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We have explored the behaviour of some improved actions based on a nonperturbative renormalization group

(RG) analysis in coupling space. We calculate the RG ow in two-coupling space (�1�1; �1�2) and examine the

restoration of rotational invariance and the scaling of physical quantities (Tc=
p
�).

1. Introduction

Many improved actions have been proposed

and studied which may allow us much more reli-

able simulations near the continuum limit within

the limited computer resources existing nowa-

days. One way to obtain such improved actions

is to �nd the renormalized trajectory (RT), any

point on which serves as a \perfect action" [1{

3]. Here we will consider the simplest case, i.e.,

actions in two coupling (�1�1; �1�2) space, which
for practical purposes are preferable than actions

with a larger number of operators. In this con-

tribution, we evaluate the RG ow and study

whether the performance of such actions improves

when they approach the renormalized trajectory.
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2. Search of the Renormalized Trajectory

2.1. MCRG

We adapt Swendsen's blocking transformation

scheme [6], which is de�ned as

P (U) = U�(x)U�(x+ �) (1)

+
1

2

X
� 6=�

U�(x)U�(x+ �)U�(x+ � + �)Uy

� (x + 2�):

Under this transformation the lattice spacing is

doubled. Repeating this blocking transformation,

we can get an action near the RT.

After each transformation we generate a

blocked con�guration, the couplings on which can

be determined via the Schwinger-Dyson equation:
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where G
l are the \staples" corresponding to the

link Ul. Solving these equations, we can calcu-

late the coe�cients of operators corresponding
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to the blocked action. In this paper we will ne-

glect truncation errors and assume that the re-

sulting blocked actions also have only two cou-

plings, �1�1 and �1�2.
Figure 1 shows the blocking transformation

ow in two-coupling space.
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Figure 1. Blocking transformation ow in 2 cou-

pling space

2.2. Strong coupling limit

The RT can be calculated within the strong

coupling expansion. The string tension is ob-

tained from the expectation value of Wilson

loops. To leading order,

�a2 ' � ln
hW1�2i
hW1�1i

' � ln

�
�1�1
18

+
�1�2
�1�1

�
(3)

Imposing that in the strong coupling limit,the lat-

tice spacing goes to in�nity, one easily derives the

following relation

�1�1
18

+
�1�2
�1�1

! 0 with a!1 (4)

As this equation tells us, in this limit, the RT

is a parabola which is presented in Figure 1 to

compare with the RT obtained by solving the S-

D equations as indicated above.

One could as well solve the S-D equations with

coe�cients calculated by the strong coupling ex-

pansion. This is work in progress and the results

will be reported elsewhere.

3. Scaling analysis

Here we report on the scaling analysis of sev-

eral improved actions. We study the violation of

rotational symmetry as well as Tc=
p
�.

3.1. Violation of rotational symmetry

First we de�ne the following quantity which

represents the violation of rotational symmetry

�2V �
X
o�

[V (R)� Von(R)]
2

V (R)2�V (R)2

0
@X
o�

1

�V (R)2

1
A
�1

(5)

where V (R) is the static quark potential and

�V (R) its error. Von(R) is a �tting func-

tion from only on-axis data, and
P
o� implies

summation over only o�-axis data. We cal-

culate this quantity with various improved ac-

tions. We write (�1�1; �1�2) = �(c1�1; c1�2),
and impose the condition, c1�1 + 8c1�2 =

1. The Wilson action corresponds c1�2 = 0.

For Symanzik(tree), Iwasaki and DBW2 actions,

c1�2 = �1=12;�0:331;�1:4088, respectively [7,

2]. DBW2 (Double Blocked from Wilson action

in 2 coupling space) is de�ned in ref. [8]. Results

are summarized in Figure 2.

Simulations have been performed on a lattice

of size 123 � 24 . Thermalization is 5000 sweeps,

while the interval between Wilson loop measure-

ments is 500 sweeps. We used 100 con�gurations.

3.2. Tc=
p
�

Here we study the scaling behavior of Tc=
p
�

for DBW2. The critical temperature is de�ned

by

Tc = 1=Ntac : ac = a(�c) (6)

where Nt is the temporal extension of the lat-

tice, and ac is the lattice spacing at critical cou-
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Figure 2. Rotational symmetry violation of vari-

ous improved actions

pling �c. In order to extract �c, we calculate the
Polyakov loop susceptibility on Nt = 4; 6 lattices.
Then �0cs in the in�nite volume limit are obtained

by using �nite size scaling (of Nt = 4). The re-

sults of �c for DBW2 are presented below.

Nt = 4 Nt = 6

lattice size 123 � 4 183 � 6

163 � 4

�c(1volume) 0.8243(95) 0.936(25)

Next we extract the string tension from the static

quark potential at each value of �c. For DBW2

the results for the static quark potential are

�(Nt) A � �

�c(4) 0.550(17) -0.255(23) 0.1555(28)

�c(6) 0.579(96) -0.357(22) 0.06996(99)

where we used the Ansatz V (R) = A+�=R+�R.
For this action Tc=

p
� is 0:6340(60) and

0:6301(65) at Nt = 4 and 6 respectively - see

Fig. 3 for a comparison with other actions in two-

coupling space.

4. Summary

We have studied the non-perturbative RT of

SU(3) gauge theory in two-coupling space. We

�nd an improvement of rotational invariance as

the improved action becomes closer to the RT.
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Figure 3. Scaling behavior of Tc=
p
�. We com-

pare DBW2 with results from other actions in

2-coupling space [9,10].
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