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1 Introdu
tion1.1 Setting the s
eneSin
e its invention in the late sixties, string theory has grown up in a tumultuous historyof unexpe
ted paradigm shifts and de
eptive lulls. Not the least of these storms was thedis
overy that the �ve anomaly-free perturbative superstring theories were as many glan
eson a single eleven-dimensional theoria in
ognita, soon baptized M-theory, awaiting a bettername [307, 319℄. The genus expansion of ea
h string theory 
orresponds to a di�erentperturbative series in a parti
ular limit gs → 0 in the M-theory parameter spa
e, mu
hin the same way as the genus expansion arises in 't Hooft large-N , �xed-g2
YMN regime ofYang�Mills theory [302℄. M-theory 
an be de�ned by the superstring expansions on ea
hpat
h, and the superstring (perturbative or non-perturbative) dualities allow a translationfrom one pat
h to another, in a way analogous to the de�nition of a di�erential manifoldby 
harts and transition fun
tions. This analogy overlooks the fa
t that string theories areonly de�ned as asymptoti
 series in gs → 0, and some analyti
ity is therefore required tomove into the bulk of parameter spa
e.This de�nition has been e�e
tive in un
overing a number of features of M-theory, orrather its BPS se
tor, whi
h behaves in a 
ontrolled way under analyti
 
ontinuation at�nite-gs. In parti
ular, M-theory is required to 
ontain Cremmer, Julia and S
herk's eleven-dimensional supergravity [76℄ in order to a

ount for the Kaluza�Klein-like tower of typeIIA D0-branes as ex
itations 
arrying momentum along the eleventh dimension of radius

Rs ∼ g
2/3
s , as shown by Townsend and Witten [307, 319℄; it should also 
ontain membraneand �vebrane states, in order to reprodu
e the D2- and D4-brane, as well as the NS5-braneand the type IIA �fundamental� string. Whi
h of these states is elementary is not de
idedyet, although M2-branes and D0-branes are favourite 
andidates [86, 24℄. It may eventurn out that none of them may be required, and that 11D SUGRA may emerge as thelow-energy limit of a non-gravitational theory [163℄.While the dualities between string theories relate di�erent languages for the samephysi
s, the symmetries of string theory provide a powerful guide into M-theory, whi
his believed to hold beyond the BPS se
tor. The best established of them is 
ertainlyT-duality, whi
h identi�es seemingly distin
t string ba
kgrounds with isometries (see forinstan
e Refs. [135, 3℄ and referen
es therein). Throughout this review, we shall restri
tourselves to maximally supersymmetri
 type II or M theories, and a

ordingly T-dualitywill redu
e to the inversion of a radius on a d-dimensional torus. To be more pre
ise, aT-duality maps to ea
h other type IIA and type IIB string theories 
ompa
ti�ed on 
ir-
les with inverse radii, while a T-symmetry 
onsists of an even number of su
h inversions(together with Kalb�Ramond spe
tral �ows to whi
h we shall return), and therefore 
or-responds to a symmetry of type II string theories and of their M-theory extension‡1. Aswe shall re
all, su
h T-symmetries on a torus T d generate a SO(d, d,Z) dis
rete symmetrygroup, the 
ontinuous version of whi
h SO(d, d,R) appears as a symmetry of the low-energy

‡1Having emphasized this point, we shall hen
eforth omit the distin
tion between dualities and symme-tries. 7



e�e
tive a
tion.On the other hand, the a
tion of 11D or type IIA supergravity 
ompa
ti�ed on a torus T das well as of the equations of motion of un
ompa
ti�ed type IIB supergravity have for longbeen known to exhibit 
ontinuous non-
ompa
t global symmetries, namely the ex
eptionalsymmetry Ed(d)(R) of Cremmer and Julia and the Sl(2,R) symmetry of S
hwarz and Westrespe
tively [72, 182, 185, 277℄. These symmetries transform the s
alar �elds and in generaldo not preserve the weak 
oupling regime, whi
h puts them out of rea
h of perturbationtheory, in 
ontrast to the well established target-spa
e T-duality.In analogy with the ele
tri
�magneti
 Sl(2,Z) Montonen-Olive-Sen duality of four-dimensional N = 4 super Yang�Mills theory [231, 281℄, Hull and Townsend have proposed[175℄ that a dis
rete subgroup Ed(d)(Z) (resp. Sl(2,Z)B) remains as an exa
t quantumsymmetry of M-theory 
ompa
ti�ed on a torus T d (resp. of ten-dimensional type IIB stringtheory and 
ompa
ti�
ations thereof)‡2. The two statements are a
tually equivalent, sin
eafter 
ompa
ti�
ation on a 
ir
le the type IIB string theory be
omes equivalent under T-duality on the (say) tenth dire
tion to type IIA, and the symmetry Ed(d)(Z) 
an be obtainedby intertwining the Sl(2,Z)B non-perturbative symmetry with the T-duality SO(d−1, d−
1,Z). Conversely, the Sl(2,Z)B symmetry of type IIB theory 
an be obtained from the M-theory des
ription as the modular group of the 2-torus in the tenth and eleventh dire
tions[273, 16℄, and is a parti
ular subgroup of the modular group Sl(d,Z) of the d-torus. This,being a remnant of eleven-dimensional di�eomorphism invarian
e after 
ompa
ti�
ation onthe torus T d, has to be an exa
t symmetry as soon as M-theory 
ontains the graviton. TheT-duality symmetry SO(d− 1, d − 1,Z) is however not manifest in the M-theory pi
ture.All in all, the U-duality group reads

Ed(d)(Z) = Sl(d,Z) ⊲⊳ SO(d− 1, d− 1,Z) , (1.1)where the symbol ⊲⊳ denotes the group generated by the two non-
ommuting subgroups.The stru
ture of the group (1.1) will be dis
ussed at length in this review, and a setof Weyl and Borel generators will be identi�ed. The former preserve the re
tangularityof the torus and the vanishing of the gauge ba
kground, while the latter allow a move toarbitrary tori. States are 
lassi�ed into representations of the U-duality group Ed(d)(Z),whether BPS or not, and we will derive U-duality invariant mass and tension formulae for1/2- and 1/4-BPS states, as well as 
onditions for a state to preserve a given fra
tion ofthe supersymmetries. Besides the entertaining en
ounter with dis
rete ex
eptional groups,this will a
tually tea
h us about the spe
trum of M-theory, sin
e the more M-theory is
ompa
ti�ed, the more degrees of freedom 
ome into play. In parti
ular, we will show theneed to in
lude states with masses that behave as 1/gn
s , n ≥ 3, whi
h are un
onventional inperturbative string theory. An important appli
ation of these results is the exa
t determi-nation of 
ertain physi
al amplitudes in M-theory, su
h as the four-graviton R4 
oupling,whi
h 
an be interpreted as tra
es over M-theory BPS states [21, 142, 253℄. The weak
oupling analysis of these exa
t 
ouplings provides a very useful insight into the rules ofsemi-
lassi
al 
al
ulus in string theory [34, 246, 140, 146, 20, 199, 255℄.

‡2The �rst example of string duality a
tually appeared in the 
ontext of heteroti
 string theory [119℄.8



A proposal has re
ently been put forward by Banks, Fis
hler, Shenker and Susskind tode�ne M-theory ab initio on the (dis
rete) light front, as the large-N limit of a supersym-metri
 matrix model given by the dimensional redu
tion of 10D U(N) super Yang�Mills(SYM) theory to 0 + 1 dimension [24, 300℄. This model also des
ribes low-energy inter-a
tions of D0-branes indu
ed by open string �u
tuations [82, 186, 100℄, and, as shownby Seiberg, arises from 
onsidering M-theory on the light front as a parti
ular limit of M-theory 
ompa
ti�ed on a 
ir
le, i.e. type IIA theory [278℄. D0-branes are therefore identi�edas the partons of M-theory in this framework. This proposal has passed numerous tests,and has been shown to in
orporate membrane and (transverse) �vebrane solutions, and toreprodu
e 11D SUGRA 
omputations. The invarian
e under eleven-dimensional Lorentzinvarian
e remains, however, to be demonstrated (see [217℄ for a step in that dire
tion).Upon 
ompa
ti�
ation of d dimensions, the D0-branes intera
t by open strings wrappedmany times around the 
ompa
ti�
ation manifold, and the in�nite-dimensional quantumme
hani
s 
an be rephrased as a gauge theory in d+1 dimensions [305, 127℄. This dramati
in
rease of degrees of freedom 
ertainly removes part of the appeal of the proposal, butbe
omes even more serious for d ≥ 4, where the gauge theory loses its asymptoti
 freedomand be
omes ill-de�ned at small distan
es. We will brie�y dis
uss the proposals for ex-tending this de�nition to d = 4, 5. We will also dis
uss the interpretation of M-theory BPSstates in the gauge theory, and show the o

