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Abstract

We test the positivity property of the chiral perturbation theory

(ChPT) pion-pion scattering amplitudes within the Mandelstam trian-

gle. In the one-loop approximation, O(p4), the positivity constrains

only the coe�cients b3 and b4, namely one obtains that b4 and the

linear combination b3 + 3b4 are positive quantities. The two-loops

approximation gives inequalities involving all the six arbitrary param-

eters entering ChPT amplitude, but the corrections to the one-loop

approximation results are small. ChPT amplitudes pass unexpect-

edly well all the positivity tests giving strong support to the idea that

ChPT is the good theory of the low energy pion-pion scattering.

PACS: 13.75.Lb, 12.39.Fe, 11.55.Fv, 11.30.Rd

Key-words: Pion-Pion Scattering, Chiral Perturbation Theory, Pos-

itivity Constraints

1 Introduction

Chiral perturbation theory (ChPT) is considered a low-energy e�ective ap-

proximation of QCD, in particular it provides a representation of the elastic

pion-pion scattering amplitudes that is crossing symmetric and has good

analyticity properties. In a seminal paper[1] Gasser and Leutwyler devel-

oped ChPT which allows one to compute many Green functions involving
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low-energy pions. It is well known that the physical pion-pion scattering am-

plitudes can be expressed in terms of a single function A(s; t; u) whose form

was obtained as a series expansion in powers of the external momenta and of

the light quark masses. The �rst term of the series was given by Weinberg

[2], the second by Gasser and Leutwyler [1] and only recently a two-loop

calculation[3, 4] was obtained. In this approximation the function A(s; t; u)

has the following form

A(s; t; u) = a(s� 1) + a2
h
b1 + b2s+ b3s

2 + b4(t� u)2
i
+

a2
h
F (1)(s) +G(1)(s; t) +G(1)(s; u)

i
+ a3

h
b5s

3 + b6s(t� u)2
i
+ (1:1)

a3
h
F (2)(s) +G(2)(s; t) +G(2)(s; u)

i
+O(a4)

where a = (M�=F�)
2, M� is the mass of the physical pion, F� the pion decay

constant, s; t; u are the usual Mandelstam variables, expressed in units of the

physical pion mass squared M2

�

s = (p1 + p2)
2=M2

�
; t = (p1 � p2)

2=M2

�
; u = (p1 � p3)

2=M2

�
;

F (i)(s) and G(i)(s; t) are known functions and bi; i = 1; : : : ; 6 are arbitrary

parameters which cannot be determined by ChPT [1, 3, 4]. In any realistic

comparison with experiment we have to provide some numerical values for

all these parameters obtained from other sources. One hopes that by using

unitarity this can be done although, until now, no program for implementing

this property has been presented. The common belief is that imposing uni-

tarity is not a simple matter since its implementation in one channel destroys

crossing symmetry in other channels. However there is a weak form of uni-

tarity, the positivity of the absorptive parts, which is a linear property and

which can be imposed. This property was used thirty years ago to obtain

constraints on the �0�0 s-wave partial amplitude, f0(s), in the unphysical re-

gion 0 < s < 4 and on the d-wave scattering lengths. These constraints were

useful because at that time almost nothing was known about the explicit form

of the scattering amplitudes and they were used in testing models for pion-

pion partial-wave amplitudes. The advantage of ChPT is that it furnishes an

explicit form for the pion-pion scattering amplitudes whose unknown part is

contained in a few numerical coe�cients. Thus is of certain interest to see

how these properties reect into constraints on the bi coe�cients entering

Eq.(1.1).
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Beginning with the paper [5], Martin has used the positivity, analyticity

and crossing symmetry to obtain constraints on the �0�0 s-wave partial am-

plitude, f0(s), in the unphysical region 0 < s < 4; a few of them have the

following form [6]

f0(4) > f0(0) > f0(3:15) f0(0) >
1

2

Z
4

2

f0(s) ds

F (0; 2(1 +
1p
3
)) > f0(2(1 +

1p
3
)) (1:2)

