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1. Introduction

The interpretation [1] of the dimensional reductions of ten-dimensional supersym-

metric Yang–Mills (SYM) theory as effective theories for the dynamics of p-dimensional

extended objects (Dp-branes) initiated a new wave of interest in these theories. It culmi-

nated in the BFSS conjecture [2] that a system of interacting D0-branes, described by the

D = 10 SYM theory reduced to one dimension, provides, in the large N limit, a construc-

tive definition of M-theory, the hypothetical theory encompassing all known string theories

and eleven-dimensional supergravity. It also led to Matrix string theory [3,4,5], which de-

scribes non-perturbatively type IIA string theory by D = 10 SYM theory reduced to two

dimensions. Finally, an interpretation of the completely reduced SYM theory as type IIB

string theory has been advanced in [6]. All three reduced SYM theories are closely related

and, in the large N limits each one contains, in a certain sense, the other two. We will

refer to the SYM theory reduced to 2, 1 and 0 dimensions as the DVV, BFSS and IKKT

model, correspondingly.

The most basic information about these theories, namely concerning their vacuum

excitations, can be obtained by studying their partition functions.1 The only partition

function computed at present is that of the completely reduced theory, which we will denote

by ZIKKT. It was studied by several groups [7,8,9,10] in order to prove the existence of

bound states in the BFSS model [7,8,11]. It was conjectured by Green and Gutperle [11]

that

Z
IKKT

(g) = g− 7
2 (N2−1)FN

∑

m|N

1

m2
, (1)

where the numerical factor FN was computed later by Krauth, Nicolai and Staudacher [9].

Recently, this conjecture was rigorously proved by Moore, Nekrasov and Shatashvili [10].

In this paper we present the quasi-classical calculation of the partition function of

the Euclidean matrix string theory (the DVV model) compactified on a rectangular torus

1 By partition function of a supersymmetric matrix model we understand the volume form

in the sector with a minimal number of fermionic zero-modes.
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T 2 with periods R and T , with Ramond-Ramond boundary conditions.2 Replacing the

fermionic and bosonic potentials by constraints, we obtain

Z
DVV

=
∑

m|N

1

m

∑

p∈ZZ

e−
RT
2 Np2

. (2)

Further we argue that this expression which, by its definition, is valid only in the

limit of large area RT , is actually exact. Our argument is based on the quasi-classical

calculation of the DVV partition function in which the constant mode A
(0)
σ of the U(1)-

component of the gauge field subtracted by inserting a delta-function, and which we denote

by 〈δ(A(0)
σ /

√
2π)〉

DVV
. In the limit RT → 0 the modified partition function coincides with

the partition function (1) of the completely reduced theory

〈

δ
(

A(0)/
√

2πg
)〉

DVV

−→
R,T→0

(RT )−
7
2 (N2−1)

T FN
Z

IKKT
(1/RT ) . (3)

Comparing our quasi-classical result

〈

δ
(

A(0)
σ /

√
2π
)〉

DVV

=
1

T

∑

m|N

1

m2

∑

E∈ZZ

e−
1
2

E2

RT N . (4)

extrapolated to the RT → 0 limit with the exact expression (1) we find perfect agreement,

including the numerical factor computed in [9,12]. It is therefore very plausible that our

quasi-classical results are valid everywhere, i.e., that these models possess the property of

having exact quasi-classics.

The excitations that contribute to the DVV partition function can be interpreted

as free type IIA Green-Schwarz strings wrapping the torus, with additional abelian gauge

degrees of freedom on the world-sheet. The sum over all possible wrappings reproduces,

in the large N limit, the integration over the string moduli.

The paper is organized as follows. In Section 2, we define the DVV partition function

and make a quantitative description of the dimensional reductions that give the BFSS and

IKKT partition functions. In Sections 3 and 4, we present the derivation of (2) and (4).

Section 5 contains discussions of our results.