urren
e of un
onventional states with energy
1/g2n

YM, n ≥ 2. Despite these di�
ulties, the Matrix gauge theory gives a ni
e understand-ing of U-duality as the ele
tri
�magneti
 duality of the gauge theory, together with themodular group of the torus on whi
h it lives [299, 127, 110℄. The interpretation of �nite-Nmatrix theory as the 
ompa
ti�
ation of M-theory on a light-like 
ir
le implies that theU-duality group Ed(d)(Z) be enlarged to Ed+1(d+1)(Z) [172, 54, 244, 173℄; we will show thatthis extra symmetry mixes the rank N of the gauge group with 
harges in a way reminis
entof Nahm duality. All these features are guidelines for a hypotheti
al fundamental de�nitionof Matrix gauge theory.1.2 Sour
es and omissionsThis review is intended as a pedagogi
al introdu
tion to M-theory, from the point of viewof its 11D SUGRA low-energy limit, its strongly 
oupled type II string des
ription, andits purported M(atrix) theory de�nition. It is restri
ted to maximally supersymmetri
toroidally 
ompa
ti�ed M-theory, and uses U-duality as the main tool to un
over the partof the spe
trum that is annihilated by half or a quarter of the 32 supersymmetries. Theexposition mainly follows [110, 255, 244℄, but relies heavily on [318, 319, 310, 278, 91℄. Itis usefully supplemented by other presentations on supergravity solutions [296, 309, 310℄,M(atrix) theory [22, 51, 94℄, D-branes [257, 267, 306, 19℄, string dualities [98, 275, 316, 87,238, 284℄ and perturbative string theory [247, 198℄ and general introdu
tions [254, 14, 276℄.The following topi
s are beyond the s
ope of this work:
• Bla
k hole entropy: the modelisation of extremal bla
k-holes by D-brane bound stateshas allowed a des
ription of their mi
ros
opi
 degrees of freedom and a derivation of9



their Bekenstein�Hawking entropy [297℄ (see [224, 252℄ for reviews). The latter 
anbe related to a U-duality invariant of the bla
k hole 
harges [167, 79, 189, 5, 9℄, andU-duality 
an even allow the 
ontrol of non-extremal states [294℄.
• Gauge dynami
s: the study of D-brane 
on�gurations has also led to a qualitativeunderstanding of gauge theories dynami
s as world-volume dynami
s of these obje
ts;see [133℄ for a thorough review. We will mainly 
onsider 
on�gurations of parallelbranes, as des
ribing the Matrix gauge theory des
ription of M-theory on the light
one.
• BPS-saturated amplitudes: A spe
ial 
lass of terms in the e�e
tive a
tions of M-theory and string theory re
eives 
ontributions from BPS states only. We will brie�ydis
uss an appli
ation of the M-theory mass formulae that we derived to the 
om-putation of exa
t R4 
ouplings in Subse
tion 5.8, and refer to the existing liter-ature for more details on the exa
t non-perturbative 
omputation of these 
ou-plings, and their interpretation at weak 
oupling as a sum of instanton e�e
ts.Relevant referen
es in
lude [34, 246, 280℄ for two-derivative terms in N = 2 typeII strings, [156, 157, 147, 12℄ for four-derivative terms in type II/heteroti
 the-ories, [21, 20, 199℄, for F 4 (and related) terms in type I/heteroti
 theories, and[140, 146, 142, 200, 12, 48, 192, 255, 253, 141, 145℄ for R4 (and related) terms intype IIB/M-theory. In�nite series of higher-derivative BPS-saturated R2F 2g−2 or
R4H4g−4, and Rn terms have also been 
omputed or 
onje
tured in Refs. [11, 226℄and [49, 268, 180, 191℄.

• S
attering amplitudes: in order to validate the M(atrix) theory 
onje
ture of BFSS,a number of s
attering 
omputations have been 
arried out both in the Matrix modeland in 11D supergravity; they have shown agreement up to two loops, see for instan
e[32, 33, 258, 66, 96, 193, 317, 245, 229, 112℄. This agreement is better than naivelyexpe
ted, and indi
ates the existen
e of non-renormalization theorems [248℄ for theseintera
tions.
• D-instanton matrix model: an alternative formulation of M-theory as a statisti
almatrix model has been proposed by Ishibashi, Kawai, Kitazawa and Tsu
hiya [179℄.It has so far not been developed to the same extent as the BFSS proposal, and inparti
ular the origin of U-duality has not been expli
ited. See Refs. [64, 114, 160,113, 270, 203, 63, 65, 123, 201, 53, 225, 301, 13, 4, 124℄ for further dis
ussion.
• Twelve dimensions and beyond: the stru
ture of U-duality symmetry has led to spe
u-late on the existen
e of a 12D [313, 27, 30, 242℄ or higher [28, 29, 26, 241, 293, 266, 240℄dimensional parent of M-theory, with extra time dire
tions. The N = 2 heteroti
strings suggest an appealing 
onstru
tion of this theory (see [227℄ for a review).However, the full higher-dimensional Lorentz symmetry is partially redu
ed to itsU-duality subgroup, and its usefulness remains un
lear at present. We shall, how-ever, en
ounter in Subse
tion 4.6 a tantalizing hint for an extra time-like dire
tionwith �length� l3p. 10



• String networks: a 
onstru
tion of 1/4-BPS states based on three-string jun
tions[275, 60, 83℄ has been suggested [288℄, that reprodu
es the U-duality invariant massformula in 8 dimensions [50, 50, 208℄. These solutions have been 
onstru
ted from theM2-brane [206, 228℄ and their dynami
s dis
ussed in [264, 61℄, but their supergravitydes
ription is still un
lear.
• Non-
ommutative geometry: it has been argued that non-
ommutative geometry [69℄is the appropriate framework to dis
uss D-brane dynami
s, and is even required inthe presen
e of Kalb�Ramond two-form ba
kground [70, 99, 67℄. This des
riptionin
orporates T-duality [261, 271℄ and even U-duality in its Born�Infeld generaliza-tion [162℄. It should in parti
ular (see Subse
tion 7.8) extend Nahm's duality ofordinary two-dimensional Maxwell theory to higher-dimensional 
ases [237℄. Relateddis
ussions 
an be found in Refs. [161, 213, 190, 44, 233, 211, 71℄.
• Gauged supergravity: 11D SUGRA possesses maximally supersymmetri
 ba
kgroundsother than tori, namely 
ompa
ti�
ations on produ
ts of spheres and anti-deSitterspa
es [120℄. These 
orrespond to the near-horizon geometry of M2- and M5-branes,and have been argued to provide a dual des
ription to the gauge theory on theseextended obje
ts [223℄. They will be ignored in this review.
• String theories with non maximal supersymmetry: the E8 × E8 heteroti
 string andtype I string 
an be obtained from M-theory by orbifold 
ompa
ti�
ation [165, 166℄,while the SO(32) heteroti
 string is related to E8 × E8 by a T-duality, or to typeI string theory by a non-perturbative duality [259℄. M(atrix) theory des
riptionshave been proposed both in the heteroti
 [25, 235, 215, 194, 262, 164, 137, 187, 216,205, 204, 90℄ and the type II [117, 197, 46, 138, 195, 89, 90℄ 
ases, as well as onnon-orientable surfa
es [196, 322℄, and will not be treated here.
• Non-BPS states: The study of stable non-BPS states has been iniated in [287℄ andfurther examined [286, 289, 285, 36℄. It would be interesting to investigate the impli-
ations of U-duality symmetry on the spe
trum of non-BPS states.1.3 OutlineSe
tion 2 introdu
es the superalgebra and fundamental BPS states of M-theory in the 
on-text of 11D SUGRA and type IIA/B superstring theories. T-duality is re
alled and revisitedin Se
tion 3 from an algebrai
 point of view, at the level of the e�e
tive a
tion and of theperturbative and non-perturbative BPS spe
trum. The same te
hniques are used in Se
tion4 to introdu
e U-duality and its a
tion on the spe
trum of parti
les and strings, restri
t-ing to Weyl generators. Borel generators are in
orporated in Se
tion 5, where U-dualityinvariant mass and tension formulae for general toroidal 
ompa
ti�
ation with arbitrarygauge ba
kgrounds are derived, as well as U-duality multiplets of BPS 
onstraints. Se
tion6 introdu
es Matrix gauge theory as the Dis
rete Light-Cone Quantization of M-theory fol-lowing an argument by Seiberg, and dis
usses the di
tionary between M-theory and Matrixgauge theory. The U-duality symmetry is �nally dis
ussed in Se
tion 7 from the perspe
tiveof the Matrix gauge theory, as well as the extended U-duality symmetry arising from theextra light-like dire
tion. 11