where F (s; t) denotes the �0�0 elastic scattering amplitude. A more complete

set is found in ref. [7]. The most elaborate form of these constraints is the

following result: the �0�0 s-wave, f0(s), has a minimum located between

1:218989 < s < 1:696587 [6, 7, 8, 9, 10, 11, 12] and this result can be

improved only by unitarity. These results can be translated into constraints

on the parameters bi entering ChPT pion-pion scattering amplitudes. As

we will see later all the above inequalities are equivalent in the one-loop

approximation, O(p4), to a single constraint on the coe�cients bi whose

typical form is

b3 + 3b4 �
37

1920�2

the only di�erence being the numerical value appearing on the right hand

side. This is the explanation of the ine�cacy of these apparently distinct

constraints which was observed from the beginning by people constructing

models for pion-pion partial-waves.

In this paper we work only in the unphysical region js; t; uj < 4, i.e. there

where the amplitude (1.1) is considered to be a very good approximation

to the true amplitude. Other approaches use information from the physical

region to obtain constraints on the same parameters bi [13, 14, 15]. In the

one-loop approximation, O(p4), the positivity property constrains only the

coe�cients b3 and b4. By taking into account the O(p6) contributions one
gets constraints involving all the six parameters entering Eq.(1.1).

By using the unitarity bounds on �0�0 scattering amplitude in the un-

physical region [16] one get upper and lower bounds on some linear combina-

tions of the parameters bi. These unitarity bounds are not very constraining;

to see this we give that one obtained from the bound on F (2; 0), where as

above F (s; t) denotes the �0�0 amplitude. The bound is�3:5 � F (2; 0) � 2:9
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and it is equivalent to the following lower and upper bounds

�3:5� 32� � a+ a2
�
3b1 + 4b2 + 8b3 + 8b4 +

9

32�2

�
+ a3 [16b5 + 16b6+

(4� �)

�2

 
5b1

16
+

b2

2
+
11b3

12
+
5b4

12

!
+

965

3456�4
� 251

3456�3
+

41

6144�2

#
� 2:9�32�

Because of the factor 32� appearing on left and right hand side the bounds

are not very strong and we will not consider them here.

The physical isospin amplitudes F I can be expressed in terms of the single

function A(s; t; u) as follows

F 0(s; t; u) = 3A(s; t; u) + A(t; u; s) + A(u; s; t)

F 1(s; t; u) = A(t; u; s)� A(u; s; t)

F 2(s; t; u) = A(t; u; s) + A(u; s; t)

where A(s; t; u) is given by Eq.(1.1).

Having only three independent amplitudes one gets only three indepen-

dent constraints since the crossing symmetry is an exact symmetry for the

ChPT amplitudes. The construction of our positivity constraints is outlined

in the next Section where we present an over-determined system of con-

straints. Their implications on the coe�cients bi are discussed in Section III.

The paper ends with Conclusion.

2 Positivity constraints

Let F I(s; t) denote the �� scattering amplitude with isotopic spin I in the

s channel. In matrix notation F(s; t) satis�es the following crossing relation

[17]

F(s; t) = CstF(t; s) = CsuF(u; t)

where the notations are

F(s; t) =

0
B@

F 0(s; t)

F 1(s; t)

F 2(s; t)

1
CA
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Cst =

0
B@

1=3 1 5=3

1=3 1=2 �5=6
1=3 �1=2 1=6

1
CA ; Csu =

0
B@

1=3 �1 5=3

�1=3 1=2 5=6

1=3 1=2 1=6

1
CA

From the results of axiomatic �eld theory we know that the amplitudes

F I(s; t) satisfy �xed-t dispersion relations with two subtractions [18] for

jtj < 4. We may write them as

F(s; t) = Cst[a(t) + (s� u)b(t)] +
1

�

Z
1

4

d x

x2

 
s2

x� s
+

u2

x� u
Csu

!
A(x; t)

(2:1)

where A(x; t) is the absorptive part of F(s; t) and the subtraction constants

are of the form

a(t) =

0
B@

a0(t)

0

a2(t)

1
CA b(t) =

0
B@

0

b1(t)

0

1
CA

due to crossing symmetry.