2 The gauge coupling constant can be absorbed in the area of the torus and therefore is

considered to be equal to 1.
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2. The partition functions of the DVV, BFSS and IKKT matrix models

2.1. The functional integral of Matrix string theory (the DVV model) compactified on a

torus

The Euclidean DVV model is ten-dimensional U(N) SYM theory dimensionally re-

duced to a two-dimensional cylinder [5]. The field content of the theory includes the

two-dimensional U(N) gauge field {Aa}2
a=1, the bosonic Hermitian Higgs fields {XI}8

I=1,

and the Majorana–Weyl fermions {Ψα}16
α=1. In order to study the partition function, we

compactify the theory on a rectangular3 two-torus T 2 with periods R and T ,

T 2 = {~σ = (σ, τ) | σ ∈ [0, R], τ ∈ [0, T ]}.

The DVV partition function is defined by the functional integral

Z
DVV

=

∫ DAa

Vol(G)
DXDΨ

8
∏

I=1

δ

(

X
(0)
I√
2π

)

16
∏

α=1

Ψ(0)
α exp

(

− S
DVV

[A, X, Ψ]
)

(5)

where the action is

S
DVV

=

∫

T 2

d2σTr
[F 2

ab

4
+

1

2
[Da, XI ]

2
+

i

2
ΨT [D/ , Ψ]

+
1

2
ΨT ΓI [XI , Ψ] − 1

4

∑

I,J

[XI , XJ ]2
]

,
(6)

Da = ∂a − iAa is the covariant derivative, and a minimal set of pairs of fermionic and

bosonic zero-modes:

Ψ(0)
α =

Tr
∫

T 2 d2σΨα√
NRT

, X
(0)
I =

Tr
∫

T 2 d2σXI√
NRT

. (7)

is subtracted from the integration measure of the matter fields. The integration measure

over the gauge fields is divided as usual by the volume Vol(G) of the gauge group.

3 The matrix string action assumes that the metric on the two-dimensional space-time is

gab = δab.
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2.2. Relation to the partition function of the BFSS matrix model compactified on a circle

After shrinking one of the periods of the torus, the theory degenerates to a SYM

theory reduced to one dimension. In the limit R → 0, the component Aσ of the gauge

field enters in the action in the same way as the eight Higgs fields, and the O(8) symmetry

of the action is enhanced to O(9). The functional integral (5) describes, in this limit, the

partition function of a one-dimensional reduction of the SYM theory, with Aσ playing the

role of X9. However, this is not yet the partition function of the BFSS model because the

integration measure of the field Aσ is not identical to that of the eight remaining Higgs

fields. In order to obtain the same integration measure, we have to introduce in the original

functional integral (5) a delta-function of the constant mode

A(0)
σ =

Tr
∫

T 2 d2σAσ√
NRT

(8)

σ-component of the gauge field. Let us denote by 〈δ(A(0)
σ /

√
2π)〉

DVV
the DVV functional

integral (5) with the inserted delta-function. In the limit R → 0 it indeed reduces to the

partition function Z
BFSS

of the BFSS model at finite temperature T , defined by the action

S
BFSS

= R

∫ T

0

dτ Tr
(1

2
[Dτ , XI ]

2
+

i

2
ΨT [Dτ , Ψ] − 1

4

∑

I,J

[XI , XJ ]2 +
1

2
ΨT ΓI [XI , Ψ]

)

, (9)

〈

δ
(

A(0)
σ /

√
2π
)〉

DVV

→
R→0

Z
BFSS

. (10)

2.3. The IKKT model as the high-temperature limit of the BFSS model

The IKKT matrix integral

Z
IKKT

(g) =
10
∏

µ=1

[dXµ]
16
∏

α=1

[dΨα] exp

(

−1

g
S

IKKT
[X, Ψ]

)

(11)

with the action

S
IKKT

= −1

4

∑

µ,ν

Tr [Xµ, Xν ]2 +
1

2

∑

µ

TrΨT [ΓµXµ, Ψ]. (12)
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depends on a single parameter, the coupling constant g = g2
YM. In refs. [9,10] the integral

was understood as an integral over traceless matrices. Here we use the same normalizations

as in [9] but, in order to facilitate the comparison with the previous integrals, we define

the integration measures by

[dXµ] = dXµ δ
( TrXµ

√
2πN

)