2 M-theory and BPS states2.1 M-theory and type IIA string theoryM-theory was originally introdu
ed as the strong 
oupling limit of type IIA superstringtheory. The latter has been argued [318, 307℄ to dynami
ally generate an extra 
ompa
tdimension at �nite 
oupling of radius Rs ∼ g
2/3
s in units of an eleven-dimensional Plan
klength lp:

Rs/lp = g2/3
s , l3p = gsl

3
s (2.1)where 1/l2s = α′ denotes the string tension and gs its 
oupling 
onstant. The strong 
ouplinglimit gs → ∞ should therefore exhibit eleven-dimensional N = 1 super-Poin
aré invarian
e.While a 
onsistent eleven-dimensional theory of quantum gravity is still missing, it hasbeen known for a long time that type IIA supergravity 
an be obtained from the eleven-dimensional N = 1 supergravity of Cremmer, Julia and S
herk, by dimensional redu
tionon a 
ir
le. M-theory is therefore required to redu
e at energies mu
h smaller than 1/lpto 11D SUGRA, in the same way as type IIA (or type IIB) superstring theory redu
es totype IIA [62, 178, 131℄ (or type IIB [277, 168, 272℄) supergravity at energies mu
h smallerthan 1/ls (whi
h is also smaller than both the ten-dimensional Plan
k mass g−1/4

s /ls andthe eleven-dimensional Plan
k mass g−1/3
s /ls at weak 
oupling). This is summarized in thefollowing diagram: M-theory −→

S1
type IIA string theory

↓ ↓11D supergravity −→
S1

10D type IIA supergravitywhere 
ompa
ti�
ation on a 
ir
le o

urs from left to right and the energy de
reases fromtop to bottom.The mat
hing relations (2.1) 
an be easily obtained by studying the Kaluza�Klein re-du
tion of 11D SUGRA, des
ribed by the a
tion
S11 =

1

l9p

∫

d11x
√−g

(

R− l6p
48

(dC)2

)

+

√
2

27 · 32

∫

C ∧ dC ∧ dC (2.2)up to fermioni
 terms that we will ignore in the following. In addition to the usual Einstein�Hilbert term involving the s
alar 
urvature R of the metri
 gMN , the a
tion 
ontains akineti
 term for the 3�form gauge potential CMNR (whi
h we shall often denote by C3) aswell as a topologi
al Wess�Zumino term required by supersymmetry. The a
tion (2.2) doesnot 
ontain any dimensionless parameter, and the normalization of the Wess�Zumino termwith respe
t to the Einstein term is �xed by supersymmetry. The dependen
e on the Plan
klength lp has been reinstated by dimensional analysis, with the following 
onventions:
[dx] = 0, [gMN ] = 2, [

√−g] = 11, [R] = −2, [CMNR] = 0, [d] = 0 , (2.3)12



relegating the dimension to the metri
 only. In parti
ular, the relation between the eleven-dimensional Plan
k length and Newton's 
onstant is given by κ2
11 = l9p/(2(2π)8). We willgenerally ignore all numeri
al fa
tors.Dimensional redu
tion is 
arried out by substituting an ansatz

ds2
11 = R2

s(dx
s + Aµdx

µ)2 + ds2
10 (2.4)for the metri
, where Rs stands for the �u
tuating radius of 
ompa
ti�
ation (as measuredin the eleven-dimensional metri
) and A des
ribes the Kaluza�Klein U(1) gauge �eld arisingfrom the isometry along xs ‡3, and splitting the three-form CMNR in a two-form Bµν = Cµνsand a 3-form Cµνρ. Only the zero Fourier 
omponent (i.e. the zero Kaluza�Klein momentumpart) of these �elds along xs is kept. On dimensional grounds the s
alar 
urvature be
omes

R(gMN) = R(gµν) +

(

∂Rs

Rs

)2

+R2
s(dA)2 , (2.5)so that the redu
ed a
tion reads

S10 =
1

l9p

∫

d10xRs

√−g
[

R +

(

∂Rs

Rs

)2

+R2
s(dA)2 + l6p(dC)2 +

l6p
R2

s

(dB)2

]

+

∫

B ∧ dC ∧ dC . (2.6)On the other hand, the low-energy limit of type IIA string theory is given (in the stringframe) by the a
tion
SIIA =

1

l8s

∫

d10x
√−g

[

e−2φ

(

R + 4(∂φ)2 − l4s
12

(dB)2

)

− l2s
4

(dA)2 − l6s
48

(dC)2

]

+

∫

B ∧ dC ∧ dC , (2.7)whi
h des
ribes the dynami
s of the (bosoni
) massless se
torNS-NS : gµν , Bµν , φ (2.8a)R-R : Aµ , Cµνρ (2.8b)denoting the metri
, antisymmetri
 tensor and dilaton from the Neveu�S
hwarz squarese
tor, and the one- and three-form gauge potentials from the Ramond square se
tor (indi
es
µ run over 1 . . . 10). Ramond p-form gauge �elds will be generi
ally denoted by Rp. Thedependen
e on the string length ls is again instated on dimensional grounds, while thedependen
e on the 
oupling

g2
s = e2φ (2.9)

‡3The subs
ript s is used to indi
ate that string theory is obtained in this way.13



stems from the fa
t that the two-derivative a
tion originates from string tree level (hen
ethe e−2φ fa
tor), with ea
h Ramond �eld 
oming with an additional power of eφ, ensuringthe 
orre
t Maxwell and Bian
hi identities (see [260℄ for a re
ent dis
ussion). In parti
ular,the ten-dimensional Newton's 
onstant is given by κ2
10 = g2

s l
8
s . Identifying the dilaton φwith the s
alar modulus lnRs up to a numeri
al fa
tor, and mat
hing the two a
tions (2.6)and (2.7) leads to the relations

Rs

l9p
=

1

g2
s l

8
s

,
1

Rsl3p
=

1

g2
s l

4
s

,
R3

s

l9p
=

1

l6s
,

Rs

l3p
=

1

l2s
, (2.10)obtained by 
omparing the terms R, dB, dA and dC respe
tively in Eqs. (2.6) and (2.7).Two of these four relations turn out to be redundant as a 
onsequen
e of supersymme-try, and they 
an be redu
ed to the mat
hing relations already stated in Eq. (2.1), orequivalently

Rs = lsgs ,
Rs

l3p
=

1

l2s
, (2.11)whi
h summarize the relation between the M-theory parameters {lp, Rs} and the stringtheory parameters {ls, gs}.Using (2.11) and (2.9) in the metri
 (2.4) we �nd the alternative form

ds2
11

l2p
= e4φ/3(dxs + Aµdx

µ)2 + e−2φ/3 ds2
10

l2s
, (2.12)whi
h will be used to relate low-energy solutions of M-theory and type IIA string theory.2.2 M-theory superalgebra and BPS statesWhile M-theory has to redu
e to 11D SUGRA in the low-energy limit, little is known aboutits mi
ros
opi
 degrees of freedom. It is however postulated that the N = 1 supersymmetryof 11D SUGRA should be valid at any energy, and the spe
trum is therefore organized intorepresentations of the super-Poin
aré algebra [308℄:

{Qα, Qβ} = (CΓM)αβZM +
1

2
(CΓMN)αβZ

MN (2.13a)
+

1

5!
(CΓMNPQR)αβZ

MNPQR

[

Qα, Z
M...
]

= 0 . (2.13b)Here Qα denotes the 32-
omponent Majorana spinor generating the supersymmetry (see[207℄ for a general a

ount on spinorial representations), and ΓMN... the antisymmetri
produ
t of Γ matri
es, i.e. ΓMΓN . . . for distin
t indi
es and zero otherwise. See AppendixA.1 for our gamma matrix 
onventions. 14



In addition to the usual translation operator PM , whi
h we denoted by ZM for uni-formity, the right-hand side of Eq. (2.13a) 
ontains �
entral 
harges� ZMN and ZMNRSTin non-trivial representations of the Lorentz group. These 
harges appear as irredu
iblerepresentations (irreps) in the de
omposition 528 = 11 + 55 + 462 of the symmetri
 ten-sor produ
t {Qα, Qβ}, and the simplest assumption is that they should 
ommute with theSUSY 
harges Qα
‡4 (their 
ommutation properties with the Lorentz generators are en
odedin their index stru
ture). They 
an be identi�ed as the ele
tri
 and magneti
 
harges ofextended obje
ts [169, 84℄ with respe
t to the gauge potential CMNP and the metri
 gMNand their Kaluza�Klein des
endants.The various 
omponents of the 
entral 
harges, their 
orresponding potentials, as well asthe nature of the solution, are summarized in Table 2.1. Here, E6 denotes the six-form dualto C3 and KI;IMNPQRST the 7-form‡5 dual to the Kaluza�Klein gauge potential gIM after
ompa
tifying the dire
tion I. This hints toward the existen
e of extended states 
hargedunder these gauge �elds, namely 2-branes, 5-branes, 6-branes and 9-branes. The 9-branes,whi
h are not 
harged under a gauge potential, are not dynami
al and 
orrespond to the�end-of-the-world� branes in 
ompa
ti�
ations of M-theory with lower supersymmetry [165℄.They will not be further 
onsidered in this review, but we will shortly return to the M2,M5 and KK6-brane.