In the following we shall consider that s; t; u take values in the unphysical

region js; t; uj < 4. We calculate the di�erence

F(s; t)� F(s1; t)

and we are looking for those combinations of isospin amplitudes for which

this di�erence does not depend on the subtraction constants. From Eq.(2.1)

we �nd
1

s� s1
(F(s; t)� F(s1; t)) = 2Cst b(t) + f(A) (2:2)

where f(A) denotes the complicated term containing the integration over the

absorptive parts. The �rst term on the right hand side of Eq.(2.2) is

Cst b(t) =

0
B@

b(t)
1

2
b(t)

�1

2
b(t)

1
CA

The last relation shows that there are three combinations of isospin am-

plitudes for which the di�erence (2.2) have no dependence on the subtraction
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constants. They are F 0 + 2F 2, F 1 + F 2 and F 0 � 2F 1 and we shall denote

them as Fi, i = 1; 2; 3 in this order. The �rst one is the well known �0�0

elastic amplitude. One easily obtains from Eq.(2.2) the relation

Fi(s; t)� Fi(s1; t) =
(s� s1)(s� u1)

�

Z
1

4

(2x + t� 4)Ai(x; t) dx

(x� s)(x� s1)(x� u)(x� u1)

i = 1; 2; 3. From this relation we get

@Fi(s; t)

@s
=

s� u

�

Z
1

4

(2x+ t� 4)Ai(x; t) dx

(x� s)2(x� u)2

Because the absorptive parts A1 and A2 are positive we �nd that

1

s� u

@Fi(s; t)

@s
� 0 i = 1; 2

The third combination involves the absorptive parts A0(x; t) � 2A1(x; t)

whose sign is not de�ned and we cannot say anything about the sign of

the derivatives of F3(s; t). The precedent relations show us that on the line

s = u; Fi(s; t); i = 1; 2 attain their minimum values. Indeed we obtain from

them the second derivatives

@2Fi(s; t)

@s2
=

2

�

Z
1

4

 
1

(x� s)3
+

1

(x� u)3

!
Ai(x; t) dx � 0; i = 1; 2 (2:3)

which are positive de�nite, implying that the functions Fi(s; t) have a mini-

mum on the line s = u. From the last relation we obtain also

@2n�1Fi(s; t)

@s2n�1
=

(2n� 1)!

�

Z
1

4

 
1

(x� s)2n
� 1

(x� u)2n

!
Ai(x; t) dx =

(2n� 1)! (s� u)

�

Z
1

4

[(x� s)n + (x� u)n]

"
(x� s)n�1 + (x� s)n�2(x� u) + : : : (x� u)n�1

(x� s)2n(x� u)2n

#
Ai(x; t) dx

In this way we obtain the set of positivity constraints

1

s� u

@2n�1Fi(s; t)

@s2n�1
� 0 and

@2nFi(s; t)

@s2n
� 0 (2:4)
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i = 1; 2; n = 1; 2; : : :

A �rst remark is the following, if the positivity constraints have to be

ful�lled it is su�cient to test them only on the line s = u, i.e. 2s+ t� 4 = 0,

where the functions Fi(s; t) attain their minimum values. In this way we

have only one free parameter, 0 < jsj < 4, and on this line the odd and even

derivatives give the same information. From the point of view of computation

it is simpler to work with even derivatives.

Up to now we have obtained two constraints given by Eq.(2.3). Because

we have three independent isospin amplitudes it follows that we can obtain

another one at most.

The positivity constraints can be imposed even on the isospin amplitudes

themselves. This can be easily seen from the relation (2.1) for F 2(s; t) which

after derivation gives

@2F 2(s; t)

@s2
=

2

�

Z
1

4

dx

" 
1

(x� s)3
+
1

6

1

(x� u)3

!
A2(x; t)+

1

3

1

(x� u)3
A0(x; t) +

1

2

1

(x� u)3
A1(x; t)

#

The right hand side of the previous relation is a positive quantity and by

iteration we obtain that

@2nF 2(s; t)

@s2n
� 0 n = 1; 2; : : : (2:5)

Unfortunately the numerical calculations show that this relation is not in-

dependent of the previous two ones. An other way to obtain them is to make

use of the Gribov-Froissart representation for the partial wave amplitudes.