, [dΨα] = dΨα
TrΨα√

N
, (13)

where dX and dΨ are the flat measures with normalization

∫

dXe−
1
2Tr X2

= 1,

∫

dΨαdΨβe−Tr ΨT
αΨβ = 1. (14)

The partition function of the IKKT model, with the above normalization of the measure,

is equal to [9,10]4

Z
IKKT

(g) = g− 7
2 (N2−1) FN

∑

m|N

1

m2
(15)

where FN is the “group factor” [9]

FN =

√
N N !

(
√

π)N2−1

1

2πN

N
∏

k=1

(2π)k

k!
. (16)

The T → 0 limit of the BFSS model has been analysed by Sethi and Stern [8,11]

in connection with the computation of the Witten index. The BFSS action (9) reduces,

in the limit T → 0 and after identifying the constant mode of the gauge field with the

Higgs field X10, to the O(10)-symmetric IKKT action (12) multiplied by the area RT of

the torus. The limit for the measure is less trivial. Let us first consider the measure of the

gauge field.

The one-dimensional gauge field A corresponds, by the exponential map, to a generic

element of the local gauge group U(τ) = T̂ e
i
∫

τ

0
A(t)dt

. It is therefore convenient to

4 The overall power of g can be determined by dimensional arguments. The integra-

tion over the fermions gives a pfaffian, which is a homogeneous polynomial in X/g of degree

8(N2
− 1). The rescaling X → g1/4X makes the action g-independent and produces a factor

g(N2
−1)(8(1−1/4)−10/4) = g7/2(N2

−1).
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parametrize the constant mode A of the gauge field in terms of the group element U = eiTA

and integrate over the Haar measure on SU(N) (normalized as
∫

SU(N)
dU = 1). In the

vicinity of any of the N central elements of SU(N) the group element can be parametrized

by U = e2πik/NeiTA and the Haar measure becomes

dU

Vol[SU(N)]
→ TN2−1

NFN
[dA] (17)

where FN is given by (16) and the measure [dA] is identical to the measure [dX ] defined

in (13). (The details of the calculation can be found in [12].) As was explained by Sethi

and Stern [8], in the limit T → 0 the integral over the gauge field is saturated by the

vicinity of the N central elements of SU(N) and therefore by eq. (17)

DA →
T→0

TN2−1

FN
[dX10]. (18)

For the measures of the matter fields we find, from the kinetic part of the action (9) and

the normalization (14),

DX →
(

T

R

)− 9
2 N2 9

∏

I=1

dXI

DΨ → R− 16
2 N2 ∏

α

dΨα.

(19)

Taking into account the rescaling of the zero-modes

∏

I

δ

(

X
(0)
I√
2π

)

→ (RT )−
9
2

∏

I

δ

(

TrXI√
2πN

)

∏

α

Ψ(0)
α → (RT )

16
2

∏

α

δ

(

TrΨα√
N

)

(20)

and combining all factors of T and R, we finally obtain

〈

δ
(

A(0)/
√

2πg
)〉

DVV

−→
R,T→0

(RT )−
7
2 (N2−1)

T FN
Z

IKKT
(1/RT )

=
1

T

∑

m|N

1

m2
.

(21)
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3. Quasi-classical calculation of the partition function of the DVV model

As argued by Dijkgraaf, Verlinde and Verlinde [5], in the infrared limit RT → ∞ the

non-diagonal components of the gauge and matter fields become infinitely massive, and

the bosonic and fermionic potentials turn into constraints. Under the constraint that all

matrices Φ = {XI , Ψα, iDa = i∂a + Aa} are simultaneously diagonalizable, for each field

configuration there exists a unitary matrix V (σ, τ) such that

Φ(σ, τ) = V −1(σ, τ)ΦD(σ, τ)V (σ, τ),

where ΦD = diag{Φ1, ..., ΦN}. We have therefore

ΦD(R, τ) = Ŝ−1ΦD(0, τ)Ŝ,

ΦD(σ, T ) = T̂−1ΦD(σ, 0)T̂
(22)

where Ŝ = V (0, τ)V −1(R, τ) and T̂ = V (σ, 0)V −1(σ, T ). By construction, ŜT̂ = T̂ Ŝ.