Z0 ZI ZIJ ZIJKLM Z0I Z0IJKL

g00 g0I C0IJ E0IJKLM none KM ;MNPQRST0mass momentum M2-brane M5-brane 9-brane KK6-braneTable 2.1: M-theory 
entral 
harges, gauge �elds and extended obje
ts.The generi
 representation of the superalgebra (2.13) is generated by the a
tion of 16fermioni
 
reation operators on a va
uum |0〉 in a given representation of the Lorentz group;it is therefore 216-dimensional, i.e. 
ontains 32768 bosoni
 states and 32768 fermioni
 states.The positivity of the matrix 〈0|{Qα, Qβ}|0〉 implies a bound on the rest mass Z0 knownas the Bogomolny bound. When this bound is saturated, part of the supersymmetriesannihilate the va
uum |0〉:
∑

Z

ZMN...(CΓMN...)
αβQβ |0〉 = 0 , (2.14)resulting in a redu
ed degenera
y. Equation (2.14) requires that the 32 × 32 matrix

ZMN...(ΓMN...)
αβ has at least one zero eigenvalue, and implies in parti
ular the BPS 
ondi-

‡4It is possible to introdu
e non-Abelian relations while still preserving the Ja
obi identity [292℄, but thestatus of this possibility is still un
lear.
‡5No antisymmetry is assumed for indi
es separated by a semi-
olon. The pe
uliar index stru
ture

K1;8 = KI;IMNPQRST ensures that the seven-form indi
es M, . . . , T are distin
t from the 
ompa
t dire
tion
I, and the double o

urren
e of I has the same origin as the square radius R2 in Eq. (2.28).15



tion
det
αβ

(

∑

Z

(Z · Γ)αβ

)

= 0 , (2.15)whi
h determines the rest mass Z0 in terms of the other 
harges.The dimension 
an be further redu
ed if the zero eigenvalue is degenerate, and thisrequires more relations between the various 
harges. Sin
e only Z0 
ontributes to the tra
eon the right-hand side of Eq. (2.13a), the maximum number of zero eigenvalues is 16,
orresponding to a state annihilated by half the supersymmetries, or in short a 1/2-BPSstate. Be
ause of its redu
ed dimension, a BPS state with smallest 
harge 
annot de
ay,ex
ept if it 
an pair up with another state of opposite 
harge to make a representation twi
eas long [321℄. These states 
an therefore be followed at strong 
oupling (in the M-theorylanguage, this means for arbitrary geometries of the 
ompa
ti�
ation manifold) and serveas the basis for many duality 
he
ks.As an illustration, we wish to investigate the 
ase where, besides the mass M = Z0,only the two-form 
entral 
harges ZIJ do not vanish. This will be later interpreted as anarbitrary superposition of M2-branes. We therefore have to solve the eigenvalue equation:
Γǫ = Mǫ , Γ ≡ ZIJΓ0IJ (2.16)Squaring this equation yields

Γ2 = ZIJZIJ + ZIJZKLΓIJKL ⊜ M2 , (2.17)where the symbol ⊜ denotes the equality when a
ting on ǫ. The spa
e of solutions nowdepends on the value of kIJKL ≡ Z [IJZKL] = Z ∧ Z. If k = 0, Eq. (2.17) implies
(ZIJ)2 = M2 and Γ2 = M2. Sin
e Tr Γ = 0, the 32 × 32 matrix Γ has 16 eigenvalues Mand 16 eigenvalues −M, and therefore Eq. (2.16) is satis�ed for a dimension-16 spa
e ofve
tors ǫ. The state with 
harges ZIJ is therefore annihilated by half the supersymmetrygenerators Qα, and has a mass

M2
0 = ZIJZIJ . (2.18)The 
ondition Z ∧Z = 0 means that the antisymmetri
 
harge matrix ZIJ has rank 2, i.e.that only parallel M2-branes are superposed.If on the other hand Z ∧ Z 6= 0, we may rewrite Eq. (2.17) as

Γ′ǫ =
(

M2 −M2
0

)

ǫ , Γ′ = kIJKLΓIJKL , (2.19)and we are lead ba
k to an equation similar to Eq. (2.16). Squaring again yields
Γ

′2 = (kIJKL)2 + (k · k)IJKLΓIJKL + (k ∧ k)IJKLMNPQΓIJKLMNPQ

⊜
(

M2 −M2
0

)2
, (2.20)16



where (k · k)IJKL = kIJMNkKLMN . As before, if k · k = k ∧ k = 0, this equation implies
(kIJKL)2 = (M2 − M2

0)
2 = Γ

′2. Sin
e Tr Γ′ = 0, Eq. (2.19) is satis�ed by half thesupersymmetries, but Eq. (2.16) by a quarter only. We therefore get a 1/4-BPS state withmass squared:
M2 = ZIJZIJ +

√
kIJKLkIJKL (2.21a)

kIJKL = Z [IJZKL] . (2.21b)This expression redu
es to Eq. (2.18) for a 1/2-BPS state, i.e. when kIJKL = 0. On theother hand, if k · k or k∧k 6= 0 do not vanish, the state is at most 1/8-BPS and we have to
arry the same analysis one step further. Note that the 
onditions k ·k 6= 0 (resp. k∧k 6= 0)
an only be satis�ed when d ≥ 6 ( resp. d ≥ 8), in agreement with the absen
e of 1/8-BPSstates in more than �ve spa
e-time dimensions.2.3 BPS solutions of 11D SUGRAIn want of a mi
ros
opi
 formulation of M-theory (or of non-perturbative type IIA stringtheory), it is 
ertainly di�
ult to determine what representations of the eleven-dimensionalPoin
aré superalgebra a
tually o

ur in the spe
trum. However, this is a
hievable forBPS states, sin
e supersymmetry prote
ts these from quantum e�e
ts and in parti
ulardetermine their exa
t mass formula. They 
an be studied at arbitrarily low energy, andin parti
ular in the 11D SUGRA limit of M-theory. Instead of des
ribing the equationsimplied by the BPS 
ondition on the supergravity 
on�guration, we refer the reader toexisting reviews in the literature [106, 104, 309, 296, 310℄, and 
ontent ourselves withre
alling the four 1/2-BPS standard solutions: the pp-wave and three extended solutions,the membrane (or M2-brane), �vebrane (M5-brane) and the Kaluza�Klein monopole, alsoknown as the KK6-brane.The eleven-dimensional metri
 des
ribing the extended solutions splits into two parts:the world-volume, denoted by E1,p, in
luding the time and p world-volume dire
tions, andthe transverse Eu
lidean part E10−p. These solutions are given in terms of a harmoni
fun
tion H on the transverse spa
e, whi
h we 
hoose as a single pole
H(r) = 1 +

k

r8−p
, (2.22)although any superposition of su
h poles would do (this is stating the no-for
e 
onditionbetween stati
 BPS states; the 
onstant shift in Eq. (2.22) ensures the asymptoti
 �atnessof spa
e-time, required for a soliton interpretation). The 
onstant k depends on Newton's
onstant κ11 and on the p-brane tension, and is quantized by the requirement that thespa
e-time be smooth (we will hen
eforth 
hoose the smaller quantum).The pp-wave‡6 and KK6-brane solutions only involve the metri
, and read [170, 307℄pp-wave : ds2

11 = −dt2 + dρ2 + (H − 1)(dt+ dρ)2 + ds2(E9) (2.23a)
‡6The name pp-wave stands for plane fronted wave with parallel rays [55℄. The solution (2.23) wasgeneralized in [41℄ to in
lude ex
itations of the three-form potential.17



