

11

1
1

1

1
1

1

Figure B.7: Projection, 2D intersection and tangent calculation of a surface
of revolution.

IX

Appendix C

STEP class diagrams

The class diagrams present the important geometric and topological entities
in [STEP203]. They were reverse engineered from the C++ translation of
the original EXPRESS speci�cation. Only generalisation relationships are
shown. It is interesting to compare these diagrams with the ones in Chapter
B.

X

S
T

E
P

2
03

ge
om

et
ric

_
re

pr
es

en
ta

tio
n_

ite
m

cu
rv

e
su

rf
ac

e

to
po

lo
gi

ca
l_

re
pr

es
en

ta
tio

n_
ite

m

ba
si

c
st

ep
_e

nt
ity

sh
ap

e_
re

pr
es

en
ta

tio
n

da
te

as
se

m
bl

y_
co

m
po

ne
nt

_u
sa

ge

Figure C.1: Structure of application protocol Con�guration Controlled De-
sign.

XI

S
da

iG
eo

m
et

ric
_r

ep
re

se
nt

at
io

n_
ite

m

S
da

iR
ep

re
se

nt
at

io
n_

ite
m

(f
ro

m
 s

te
p_

en
tit

y)S
da

iS
ol

id
_m

od
el

S
da

iS
ur

fa
ce

(f
ro

m
 s

ur
fa

ce
)

S
da

iC
ur

ve

(f
ro

m
 c

ur
ve

)

S
da

iD
ire

ct
io

n

S
da

iP
oi

nt

S
da

iE
dg

e_
ba

se
d_

w
ire

fr
am

e_
m

od
el

S
da

iC
ar

te
si

an
_t

ra
ns

fo
rm

at
io

n_
op

er
at

or

S
da

iP
la

ce
m

en
t

S
da

iS
he

ll_
ba

se
d_

su
rf

ac
e_

m
od

el

S
da

iV
ec

to
r

S
da

iS
he

ll_
ba

se
d_

w
ire

fr
am

e_
m

od
el

S
da

iG
eo

m
et

ric
_

se
t

S
da

iG
eo

m
et

ric
_c

ur
ve

_
se

t

S
da

iC
ar

te
si

an
_t

ra
ns

fo
rm

at
io

n_
op

er
at

or
_2

d

S
da

iC
ar

te
si

an
_t

ra
ns

fo
rm

at
io

n_
op

er
at

or
_3

d

S
da

iC
ar

te
si

an
_p

oi
nt

S
da

iP
oi

nt
_o

n_
su

rf
ac

e

S
da

iP
oi

nt
_o

n_
cu

rv
e

S
da

iP
oi

nt
_r

ep
lic

a

S
da

iD
eg

en
er

at
e_

pc
ur

ve
S

da
iE

va
lu

at
ed

_d
eg

en
er

at
e_

pc
ur

ve

S
da

iM
an

ifo
ld

_s
ol

id
_

br
epS
da

iB
re

p_
w

ith
_v

oi
ds

S
da

iF
ac

et
ed

_b
re

p

S
da

iA
xi

s2
_

pl
ac

em
en

t_
2d

S
da

iA
xi

s1
_p

la
ce

m
en

t

S
da

iA
xi

s2
_

pl
ac

em
en

t_
3d

Figure C.2: Geometric entities.