Assuming that all the eigenvalues are distinct, the only unitary transformations relating

two diagonal matrices represent permutations of their diagonal elements. Therefore the

matrices Ŝ and T̂ act as two commuting permutations ŝ : i → si and t̂ : i → ti of the

symmetric group SN
5

[

T̂−1ΦT̂
]

i
= Φti

,
[

Ŝ−1ΦŜ
]

i
= Φsi

(23)

and, in particular, do not depend on the coordinates σ and τ .

Each pair of permutations describes an N -covering of the target-space torus con-

sisting, in general, of several connected components. Each connected component can be

interpreted as the world-sheet of a string wrapping several times the torus in both direc-

tions. A q-component covering corresponds to a decomposition

ŝ =

q
∏

k=1

ŝ(k), t̂ =

q
∏

k=1

t̂(k),

5 After our manuscript was finished, we learned about the paper [13], where a similar inter-

pretation of the partition function of pure U(N) YM theory on the torus is presented.
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where all factors commute with each other and satisfy

(ŝ(k))jk(t̂(k))mk = (ŝ(k))nk(t̂(k))lk = 1,

q
∑

k=1

(nkmk − lkjk) = N. (24)

The k-th world-sheet torus is the complex plane ω = σ + iτ factored by the periods

ω1 = nkR + i (lkT ) and ω2 = jkR + i (mkT ); it covers the target torus Nk = nkmk − lkjk

times. In this way the orbifold structure of the target space generates the sum over all

twisted boundary conditions, which becomes, in the limit N → ∞ and for the “long”

strings only, the integral over all complex structure of the world-sheet tori. Owing to the

periodicity condition (22) on the fermions, each connected component has 16 fermionic zero

modes. In our problem we are only interested in contributions with exactly 16 fermionic

zero-modes; therefore only one-sheet (q = 1) coverings will be relevant. A covering with

periods ω1 = nR + i(lT ) and ω2 = jR + i(mT ) wrapping the target torus N = nm − jl

times is defined by two permutations, ŝ and t̂, satisfying

ŝt̂ = t̂ŝ, ŝnt̂l = ŝj t̂m = 1.

By a mapping class transformation we can reduce this to

ŝt̂ = t̂ŝ, ŝn = ŝj t̂m = 1 (mn = N, j = 0, 1, ..., n− 1). (25)

The explicit solution of (25) is, up to an internal homomorphism,

ŝ = {i → i + m(mod N)}, t̂ =

{

{i → i + 1(mod m)} if j = 0
{i → i − j(mod N)} if j = 1, ..., n− 1.

(26)

After having identified the distinct topological sectors, we can write the partition function

as a sum over all pairs m and n such that mn = N and j = 0, 1, ..., n − 1. The diagonal

matrix variables ΦD(σ, τ), with boundary conditions belonging to the equivalence classes

[m, n; j], can be considered as scalar variables defined on the torus with periods ω1 = nR

and ω2 = jR + i(mT ) in the ω = σ + iτ plane.
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Now let us proceed to the evaluation of the partition function in the infrared limit.

In the limit RT → ∞ the measure over the gauge field reduces to the integral over the

diagonal components of the gauge field, normalized by the volume of the diagonal gauge

group GD which is the localized U(1)N . Taking into account the overall factor 1/N ! because

the eigenvalues are determined up to a permutation, we get

∫ DA

vol(G)
DXDΨ → 1

N !

∑

ŝt̂=t̂ŝ

∫ DAD

vol(GD)
DXDDΨD (27)

where the boundary conditions in each term are twisted according to eq. (23). The number

of permutations in each class [m, n; j] is equal to the number of combinations of m and n

elements times the number of cyclic permutations of order m and n,

N !

n!m!
(m − 1)!(n − 1)! = (N − 1)!.