H = 1 +
k

r7
(2.23b)KK6-brane : ds2

11 = ds2(E1,6) + ds2
TN(y) (2.24a)

ds2
TN = Hdyidyi +H−1

(

dψTN + Vi(y)dy
i
)2

, i = 1, 2, 3 (2.24b)
∇× V = ∇ ·H , H = 1 +

k

|y| . (2.24
)The KK6-brane solution is analogous to the �ve-dimensional Kaluza�Klein monopole [295℄,and is built out from the four-dimensional Taub�NUT gravitational instanton (see Ref.[109℄ for a review of this topi
), whi
h is asymptoti
ally of the form R3 × S1, where ψTNis the 
ompa
t 
oordinate of S1 with period 2πR. Consequently, this solution only ariseswhen at least one dire
tion is 
ompa
t. It is lo
alized in the four Taub�NUT dire
tions,as should be the 
ase for a 6-brane, and magneti
ally 
harged under the graviphoton gµTN.It 
an be 
onsidered as the ele
tromagneti
 dual of a pp-wave, ele
tri
ally 
harged underthe graviphoton arising after 
ompa
ti�
ation on a 
ir
le of radius R. pp-waves in 
ompa
tdire
tions will be 
alled indi�erently Kaluza�Klein ex
itations or momentum states.The 
orresponding solutions for the M2- and M5-brane read [108, 149℄:M2-brane : ds2
11 = H−2/3ds2(E1,2) +H1/3ds2(E8) (2.25a)

dC3 = Vol(E1,2) ∧ dH−1 (2.25b)
H = 1 +

k

r6
, k =

κ2
11T2

3Ω7

(2.25
)M5-brane : ds2
11 = H−1/3ds2(E1,5) +H2/3ds2(E5) (2.26a)

dC3 = ⋆5dH (2.26b)
H = 1 +

k

r3
, k =

κ2
11T5

3Ω4

, (2.26
)whi
h also show that the M2-brane (resp. M5-) is ele
tri
ally (resp. magneti
ally) 
hargedunder the 3-form gauge potential. The symbol ⋆q denotes Hodge duality in q dimensions,and Ωn the volume of the sphere Sn with unit radius:
Ωn =

2π
n+1

2

Γ
(

n+1
2

) . (2.27)18



The tensions (or mass per unit world-volume) of these four basi
 BPS 
on�gurations
an be easily evaluated from ADM boundary integrals and Dira
 quantization, or moreeasily yet by dimensional analysis:KK-state : T0 =
1

R
, KK6-brane : T6 =

R2

l9p
,M2-brane : T2 =

1

l3p
, M5-brane : T5 =

1

l6p
.

(2.28)The tension (i.e. mass) of the pp-wave with momentum along a 
ompa
t dire
tion of radius
R (o

asionally denoted as RTN) is the one expe
ted for a massless parti
le in elevendimensions; the tension of the KK6-brane is easily obtained from the latter by ele
tri
�magneti
 duality, after reading o� from Eq. (2.6) the Kaluza�Klein gauge 
oupling 1/g2

KK =
R3/l9p:

T6 =
T0

g2
KK

=
R2

l9p
. (2.29)All these BPS states have been inferred from a 
lassi
al analysis of 11D supergravity.They should in prin
iple arise from a mi
ros
opi
 de�nition of M-theory, whi
h wouldallow a full a

ount of their intera
tions. Nevertheless, it is still possible to formulatetheir dynami
s in terms of their 
olle
tive 
oordinates whi
h result from the breaking ofglobal symmetries in the presen
e of the soliton [130℄. Supersymmetry gives an importantguideline, sin
e (the unbroken) half of the 32 super
harges has to be realized linearly on theworld-volume, while the other half is realized non-linearly. This �xes the dynami
s of theM5-brane to be des
ribed in terms of the 
hiral (2, 0) six-dimensional tensor theory [59℄,while the membrane is des
ribed by the 2+1 supermembrane a
tion [42, 86℄. Unfortunately,the quantization of these two theories remains a 
hallenge. As for the KK6-brane, thedes
ription of its dynami
s is still an unsettled problem [155℄.2.4 Redu
tion to type IIA BPS solutionsUpon 
ompa
ti�
ation on a 
ir
le (with periodi
 boundary 
onditions on the fermion �elds),the supersymmetry algebra is una�e
ted and the generators merely de
ompose under theredu
ed Lorentz group. The 32-
omponent Majorana spinor Qα de
omposes into two 16-
omponent Majorana�Weyl spinors of SO(1, 9) with opposite 
hiralities, and the N = 1supersymmetry in 11D gives rise to non-
hiral N = 2 supersymmetry in 10D. However, itis 
onvenient not to separate the two 
hiralities expli
itly, and rewrite the supersymmetryalgebra as

{Qα, Qβ} = (CΓµ)αβPµ + (CΓs)αβZ

+
1

2
(CΓµν)αβZ

µν + (CΓµΓs)αβZ
µ (2.30)

+
1

5!
(CΓµνρστ )αβZ

µνρστ +
1

4!
(CΓµνρσΓs)αβZ

µνρσ ,19



where the eleventh Gammamatrix Γs is identi�ed with the 10D 
hirality operator Γ0Γ1 . . .Γ9.The eleven-dimensional 
entral 
harges give rise to the 
harges Z, Zµ, Zµν , Zµνρσ, Zµνρστwhose interpretation is summarized in Table 2.2, where we omitted the momentum 
harge
Pµ. In this table, Km;mnpqrst denotes the 6-form dual to gµm after 
ompa
ti�
ation of thedire
tion m.

Z Z ij Z i Z ijklm Z ijkl Z0i Z0 Z0ijkl Z0ijk

A0 C0ij B0i E0ijklm R0ijkl none none Km;mpqrs0 R0lmnpqrD0 D2 F1 NS5 D4 D8 9-brane KK5 D6Table 2.2: Type IIA 
entral 
harges, gauge �elds and extended obje
tsUnder Kaluza�Klein redu
tion, the BPS solutions of 11D SUGRA yield BPS solutionsof type IIA supergravity. This redu
tion 
an, however, be 
arried out only if the eleventh di-mension is a Killing ve
tor of the 
on�guration. This is automati
ally obeyed if the eleventhdire
tion is 
hosen along the world-volume E1,p, and redu
es the eleven-dimensional p-braneto a ten-dimensional (p−1)-brane with tension Tp−1 = RTp; this pro
edure is 
alled diagonalor double redu
tion [105℄, and we shall 
all the resulting solutions wrapped or longitudinalbranes. One may also want to 
hoose the eleventh dire
tion transverse to the brane, butthis is not an isometry, sin
e the dependen
e of the harmoni
 fun
tion H on the transverse
oordinates is non-trivial. However, this 
an be easily evaded by using the superpositionproperty of BPS states, and 
onstru
ting a 
ontinuous sta
k of parallel p-branes along theeleventh dire
tion. The harmoni
 fun
tion on E10−p turns into an harmoni
 fun
tion on
E9−p:

∫ ∞

−∞

dxs

[(xs)2 + ρ2]
8−p

2

∼ 1

ρ7−p
. (2.31)We therefore obtain an unwrapped or transverse p-brane in ten dimensions with the sametension Tp as the one we started with. This pro
edure is usually 
alled verti
al or dire
tredu
tion. It has also been proposed to redu
e along the isometry that arises when thesphere S9−p in the transverse spa
e E10−p is odd-dimensional, hen
e given as a U(1) Hopf�bration [107℄, but the status of the solutions obtained by this angular redu
tion is stillun
lear.Applying this pro
edure to the four M-theory BPS 
on�gurations, with tensions givenin Eq. (2.28), we �nd, after using the relations (2.11), the set of BPS states of type IIAstring theory listed in Table 2.3:As the table shows, we re
over the set of all 1/2 BPS solutions of type IIA string theory,whi
h in
lude the KK ex
itations, the fundamental string and the set of solitoni
 states
omprised by the NS5-brane, KK5-brane and the Dp-branes‡7 with p = 0, 2, 4, 6 ‡8. The

‡7The letter D stands for the Diri
hlet boundary 
onditions in the 9 − p dire
tions orthogonal to theworld-volume of the Dp-brane, whi
h for
e the open strings to move on this (p+1)-dimensional hyperplane.
‡8There is also an 8-brane 
oupling to a nine-form, whose expe
tation value is related to the 
osmologi
al
onstant [256, 40, 38℄. 20