XII

S
da

iC
ur

ve
S

da
iB

ou
nd

ed
_

cu
rv

e

S
da

iC
on

ic

S
da

iO
ffs

et
_

cu
rv

e_
3d

S
da

iC
ur

ve
_r

ep
lic

aS
da

iS
ur

fa
ce

_
cu

rv
e

S
da

iL
in

e

S
da

iP
cu

rv
e

S
da

iO
ffs

et
_

cu
rv

e_
2d

S
da

iC
om

po
si

te
_

cu
rv

e

S
da

iP
ol

yl
in

e

S
da

iB
_s

pl
in

e_
cu

rv
e

S
da

iT
rim

m
ed

_
cu

rv
e

S
da

iH
yp

er
bo

la

S
da

iP
ar

ab
ol

a

S
da

iE
lli

ps
e

S
da

iC
irc

le

S
da

iIn
te

rs
ec

tio
n_

cu
rv

e

S
da

iS
ea

m
_c

ur
ve

S
da

iC
om

po
si

te
_c

ur
ve

_o
n_

su
rf

ac
e

S
da

iR
at

io
na

l_
b_

sp
lin

e_
cu

rv
e

S
da

iQ
ua

si
_u

ni
fo

rm
_

cu
rv

e

S
da

iU
ni

fo
rm

_c
ur

ve
S

da
iB

ez
ie

r_
cu

rv
e

S
da

iB
_s

pl
in

e_
cu

rv
e_

w
ith

_
kn

ot
s

S
da

iB
ou

nd
ar

y_
cu

rv
e

S
da

iO
ut

er
_b

ou
nd

ar
y_

cu
rv

e

S
da

iG
eo

m
et

ric
_r

ep
re

se
nt

at
io

n_
ite

m

(f
ro

m
 g

eo
m

et
ric

_
re

pr
es

en
ta

tio
n_

ite
m

)

Figure C.3: Curves.

XIII

S
da

iS
ur

fa
ce

S
da

iB
ou

nd
ed

_
su

rf
ac

e

S
da

iO
ffs

et
_

su
rf

ac
e

S
da

iE
le

m
en

ta
ry

_
su

rf
ac

e

S
da

iS
w

ep
t_

su
rf

ac
e

S
da

iS
ur

fa
ce

_
re

pl
ic

a

S
da

iR
ec

ta
ng

ul
ar

_c
om

po
si

te
_

su
rf

ac
e

S
da

iB
_s

pl
in

e_
su

rf
ac

e

S
da

iR
ec

ta
ng

ul
ar

_t
rim

m
ed

_
su

rf
ac

e

S
da

iC
ur

ve
_b

ou
nd

ed
_

su
rf

ac
e

S
da

iS
ph

er
ic

al
_

su
rf

ac
e

S
da

iT
or

oi
da

l_
su

rf
ac

e

S
da

iP
la

ne

S
da

iC
yl

in
dr

ic
al

_
su

rf
ac

e
S

da
iC

on
ic

al
_

su
rf

ac
e

S
da

iS
ur

fa
ce

_o
f_

lin
ea

r_
ex

tr
us

io
n

S
da

iS
ur

fa
ce

_o
f_

re
vo

lu
tio

n
S

da
iU

ni
fo

rm
_

su
rf

ac
e

S
da

iQ
ua

si
_u

ni
fo

rm
_

su
rf

ac
e

S
da

iB
ez

ie
r_

su
rf

ac
e

S
da

iR
at

io
na

l_
b_

sp
lin

e_
su

rf
ac

e

S
da

iB
_s

pl
in

e_
su

rf
ac

e_
w

ith
_k

no
ts

S
da

iG
eo

m
et

ric
_r

ep
re

se
nt

at
io

n_
ite

m

(f
ro

m
 g

eo
m

et
ric

_
re

pr
es

en
ta

tio
n_

ite
m

)

Figure C.4: Surfaces.

XIV

S
da

iT
op

ol
og

ic
al

_r
ep

re
se

nt
at

io
n_

ite
m

S
da

iP
at

h
S

da
iC

on
ne

ct
ed

_f
ac

e_
se

t

S
da

iL
oo

p

S
da

iV
er

te
x

S
da

iF
ac

e

S
da

iC
on

ne
ct

ed
_e

dg
e_

se
t

S
da

iW
ire

_s
he

ll

S
da

iF
ac

e_
bo

un
d

S
da

iE
dg

e

S
da

iV
er

te
x_

sh
el

l

S
da

iO
rie

nt
ed

_p
at

h

S
da

iO
pe

n_
sh

el
l

S
da

iC
lo

se
d_

sh
el

l

S
da

iE
dg

e_
lo

op

S
da

iP
ol

y_
lo

op

S
da

iV
er

te
x_

lo
op

S
da

iV
er

te
x_

po
in

t

S
da

iF
ac

e_
su

rf
ac

e

S
da

iO
rie

nt
ed

_f
ac

e

S
da

iF
ac

e_
ou

te
r_

bo
un

d

S
da

iO
rie

nt
ed

_e
dg

e
S

da
iE

dg
e_

cu
rv

e

S
da

iO
rie

nt
ed

_o
pe

n_
sh

el
l

S
da

iO
rie

nt
ed

_c
lo

se
d_

sh
el

l

S
da

iA
dv

an
ce

d_
fa

ce

S
da

iR
ep

re
se

nt
at

io
n_

ite
m

(f
ro

m
 s

te
p_

en
tit

y)

Figure C.5: Topological entities.