Summing the contributions of all equivalence classes we get

Z
DVV

=
(N − 1)!

N !

∑

mn=N

∑

j=0,...,n−1

Z[m,n;j] (28)

where Z[m,n;j] is the partition function of the Abelian (N = 1) DV V model defined on the

torus of area NRT with periods ω1 = nR and ω2 = jR + i(mT ). The latter is a product

of the partition function of the Abelian gauge field and that associated with the diagonal

components of the matter field

Z[m,n;j] = Zgauge

[m,n;j]Z
matter

[m,n;j]. (29)

The contribution of the U(1) gauge field to the partition function is given, in the

gauge AD
τ = 0, to the functional integral with respect to the angular variable

θ(τ) =

∫ R

0

TrAD
σ (τ, σ)dσ

=

∫ nR

0

Aσ(τ, σ)dσ.

(30)
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Here Aσ denotes the Abelian gauge field on the “world-sheet” torus that corresponds to

the N -component field of AD
σ on the space-time torus.

The gauge-field partition function is

Zgauge
[m,n;j] =

∫

θ(mT )=θ(0)

Dθ e
− 1

2nR

∫

mT

0
dτ(∂τ θ)2

=
∑

p∈ZZ

e−
RT
2 Np2

. (31)

The result of the integration depends only on the area RT and not on the modular param-

eter of the torus, which reflects the symmetry of the two-dimensional gauge theory with

respect to area-preserving diffeomorphisms. Further, with our conventions for the zero

modes, the integral of the matter fields is exactly 1 because of supersymmetry [14]

Zmatter
[m,n;j] = 1. (32)

This gives the result (2) which can be written, after a Poisson resummation, as

Z
DVV

=
∑

m|N

1

m

√

2π

RTN

∑

E∈ZZ

e−
1
2

(2πE)2

RT N . (33)

4. The DVV partition function with subtracted constant mode of the gauge

field

The evaluation of the modified DVV (8) can be done in the same way as in the

previous section. In the topological sector [m, n; j] the constant mode A
(0)
σ is expressed

through the angular variable (30) as

A(0)
σ =

∫mT

0
dτθ(τ)√

NRT
. (34)

The combinatorics is the same as in the previous section and the only difference is in the

expression of the gauge-field partition function in each topological sector. The latter is

given by the one-dimensional functional integral with respect to the field θ(τ) taking its

values in the unit circle

Z̃[m,n;j] =

∫

θ(mT )=θ(0)

Dθ e
− 1

2nR

∫

mT

0
dτ(∂τ θ)2

δ
(

∫mT

0
dτθ(τ)√

2πRTN

)

, (35)
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and is evaluated as

Z̃[m,n;j] =

√

NRT

2π

1

mT

∑

p∈ZZ

e−
1
2 RTNp2

=
1

mT

∑

E∈ZZ

e−
1
2

(2πE)2

RT N . (36)

Summing over all topological sectors we find, instead of (33),

〈

δ
(

A(0)
σ /

√
2π
)〉

DVV
=

1

T

∑

m|N

1

m2

∑

E∈ZZ

e−
1
2

E2

RT N . (37)

Comparing this expression, whose derivation implies the infrared limit RT → ∞, with Eq.

(21), we see that it is equally true in the ultraviolet limit RT → 0.

5. Discussion

We have computed the quasi-classical partition function of the Euclidean Matrix

string theory compactified on a two-dimensional torus T 2 , with doubly periodic boundary

conditions and a minimal set of zero-modes removed. We have shown that the relevant

degrees of freedom are described, in the limit of large area of the torus, by an Abelian

supersymmetric sigma-model accompanied by a U(1) gauge theory defined on the orb-

ifold space SNT 2 = (T 2)⊗N/SN , where SN is the symmetric group of N elements. The

sigma-model and the gauge field are coupled through the boundary conditions, which are

described by a pair of commuting permutations of SN .