M-theory mass/tension type IIAlongitudinal M2-brane T1 = Rs

l3p
= 1

l2s
F-stringtransverse M2-brane T2 = 1

l3p
= 1

gsl3s
D2-branelongitudinal M5-brane T4 = Rs

l6p
= 1

gsl5s
D4-branetransverse M5-brane T5 = 1

l6p
= 1

g2
s l6s

NS5-branelongitudinal KK mode T0 = 1
Rs

= 1
gsls

D0-branetransverse KK mode T0 = 1
Ri

= 1
Ri

KK modelongitudinal KK6-brane T5 = RsR2
TN

l9p
= R2

TN

g2
s l8s

KK5-braneKK6-brane with RTN = Rs T6 = R2
s

l9p
= 1

gsl7s
D6-branetransverse KK6-brane T6 = R2

TN

l9p
= R2

TN

g3
s l9s

61
3-braneTable 2.3: Relation between M-theory and type IIA BPS states.NS5-brane is a solitoni
 solution that is magneti
ally 
harged under the Neveu�S
hwarz

B-�eld [59℄. The Dp-branes are solitoni
 solutions, ele
tri
ally 
harged under the RR gaugepotentials Rp+1 (or magneti
ally under R7−p) [256℄. The tension of these BPS states doesnot re
eive any quantum 
orre
tions perturbative or non-perturbative, whi
h is why theseobje
ts are useful when 
onsidering non-perturbative dualities. States ele
tri
ally (resp.magneti
ally) 
harged under the Neveu�S
hwarz gauge �elds have tensions that s
ale withthe string 
oupling 
onstant as g0
s (resp. 1/g2

s), whereas states 
harged under the Ramond�elds have tensions that s
ale as 1/gs.The last line in Table 2.3 is an un
onventional solution, whi
h we 
all a 61
3-brane, ob-tained by verti
al redu
tion of the KK6-brane in a dire
tion in the R3 part of the Taub�NUTspa
e [54℄. The integration involved in building up the sta
k is, however, logarithmi
allydivergent, and, if regularized, yields a non-asymptoti
ally �at spa
e. However, as we willsee in more detail in Subse
tion 4.9, at the algebrai
 level this solution is required by U-duality symmetry. At that point we will also explain our nomen
lature for this (and other)non-
onventional solutions. It is also interesting to note that all the tensions obtainedabove are not independent, sin
e they follow from the basi
 relations (2.11). This alreadyhints at the presen
e of a larger stru
ture that relates all these states, a fa
t that we willestablish using the 
onje
tured U-duality symmetry of 
ompa
ti�ed M-theory.The dimensional redu
tion 
an also be 
arried out at the level of the supergravity
on�guration itself. For example, using the relation (2.12) between the 11D metri
 and10D string metri
, one �nds that a solution with 11D metri
 of the form

ds2
11 = Hκds2(E1,p) +Hλds2(E10−p) (2.32)21



yields two 10D solutions with metri
 and dilaton
ds2

10 = Hαds2(E1,p′) +Hβds2(E9−p′) , e−2φ = Hγ (2.33a)where diagonal : p′ = p− 1 , α =
3κ

2
, β = λ+

κ

2
, γ = −3κ

2
, (2.33b)verti
al : p′ = p , α = κ+

λ

2
, β =

3λ

2
, γ = −3λ

2
, (2.33
)for diagonal and verti
al redu
tion respe
tively. As explained in the beginning of thissubse
tion, in the �rst 
ase the harmoni
 fun
tion is the same as the original one, and inthe se
ond 
ase it is an harmoni
 fun
tion on a transverse spa
e with one dimension less.The redu
tion of the gauge potentials 
an be worked out similarly.The resulting 10D type IIA 
on�gurations are then des
ribed by the following solutions:F-string : ds2

10 = H−1ds2(E1,1) + ds2(E8) (2.34a)
B01 = H−1 , e−2φ = H , H = 1 +

k

r6
(2.34b)NS5-brane : ds2

10 = ds2(E1,5) +Hds2(E4) (2.35a)
dB = ⋆4dH , e−2φ = H−1 , H = 1 +

k

r2
(2.35b)Dp-brane : ds2

10 = H−1/2ds2(E1,p) +H1/2ds2(E9−p) (2.36a)
e−2φ = H(p−3)/2 , H = 1 +

k

r7−p
(2.36b)

F (p+2)
e = Vol(E1,p) ∧ dH−1 , p = 0, 1, 2 (2.36
)

F (8−p)
m = ⋆9−pdH , p = 4, 5, 6 (2.36d)
F (5) = F (5)

e + F (5)
m , p = 3 (2.36e)22



where, for 
ompleteness, we have in
luded the Dp-brane solutions for all p = 0 . . . 6, al-though we note that only even p o

urs in type IIA. The subs
ripts e and m indi
atewhether the p-branes are ele
tri
ally or magneti
ally 
harged under the indi
ated �elds.One also �nds the ten-dimensional gravitational solutions, 
onsisting of the pp-waves andKK5-brane, whi
h have a metri
 analogous to the eleven-dimensional 
ase (see (2.23) and(2.24)), with harmoni
 fun
tions on a transverse spa
e with one dimension less. Of 
ourse,one may expli
itly verify that all of these solutions are indeed solutions of the tree-levela
tion (2.7).In 
ontrast to the M2-brane and M5-brane, the dynami
s of Dp-branes has a ni
e andtra
table des
ription as (p + 1)-dimensional hyperplanes on whi
h open strings 
an endand ex
hange momentum with [256℄. The integration of open string �u
tuations around asingle D-brane at tree level yields the Born�Infeld a
tion [58, 210, 18℄,
SBI =

1

lp+1
s

∫

dp+1ξe−φ

√

ĝ + B̂ + l2sF . (2.37)Here, the hatted �elds ĝ, B̂ stand for the pullba
ks of the bulk metri
 and antisymmetri
tensor to the world-volume of the brane, and F is the �eld strength of the U(1) gauge �eldliving on the brane. The 
oupling to the RR gauge potentials is given by the topologi
alterm [97, 143℄‡9
SRR = i

∫

eB̂+l2sF ∧R , (2.38)where R =
∑

p Rp denotes the total RR potential.In the zero-slope limit, the Born�Infeld a
tion be
omes the a
tion of a supersymmetri
Maxwell theory with 16 super
harges. In the presen
e of N 
oin
iding D-branes the world-volume gauge symmetry gets enhan
ed from U(1)N to U(N), as a 
onsequen
e of zeromass strings stret
hing between di�erent D-branes [320℄. The non-Abelian analogue of theBorn�Infeld a
tion is not known, although some partial Abelianization is available [312℄,but its zero-slope limit is still given by U(N) super-Yang�Mills theory.2.5 T-duality and type IIA/B string theorySo far, we have dis
ussed M-theory and its relation to type IIA string theory. In thissubse
tion, we turn to type IIB string theory and its relation, via T-duality, to type IIA[95, 80℄. We �rst re
all that the massless se
tor of type IIB 
onsists of the same Neveu�S
hwarz �elds (2.8a) as the type IIA string, but the Ramond gauge potentials of type IIBnow in
lude a 0-form (s
alar), a 2-form and a 4-form with self-dual �eld strength,
a , Bµν , Dµνρσ , (2.39)

‡9There is also a gravitational term required for the 
an
ellation of anomalies [139℄, but it does not
ontribute on �at ba
kgrounds. 23



with ∗D4 = D4. The low-energy e�e
tive a
tion has a form similar to that in (2.7), with theappropriate �eld strengths of the even-form RR potentials in (2.39), as long as the 4-formis not in
luded‡10. The standard 1/2-BPS solutions of type IIB are the fundamental string,NS5-brane, Dp-branes with odd p, pp-waves and KK5-brane.In order to des
ribe the pre
ise T-duality mapping, we again write the ten-dimensionalmetri
 as a U(1) �bration
ds2

10 = R2(dx9 + Aµdx
µ)2 + gµνdx

µdxν , µ, ν = 0 . . . 8 . (2.40)T-duality on the dire
tion 9 relates the �elds in the type IIA and type IIB theories in theNeveu�S
hwarz se
tor as
T9 : R ↔ l2s