XV

S
da

iS
ha

pe
_

re
pr

es
en

ta
tio

n

S
da

iM
an

ifo
ld

_s
ur

fa
ce

_s
ha

pe
_

re
pr

es
en

ta
tio

n

S
da

iG
eo

m
et

ric
al

ly
_b

ou
nd

ed
_s

ur
fa

ce
_s

ha
pe

_
re

pr
es

en
ta

tio
n

S
da

iA
dv

an
ce

d_
br

ep
_s

ha
pe

_
re

pr
es

en
ta

tio
n

S
da

iE
dg

e_
ba

se
d_

w
ire

fr
am

e_
sh

ap
e_

re
pr

es
en

ta
tio

n

S
da

iG
eo

m
et

ric
al

ly
_b

ou
nd

ed
_w

ire
fr

am
e_

sh
ap

e_
re

pr
es

en
ta

tio
n

S
da

iF
ac

et
ed

_b
re

p_
sh

ap
e_

re
pr

es
en

ta
tio

n

S
da

iS
he

ll_
ba

se
d_

w
ire

fr
am

e_
sh

ap
e_

re
pr

es
en

ta
tio

n

S
da

i
R

ep
re

se
nt

at
io

n

Figure C.6: Possible shape representations.

XVI

Bibliography

[AGGon] John Apostolakis, Simone Giani, and Vladimir Grichine. Parti-
cle propagation in a magnetic �eld in Geant4. Geant4 work-
ing note, in preparation.

[App93] Application Software Group, IT Division, CERN, Geneva,
Switzerland. GEANT { Detector Description and Simula-

tion Tool, CERN Program Library Long Writeup W5013, 1993.
See the URL http://wwwcn.cern.ch/asdoc/geant html3/-

geantall.html.

[BBB87] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An

Introduction to Splines for Computer Graphics and Geometric

Modeling. Morgan Kaufmann, Los Altos, California, 1987. Some
basic techniques on ray tracing splines (see Sweeney).

[BK85] Willem F. Bronsvoort and Fopke Klok. Ray tracing general-
ized cylinders. ACM Transactions on Graphics, 4(4):291{303,
October 1985. See corrigendum [BK87].

[BK87] Willem F. Bronsvoort and Fopke Klok. Corrigendum: \Ray
Tracing Generalized Cylinders". ACM Transactions on Graph-

ics, 6(3):238{239, July 1987. See [BK85].

[Boo93] G. Booch. Object-Oriented Analysis and Design with Applica-

tions, Second Edition. Benjamin/Cummings, 1993.

[Far93] Gerald Farin. Curves and Surfaces for Computer Aided Geomet-

ric Design. Academic Press, Boston, 3. edition, 1993.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice. Addison-
Wesley Publishing Co., Reading, MA, 2nd edition, 1990. Inside
{ outside algorithms on pp. 964{965.

XVII

[G+95] Simone Giani et al. Geant4: Simulation for the next gener-
ation of HEP experiments. In Proceedings of the International

Conference on Computing in High Energy Physics (CHEP), Rio
de Janeiro, Brazil, 1995. See the URL http://www.hep.net/-

conferences/chep95/html/abstract/abs 8.htm.

[G+97a] Simone Giani et al. Geant4: A world-wide collaboration
to build object oriented hep simulation software. In Proceed-

ings of the International Conference on Computing in High En-

ergy Physics (CHEP), Berlin, Germany, 1997. See the URL
http://www.ifh.de/CHEP97/pae sess.htm#E3.

[G+97b] Simone Giani et al. Geant4: An object-oriented toolkit for
simulation in HEP. Status report, CERN, Geneva, Switzerland,
1997.