Each such configuration can be interpreted as a set of non-interacting strings in

a light-cone gauge, with additional gauge degrees of freedom on the world-sheet. The

world-sheet of each of such string defines a multiple covering of the space-time torus T 2,

characterized by a modular parameter ω2/ω1, with ω1,2 sweeping the lattice RZZ+ iTZZ. In

the large-N limit, the sum over coverings converges to an integral with a correct modular-

invariant measure, under the condition that we are far from the boundary of the moduli

space. This means that the partition function of a “long” string in the DVV model is indeed

that of the Green-Schwarz string in light-cone gauge, with additional Abelian gauge degree

of freedom on the world-sheet. To complete the proof of the (perturbative) matrix-string

11



correspondence, one has to consider the matrix-field configurations that define branched

coverings of the space-time torus which, according to the original suggestion in [5], should

describe strings in interaction. Some steps in this direction was made by the authors

[15,16,17].

On the other hand, near the boundary of the moduli space, that is when one of

the periods is kept finite while N → ∞, the sum keeps its discrete character and the

corresponding excitations (“short” strings) describe particles. Thus the distinction between

particle and string excitations in the DVV model can be made only after performing the

large-N limit. The latter is not yet completely understood, in spite of the recent progress

made in [18]. With the convention that a minimal set of zero-modes is deleted from the

functional measure, which is the case considered in the present paper, the allowed field

configurations of the orbifold theory are described by a single string whose world-sheet

wraps N times the space-time torus T 2. Our computation gives an intuitive understanding

of the sum over the divisors of N in the expression for the partition function of the IKKT

model (1). It is quite analogous to the argument presented by Green and Gutperle in

which this last partition function was compared with the partition function of the matrix

quantum mechanics at infinite temperature. Their calculation was based on the assumption

of the existence of bound states of D0-branes, which lead to the sum over the divisors of

N . In our case the sum over the divisors comes from the sum over the conjugacy classes of

permutations defining the different topological sectors of the SN -orbifold theory. This is a

trivial example of the Hecke operator, defined by its action on a modular-invariant form

A (actually a constant in our case)

HN [A](τ) =
1

N

∑

N=mn
0≤j<n

A
(

mτ + j

n

)

, (38)

which takes care of the inequivalent N -fold wrappings. (For more general discussion see

[19,20].) Comparing our calculation with the argument of Green and Gutperle, we see that

12



the bound states of D0-branes can indeed be interpreted as strings winding several times

around the spatial (σ-)dimension of the two-torus.

The partition functions of the DVV and the IKKT models are related to the half-BPS

saturated amplitudes, such as the t8t8R4 term in type IIB theory [21,22]. Our computation

confirms the rules for counting wrapped D-branes used in [21,22,23,24]. Moreover, we have

shown that the high-temperature limit of the DVV model reproduces the D-instantons

contributions predicted in [21], which confirms the dual interpretation of the DVV model

as describing wrapped D1-branes.

We consider as the principal result of this paper not the computation of the IR

partition function itself, which is rather trivial, but its comparison with the known result

for the partition function of the completely reduced gauge theory (the IKKT model). For

this purpose we have established the exact relations between the partition functions of

the SYM theories reduced to 2, 1 and 0 dimensions, which we presented in Section 2.

Then we were able to check that when extrapolated to the small-area limit, the quasi-

classical result reproduces exactly the known expression of the IKKT partition function.

Therefore we conjecture that expressions (33) and (37) are actually exact , which means,

that the theory has the property of having exact quasi-classics. We expect that this can

be proved by extending to the two-dimensional case the calculation of Moore, Nekrasov

and Shatashvili [10] based on Witten’s description of the two-dimensional gauge theory as

cohomological field theory [25].

Finally, let us remark that it is possible to give a very simple explanation of the

pre-exponential factors in expression (33) if the partition function of the DVV model is

considered as a certain limit of the partition function of a supersymmetric Schild string

defined on the orbifold SNT 2. We intend to report on this subject in the near future.
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