R
, gs ↔ gs

ls
R
, Aµ ↔ B9µ , Bµν ↔ Bµν − AµB9ν + AνB9µ , (2.41)leaving gµν and the string length ls invariant. The Ramond gauge potentials are furthermoreidenti�ed on both sides a

ording to

T9 : R ↔ dx9 · R + dx9 ∧R , R =
∑

p

Rp , (2.42)where · and ∧ denote the interior and exterior produ
ts respe
tively. In other words, the 9index is added to the antisymmetri
 indi
es of R when absent, or deleted if it was alreadypresent. These identi�
ations a
tually re
eive 
orre
tions when B 6= 0, and the pre
isemapping is [41, 143, 111℄
eBR → dx9 · (eBR) + dx9 ∧ (eBR) (2.43)in a

ord with the T-duality 
ovarian
e of the RR 
oupling in (2.38). Whereas one T-duality maps the type IIA string theory to IIB and should be thought of as a 
hange ofvariable, an even number of dualities 
an be performed and 
orrespond to a
tual globalsymmetries of either type IIA or type IIB theories. This symmetry will be dis
ussed inSe
tion 3, and its non-perturbative extension in Se
tion 4.The a
tion on the BPS spe
trum 
an again be easily worked out, at the level of tensionformulae or of the supergravity solutions themselves. As implied by the ex
hange of theKaluza�Klein and Kalb�Ramond gauge �elds Aµ and B9µ, states with momentum along the9th dire
tion are inter
hanged with fundamental string winding around the same dire
tion.On the other hand, T-duality ex
hanges Neumann and Diri
hlet boundary 
onditions onthe open string world-sheet along the 9th dire
tion, mapping Dp-branes to D(p + 1)- orD(p − 1)-branes, depending on the orientation of the world-volume with respe
t to x9[80, 37℄. This of 
ourse agrees with the mapping of Ramond gauge potentials in Eq. (2.42).Similarly, NS5-branes are invariant or ex
hanged with KK5-branes, a

ording to whether

‡10A lo
al 
ovariant a
tion for the self-dual four-form 
an be written with the help of auxiliary �elds [81℄,but for most purposes the equations of motion are su�
ient.24



they are wrapped or unwrapped, respe
tively [111, 249℄ ‡11. This 
an also be easily seenby applying the transformation (2.41) to the tension formulae, as summarized in Table 2.4for a T-duality Ti on an arbitrary 
ompa
t dimension with radius Ri.type IIA (B) tension Ti-dual tension type IIB (A)KK mode M = 1
Ri

M = Ri

l2s
winding modewrapped Dp-brane Tp−1 = Ri

gslp+1
s

Tp−1 = 1
gslps

unwrapped D(p− 1)-branewrapped NS5-brane T4 = Ri

g2
s l6s

T4 = Ri

g2
s l6s

wrapped NS5-braneunwrapped NS5-brane T5 = 1
g2

s l6s
T5 =

R2
i

g2
s l6s

unwrapped KK5-braneTable 2.4: T-duality of type II BPS states.T-duality 
an then be used to translate the relation between strongly 
oupled type IIAtheory and M-theory in type IIB terms. In this way, it is found that the type IIB stringtheory is obtained by 
ompa
tifying M-theory on a two-torus T 2, with vanishing area, anda 
omplex stru
ture τ equated to the type IIB 
omplex 
oupling parameter [273℄:
τ = a +

i

gs
. (2.44)Here, a is the expe
tation value of the Ramond s
alar and gs the type IIB string 
oupling.We fo
us for simpli
ity on the 
ase where the torus is re
tangular, so that τ is purelyimaginary and hen
e the RR s
alar a vanishes. In this 
ase, the relation between theM-theory parameters and type IIB parameters reads

gs =
Rs

R9

, l2s =
l3p
Rs

, RB =
l3p

RsR9

, (2.45)where Rs, R9 are the radii of the M-theory torus and RB the radius of the type IIB 9thdire
tion. The un
ompa
ti�ed type IIB theory is obtained in the limit (Rs, R9) → ∞,keeping Rs/R9 �xed. From Eq. (2.45), we 
an then identify the type IIB BPS states tothose of M-theory 
ompa
ti�ed on T 2. The results are displayed in Table 2.5 for statesstill existing in un
ompa
ti�ed type IIB theory, and in Table 2.6 for states existing onlyfor �nite values of RB.
‡11 Whereas the worldvolume dynami
s of type IIB NS5- and D5-branes is des
ribed by a non-
hiral

(1, 1) ve
tor multiplet, the type IIB KK5-brane is 
hiral and supports a (2, 0) tensor multiplet. Indeed, itis T-dual to the 
hiral type IIA NS5-brane [10℄. On the other hand, the type IIA KK5-brane, dual to thetype IIB NS5-brane, is non
hiral.
25



M-theory mass/tension type IIBM2-brane wrapped around xs Rs

l3p
= 1

l2s
fundamental stringM2-brane wrapped around x9 R9

l3p
= 1

gsl2s
D1-brane (D-string)M5-brane wrapped on xs, x9 RsR9

l6p
= 1

gsl4s
D3-braneKK6-brane wrapped on x9,
harged under gµs

R2
sR9

l9p
= 1

gsl6s
D5-braneKK6-brane wrapped on xs,
harged under gµ9

R2
9Rs

l9p
= 1

g2
s l6s

NS5-braneTable 2.5: Relations between M-theory and type IIB BPS states.M-theory mass/tension type IIBM2-brane wrapped on xs, x9 R9Rs

l3p
= 1

RB
KK modeunwrapped M5-brane 1

l6p
=

R2
B

g2
s l8s

KK5-brane with RTN = Rsunwrapped M2-brane 1
l3p

= RB

gsl4s
wrapped D3-braneM5-brane wrapped on xs Rs

l6p
= RB

gsl6s
wrapped D5-braneM5-brane wrapped on x9 R9

l6p
= RB

g2
s l6s

wrapped NS5-braneunwrapped KK6-brane,
harged under gµs

R2
s

l9p
= RB

gsl8s
wrapped D7-braneunwrapped KK6-brane,
harged under gµ9

R2
s

l9p
= RB

g3
s l8s

wrapped 73-braneTable 2.6: More relations between M-theory and type IIB BPS states.As in Table 2.3, we see in the last entry of Table 2.6 a non-standard BPS state withtension s
aling as g−3
s , whi
h we have 
alled a 73-brane. As this brane will turn out to berelated to the D7-brane by S-duality (see Subse
tion 4.5) it may also be referred to as a(1,0) 7-brane. This and other non-standard solutions will be dis
ussed in more detail inSubse
tion 4.9.
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3 T-duality and toroidal 
ompa
ti�
ationHaving dis
ussed how dualities of string theory lead to the idea of a more fundamentaleleven-dimensional M-theory, we now turn to the symmetries that this theory should ex-hibit, with the hope of getting more insight into its underlying stru
ture. For this purpose,it is 
onvenient to 
onsider 
ompa
ti�
ations on tori, whi
h have the advantage of preserv-ing a maximal amount of the original super-Poin
aré symmetries, while bringing in degreesof freedom from extended states in eleven dimensions in a still manageable way.The approa
h here is similar to the one that was taken for the perturbative stringitself, where the study of T-duality in toroidal 
ompa
ti�
ations revealed the existen
eof spontaneously broken �stringy� gauge symmetries (see [135℄ for a review). Given theanalogy between the two problems, we shall �rst review in this se
tion how T-duality instring theory appears at the level of the low-energy e�e
tive a
tion and of the spe
trum,with a parti
ular emphasis on the brane spe
trum. We shall then apply the same te
hniquesin Se
tions 4 and 5 in order to dis
uss U-duality in M-theory.3.1 Continuous symmetry of the e�e
tive a
tionCompa
ti�
ation of string theory on a torus T d 
an be easily worked out at the level of thelow-energy e�e
tive a
tion, by substituting an ansatz similar to (2.4)
ds2

10 = gij

(

dxi + Ai
µdx

µ
) (

dxj + Aj
νdx

ν
)

+ gµνdx
µdxν (3.1a)

i, j = 1 . . . d , µ, ν = 0 . . . (9 − d) (3.1b)in the ten-dimensional a
tion
S10 =

1

l8s

∫

d10x
√−ge−2φ

(

R + 4(∂φ)2 − l4s
12

(dB)2

)

, (3.2)where we omitted Ramond and fermion terms. We have also split the ten-dimensionaltwo-form B into d(d− 1)/2 s
alars Bij , d ve
tors Biµ and a two-form Bµν .Con
entrating on the s
alar se
tor, and rede�ning the dilaton as V e−2φ = ldse
−2φd where

V =
√

det g ‡12 is the volume of the internal metri
, we obtain
Sscal =

1

l8−d
s

∫

d10−dx
√−ge−2φd

(

4(∂φd)
2 +

1

4
Tr ∂g∂g−1 +

1

4
Tr g−1∂B g−1∂B

)

. (3.3)This 
an be rewritten as
Sscal =

1

l8−d
s

∫

d10−dx
√−ge−2φd

(

4(∂φd)
2 +

1

8
Tr ∂M∂M−1

)

, (3.4)
‡12g denotes the internal metri
 gij , ex
ept in the spa
e-time volume element √−g multiplying the a
tiondensity. 27



where M is the 2d× 2d symmetri
 matrix
M =

(

g−1 g−1B

−Bg−1 g −Bg−1B

)

, M tηM = η , η =

(

Id

Id

)

, (3.5)orthogonal for the signature (d, d) metri
 η. The s
alars gij and Bij therefore parametrizea symmetri
 manifold
H =

SO(d, d,R)

SO(d) × SO(d)
∋M , (3.6)where SO(d) × SO(d) is the maximal 
ompa
t subgroup of SO(d, d,R). The matrix Mis more properly thought of as the SO(d) × SO(d) invariant M = V tV built out from thevielbein in SO(d, d,R)

V =

























1/R1

1/R2 . . .
R1

R2 . . .
