[Gla89] Andrew S. Glassner, editor. An Introduction to Ray Tracing.
Academic Press, 1989.

[Kaj83] J. T. Kajiya. New techniques for ray tracing procedurally de�ned
objects. In Computer Graphics (SIGGRAPH '83 Proceedings),
volume 17/3, pages 91{102, July 1983.

[Ken95a] Paul Kent. Minimising precision problems inGeant4 geometry.
Geant4 working note, 1995.

[Ken95b] Paul Kent. Pure tracking and geometry in Geant4. Geant4
working note, 1995.

[Lib93] Don Libes. The NIST EXPRESS toolkit | design and imple-
mentation. In Proceedings of the Seventh Annual ASME En-

gineering Database Symposium, San Diego, California, August
9-11 1993.

[MD94] Dinesh Manocha and James Demmel. Algorithms for intersect-
ing parametric and algebraic curves I: Simple intersections. ACM
Transactions on Graphics, 13(1):73{99, January 1994. ISSN
0730-0301.

[NSK90] Tomoyuki Nishita, Thomas W. Sederberg, and Masanori Kaki-
moto. Ray tracing trimmed rational surface patches. Computer

Graphics, 24(4):337{345, August 1990.

[PP86] Michael A. Penna and Richard R. Patterson. Projective Geom-

etry and its Applications to Computer Graphics. Prentice-Hall,
Englewood Cli�s, NJ 07632, USA, 1986.

XVIII

[PT89] Leslie Piegl and Wayne Tiller. A menagerie of rational B-spline
circles. IEEE Computer Graphics and Applications, 9(5):48{56,
September 1989.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C: The Art of Scienti�c

Computing (2nd ed.). Cambridge University Press, Cambridge,
1992. ISBN 0-521-43108-5.

[RHD89] Alyn Rockwood, Kurt Heaton, and Tom Davis. Real-time ren-
dering of trimmed surfaces. Computer Graphics, 23(3):107{116,
July 1989.

[STEP1] ISO 10303-1. Overview and fundamental principles. In Industrial
automation systems and integration { Product data representa-

tion and exchange. ISO TC 184/SC4, 1992.

[STEP11] ISO 10303-11. Description methods: The EXPRESS language
reference manual. In Industrial automation systems and inte-

gration { Product data representation and exchange. ISO TC
184/SC4, 1992.

[STEP42] ISO 10303-42. Integrated generic resources: Geometric and topo-
logical representation. In Industrial automation systems and in-

tegration { Product data representation and exchange. ISO TC
184/SC4, 1992.

[STEP43] ISO 10303-43. Integrated generic resources: Representation
structures. In Industrial automation systems and integration {

Product data representation and exchange. ISO TC 184/SC4,
1992.

[STEP203] ISO 10303-203. Application protocol: Con�guration controlled
design. In Industrial automation systems and integration { Prod-

uct data representation and exchange. ISO TC 184/SC4, 1992.

[STEP214] ISO 10303-214. Application protocol: Core data for auto-
motive mechanical design processes. In Industrial automa-

tion systems and integration { Product data representation

and exchange. ISO TC 184/SC4, 1997. Draft. See the URL
http://www.nist.gov/sc4/step/parts/part214/current/.

[Sul95] Jari Sulkimo. Modelling physics detectors for simulation pur-
poses using boundary representation. Master's thesis, Depart-

XIX

ment of Computer Science, University of Tampere, Finland,
1995.

[UML] The Uni�ed Modeling Language WWW site.
http://www.rational.com/uml.

[Vuo96] Jouko Vuoskoski. Exchange of Product Data between CAD Sys-

tems and a Physics Simulation Program. PhD thesis, Tampere
University of Technology, Finland, 1996.

[vW84] Jarke J. van Wijk. Ray tracing objects de�ned by sweeping
planar cubic splines. ACM Transactions on Graphics, 3(3):223{
237, July 1984.

[WNDO97] Mason Woo, Jackie Neider, Tom Davis, and OpenGL Architec-
ture Review Board. OpenGL programming guide: the o�cial

guide to learning OpenGL, version 1.1. Addison-Wesley, Read-
ing, MA, USA, 1997.

XX