One writes dispersion relations for the isospin amplitudes, the subtraction

constants being given by the s- and p-wave partial amplitudes, and one �nds

F I(s; t) = f I

0
(s) +

1

�

Z
1

0

AI(x; s)g(x; s; t) dx I = 0; 2 (2:6)

where

g(x; s; t) =
1

x� t
+

1

x� u
+

2

4� s
ln(1 +

s� 4

x
)

For I = 1 we can write similarly

F 1(s; t) = 3f 1

1
(s)(1 +

2t

s� 4
) +

1

�

Z
1

0

A1(x; s)h(x; s; t) dx (2:7)
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where

h(x; s; t) =
1

x� t
� 1

x� u
+
6(2t+ s� 4)

(4� s)2

�
2x+ s� 4

4� s
ln(1 +

s� 4

x
) + 2

�

The absorptive parts entering (2.6)-(2.7) are the t-channel ones and in the

following we make use of the t ! u crossing symmetry. From the relation

(2.6) we �nd analogous formulas to (2.4), namely

1

t� u

@2n�1F I(s; t)

@t2n�1
� 0 and

@2nF I(s; t)

@t2n
� 0 (2:8)

n = 1; 2; : : : ; I = 0; 2, which are not numerically independent of the previous

ones. More interesting is the relation (2.7) which can be written as

F 1(s; t)

t� u
= cF 1(s; t) =

3f 1

1
(s)

s� 4
+

1

�

Z
1

0

A1(x; s)

"
1

(x� t)(x� u)
+

6

(4� s)2

�
2x+ s� 4

4� s
ln(1 +

s� 4

x
) + 2

�#
dx

This relation provides us with another independent relation. Because F 1(s; t)

is antisymmetric in t  ! u, cF 1(s; t) is an analytic function within the

Mandelstam triangle. Deriving it with respect of t we obtain

@cF 1(s; t)

@t
=

t� u

�

Z
1

0

A1(x; s)

(x� t)2(x� u)2
dx

From this relation we obtain similar formulas to Eq.(2.4), namely

1

t� u

@2n�1 dF I(s; t)

@t2n�1
� 0 and

@2n dF I(s; t)

@t2n
� 0 (2:9)

Finally the positivity may also be expressed as the positivity of the partial

wave amplitudes

f I

l
(s) =

1

4� s

Z
1

4

AI(x; s)Ql(
2x

4� s
� 1) dx (2:10)

for l � 2 inside the unphysical region 0 � s � 4, but the numerical calcula-

tions show that these last constraints are weaker than those derived above.
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3 Numerical Results

In the previous section we derived a complete set of positivity constraints.

In an exact theory many of them are consequence of the others as we will see

later. Because ChPT does not completely specify the amplitude and on the

other hand the power of di�erent constraints is not the same it is useful to

derive as many constraints as possible. Since all of them have to be satis�ed

we will select the strongest one in every case.

To test the method we worked �rst in the one-loop approximation, O(p4),
i.e. we retained terms up to a2 in Eq.(1.1). In this order the obtained con-

straints do not depend on the value taken by a; in the two-loop approximation

the constraints will be linear in a. We consider �rst the constraints on the

�0�0 scattering amplitude.

The �rst two constraints (1.2) on the �0�0, s-wave f0(4) > f0(0) >

f0(3:15) are equivalent to

b3 + 3b4 � �
9

1024
� 29

384�2
� �1:64� 10�2 and b3 + 3b4 � �1:47� 10�2

respectively. The third relation f0(0) >
1

2

R
4

2
f0(s) ds is equivalent to

b3 + 3b4 � �4:64� 10�4

the strongest result being the last one. Already the last relation (1.2) fur-

nishes a better result, the above combination of coe�cients gets positive

b3 + 3b4 � 7:36� 10�4

The derivative of the s-wave has the form

f 0
0
(s) =

2

3
(b3 + 3b4)(5s� 8) + h(s)

where the function h(s) has a long expression which we do not write it here.

Since 5s� 8 < 0, for s < 1:6, the upper and lower bounds on the derivative

f 0
0
(s) describing the position of the minimum are equivalent to a single lower

bound on the combination b3 + 3b4. The best result is obtained at s =

1:696587 and is

b3 + 3b4 � 6:67� 10�3
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The last result is the strongest constraint upon the combination b3 + 3b4
obtained from inequalities satis�ed by the �0�0 s-wave within the unphysical

region 0 � s � 4. We have given all the above results to understand why

these constraints were easily satis�ed by the phenomenological models for

partial-wave amplitudes constructed in the past years; satisfying a few of

them the others are automatically ful�lled.

A similar analysis with analogous results was done in ref.[19] including in

the game the s- ans d-waves.

Stronger constraints are obtained from the positivity of the second deriva-

tive of the full amplitudes. From Eq.(2.3) we �nd for i = 1, i.e. the �0�0

amplitude again, a relation of the form

b3 + 3b4 + h1(s) � 0

where h1(s) is a decreasing function for s < 4. Thus a problem arises, at

what point has to be considered the above relation. We decided to limit the

range of s within the interval jsj < 4 since we are aware that the amplitude

(1.1) is only an approximation of the true amplitude, approximation truly

not valid for values s > 16 in the physical region. s = �4 is equivalent to

t = 12 in the physical region of the t-channel. One gets

b3 + 3b4 �
37

1920�2
� 1:92� 10�3 ; for s = 0 and

b3 + 3b4 � 8:28� 10�3 for s = �4
which is stronger than the previous inequality. In the following we will list

numerical values only at s = 0, the numerical values at s = �4 being not

very di�erent although they are a little better such as the previous relations

show.

We will work now in the two-loops approximation, O(p6), and consider

only the constraints derived in Section 2 which give the strongest results.

The constraints have the form

6X
i=1

ck
i
(s; a) bi + fk(s; a) � 0

where k = 1; 2; 3 labels the independent constraints. As we said before

there are only three possible constraints from the positivity of the absorptive
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parts, because we have only three independent amplitudes and the crossing

symmetry is an exact symmetry for the ChPT amplitudes. In the previous

section we derived six constraints but only three are numerically independent.

The above inequalities are obtained for every value of s within the unphysical

region 0 � jsj � 4. Each inequality de�nes a half space where can live the

parameters bi. Thus the true result would be that obtained by constructing

the intersection of these half spaces. Unfortunately the envelope cannot be

found in an analytic form the functions fk(s; a) being very complicated.

The constraint (2.3) for i = 1 and s = 0 is equivalent to

b3 + 3b4 �
37

1920�2
+ a

"
7b1

320�2
� b2

60�2
� 2b3

45�2
+

b4

180�2
+ 16b6�

367

552960�2
+

6869

1658880�4

�
� 0 (3:1)

Making a! 0 one gets the one-loop result.

For i = 2 we �nd the relation

b4 �
31

5760�2
� a

"
b1

240�2
+

43b2

2880�2
+

b3

24�2
+

23b4

180�2
� 4b6�

67

276480�2
� 707

331776�4

�
� 0 (3:2)

The inequality (2.5) for n = 2 gives

b3 + 5 b4 �
173

5760�2
+ a

"
13 b1

960�2
� 67 b2

1440�2
� 23 b3

180�2
� b4

4�2
+ 24 b6�

11

61440�2
+

13939

1658880�4

�
� 0

and it is easily seen that it is a consequence of the previous two ones being

the sum of the �rst and of the second one multiplied by 2. The relations

(2.6)-(2.8) give us, in principle, three new inequalities, but only one will be

independent of the �rst two already obtained. For I = 0 we obtain

b3 + 7 b4 �
47

1152�2
+ a

"
b1

192�2
� 11 b2

144�2
� 19 b3

90�2
� 91 b4

180�2
+ 32 b6+

11



169

552960�2
+

7003

550960�4

�
� 0

which again is a linear combination of the �rst two ones.

For I = 1 the relation has the form

11

2688�2
+ a

"
b1

224�2
+

17b2

1344�2
� 151b3

2016�2
� 653b4

2016�2
+ b5 + b6+

37

215040�2
+

4111

290304�4

�
� 0 (3:3)

This is the third independent relation as can easily be seen because the

one-loop approximation gives a positive number independent of bi. More

important is the fact that the function f3(t; a) appearing in the relation (3.1)

in the one loop approximation is positive over (presumably) all the negative

real axis which proves that the positivity is very well satis�ed even by the

lowest approximation of the ChPT amplitudes!

For I = 2 the inequality is

b3 + b4 �
49

5760�2
+ a

"
29 b1

960�2
+

19 b2

1440�2
+

7 b3

180�2
+

47 b4

180�2
+ 8 b6�

127

110592�2
� 67

552960�4

�
� 0 (3:4)

We have written all the inequalities since they were useful in checking the

calculations.

A �rst remark is the following, the coe�cient b5 appears only in the

inequality (3.3). Thus we can say that it is unimportant and make it vanish

also in the amplitudes! It is true that the above inequalities have been

obtained by an extremal property, they are calculated on the line where the

corresponding amplitudes are taking their minimal values. This may be a

suggestion that the physical partial waves satisfy also an extremal princ iple

which has to be found. This is also supported by the �ndings of Wanders,

who could not obtain a reliable value for this parameter[15]. What the above

results suggest is that a good determination of b5 can be obtained only from

I = 1 data.

We have tested how the parameters bi found in literature compare with

the inequalities. Unfortunately there are only two papers that gives values for

all bi [14, 20]. The values given by Bijnens et al. are in the domain allowed by

12



Eqs.(3.1 )-(3.4), but the values obtained by Ananthanaryan strongly violate

the inequality (3.4), the previous ones being satis�ed. The values obtained by

Knecht et al.[3] for the last four parameters can be used to obtain constraints

on the b1 an d b2 but the allowed domain is rather large; the same is true for

the values given by Wanders[15].

Using Roy equation analysis of the available �� phase shift data Anan-

thanaryan and B�uttiker[21] obtained values for the chiral coupling constants

l1; l2 but their results are not easily translated into constrain ts on the bi
coe�cients We have tested also the inequalities (2.4), (2.8), (2.9) and (2.10)

for a few values n � 3 and l � 2 respectively and we found that they are

very well ful�lled.

4 Conclusion

We have tested the positivity properties of the ChPT pion-pion amplitudes

and we have obtained a number of inequalities which express this property.

We conclude that the pion-pion amplitudes given by the relation (1.1) satisfy

this property unexpectedly well. In the O(p4) approximation the positivity

implies two constraints: b4 is a positive quantity and so is the combination

b3 + 3b4. As concerns the positivity of the I = 1 amplitude this was tested

numerically up to t = �105 where the derivative is still positive. Including
O(p6) contributions one get constraints involving all the six parameters bi,

but the corrections to the O(p4) results are small which support the idea

that the expansion (1.1) is the best candidate for the true amplitude. It

might seem surprising but we consider that the main result of this study

is the conclusion that the most important parameters to be determined are

b3 and b4. This is a consequence of the good properties near threshold of

the Weinberg approximation together with the very powerful property of

positivity of the scattering amplitudes. Let us remind that this property

was essential in deriving the analyticity domain of pion-pion amplitudes [22].

This means that the amplitude (1.1) in which all but b3; b4 are zero will give

a fair description of the low energy phenomenology up to about 6-700 MeV

and the contribution of the other coe�cients will be seen at higher energies.

In conclusion a good determination of the above two parameters will be a

good starting point in the comparison of the theory with experiment. Work

on this line is in progress.
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