.

























1 −A1
2 . . . B11 B12 . . .

1
. . . B21 B22 . . .. . . ... ...

1 A1
2 . . .

1
. . .. . .
























(3.7)

orresponding to the Iwasawa de
omposition of SO(d, d,R), as will be dis
ussed in moredetail in Se
tion 4.2. The two-derivative a
tion for the s
alars gij, Bij, φd is thereforeinvariant [222℄ under the a
tion M → ΩtMΩ of Ω ∈ O(d, d,R), and so is the entire two-derivative a
tion in the Neveu�S
hwarz se
tor, if the 2d gauge �elds Ai

µ and Biµ transformaltogether as a ve
tor under O(d, d,R), the dilaton φd, metri
 gµν and two-form Bµν beinginvariant.The a
tion on the Ramond se
tor is more 
ompli
ated, sin
e the Ramond s
alars andone-forms transform as a spinor (resp. 
onjugate spinor) of SO(d, d,R), with the 
hiral-ity depending on whether we 
onsider type IIA or IIB. Elements of O(d, d,R) with (−1)determinant �ip the 
hirality of spinors; they therefore are not symmetries of the a
tionin the Ramond se
tor, but dualities, ex
hanging type IIA and type IIB theories. Indeedit is easy to see that the R → 1/R dualities that we dis
ussed in Subse
tion 2.5 belongto this 
lass of transformations. The tree-level e�e
tive a
tion is therefore invariant underthe 
ontinuous symmetry SO(d, d,R), whi
h extends the symmetry Sl(d,R) that would bepresent in the dimensional redu
tion of any Lorentz-invariant �eld theory.3.2 Charge quantization and T-duality symmetryOwing to the o

urren
e of parti
les 
harged under the gauge �elds Ai
µ and Biµ, the 
on-tinuous symmetry SO(d, d,R) 
an, however, not exist at the quantum level. For instan
e,28



perturbative string states have integer momenta mi and winding numbers mi under thesegauge �elds, lying in an even self-dual Lorentzian latti
e Γp. The 1/2-BPS states are ob-tained when the world-sheet os
illators α†
µn and ᾱ†

µn are not ex
ited, and satisfy the massformula and mat
hing 
ondition
M2 = mtMm

= (mi +Bijm
j)gik(mk +Bklm

l) +migijm
j (3.8a)

‖m‖2 = 0 , (3.8b)where m = (mi, m
i) is the ve
tor of 
harges, ‖m‖2 = 2mim

i its Lorentzian square-normand M is the moduli matrix given in (3.5).On the other hand, 1/4-BPS states are obtained when the world-sheet os
illators areex
ited on the holomorphi
 (or antiholomorphi
) side only, and have mass
M2 = mtMm+

∣

∣‖m‖2
∣

∣ , (3.9)where the norm |‖m‖2| is equated to the left or right os
illator number by the mat
hing
onditions. Only the dis
rete subgroup preserving Γp 
an be a quantum symmetry, andthis group is O(d, d,Z), the set of integer-valued O(d, d,R) matri
es. In parti
ular, thesubgroup Sl(d,R) of SO(d, d,R) is redu
ed to the modular group of the torus Sl(d,Z), anobvious 
onsequen
e of momentum quantization in 
ompa
t spa
es.In addition to this perturbative spe
trum, type II string theory also admits a variety ofD-branes, whi
h are 
harged under the Ramond gauge potentials. Their 
harges take valuein another latti
e, ΓD, and transform as a spinor under SO(d, d,R). Again, the determinant
(−1) elements of O(d, d,Z) �ip the 
hirality of spinors, and therefore do not preserve ΓD.As we shall see shortly, SO(d, d,Z) however does preserve the latti
e of D-brane 
harges.This is in agreement with the fa
t that this group 
an be seen as the Weyl group of theextended gauge symmetries that appear at parti
ular points in the torus moduli spa
e, andare spontaneously broken elsewhere [134℄.3.3 Weyl and Borel generatorsIn order to better understand the stru
ture of the T-duality symmetry, it is useful toisolate a set of generating elements of SO(d, d,Z). We de�ne Weyl elements as the onesthat preserve the 
onditions

gij = R2
i δij , Bij = 0 , (3.10)that is square tori with vanishing two-form ba
kground, and Borel elements as the onesthat do not. Weyl generators in
lude the ex
hanges of radii Sij : Ri ↔ Rj , whi
h belongto the Sl(d,Z) modular group, as well as the simultaneous inversions of two radii Tij :

(Ri, Rj) → (1/Rj, 1/Ri). 29



We 
hoose the following minimal set of Weyl generators:
Si : Ri ↔ Ri+1 , i = 1 . . . d− 1 , (3.11a)

T : (gs, R1, R2) ↔
(

gs

R1R2
,

1

R2
,

1

R1

)

. (3.11b)For 
onvenien
e, we followed the double T-duality on dire
tions 1 and 2 by an ex
hange ofthe two radii, in
luded the a
tion on the 
oupling 
onstant and set the string length ls to1. Altogether, the Weyl group of SO(d, d,Z) is the �nite group
W (SO(d, d)) = Z2 ⊲⊳ Sd (3.12)generated by the T-duality transformation T and the permutation group Sd of the d dire
-tions of the torus‡13.On the other hand, Borel generators in
lude the Borel elements of the modular subgroup,a
ting as γi → γi + γj on the homology latti
e of the latti
e, as well as the integer shifts ofthe expe
tation value of the two-form in the internal dire
tions Bij → Bij +1. Any elementin SO(d, d,Z) 
an be rea
hed by a sequen
e of these transformations.Weyl and Borel generators 
an be given a more pre
ise de�nition as operators on theweight spa
e of the Lie group or algebra under 
onsideration (see for instan
e Ref. [176℄ foran introdu
tion to the relevant group theory) ‡14. Weyl generators 
orrespond to orthogonalre�e
tions with respe
t to planes normal to any root and generate a �nite dis
rete group,while Borel generators a
t on the weight latti
e by translation by a positive root. Any �nite-dimensional irredu
ible representation (of the 
omplex Lie algebra) 
an then be obtainedby a
tion of the Borel group on a, so 
alled, highest-weight ve
tor, and splits into orbits ofthe Weyl group with de�nite lengths.3.4 Weyl generators and Weyl re�e
tionsWeyl generators en
ode the simplest and most interesting part of T-duality. It is very easyto study the stru
ture of the �nite group they generate, by viewing them as orthogonalre�e
tions in a ve
tor spa
e (the weight spa
e) generated by the logarithms of the radii.More pre
isely, let us represent the s
alar moduli (ln gs, lnR1, . . . , lnRd) as a form ϕ on ave
tor spa
e Vd+1 with basis e0, e1, . . . , ed, and asso
iate to any weight ve
tor λ = x0e0 +

x1e1 + · · ·+ xded, its tension‡15
T = e〈ϕ,λ〉 = gx0

s R
x1

1 R
x2

2 . . . Rxd

d . (3.13)
‡13The Weyl group of SO(d, d) 
an a
tually be written as the semi-dire
t produ
t Sd ⋉ (Z2)

d−1, wherethe 
ommuting Z2's are the double inversions of Ri and, say, R1.
‡14From this point of view, Weyl generators are not properly speaking elements of the group, but 
an belifted to generators thereof, at the 
ost of introdu
ing Z2 phases in their a
tion on the step operators Eα.See for instan
e Appendix B in Ref. [212℄, for a dis
ussion of this issue in the physi
s literature.
‡15One 
ould omit the x0 
oordinate sin
e gs 
an be absorbed by a power of the invariant Plan
k length
∏

Ri/g2
s , but we in
lude it for later 
onvenien
e. 30



The ve
tor λ should be seen as labelling a state in the BPS spe
trum, with tension T . Thegenerators (3.11) are then implemented as linear operators on Vd+1 with matri
es
Si =















1

1

1

Id−3















, T =















1

−1 −1

−1 −1

Id−3















(3.14)These operators Si and T in (3.14) are easily seen to be orthogonal with respe
t to thesignature (− + · · ·+) metri

ds2 = −(dx0)2 + (dxi)2 + dx0(dx1 + · · ·+ dxd) , (3.15)and 
orrespond to Weyl re�e
tions

λ→ ρα(λ) = λ− 2
α · λ
α · α α (3.16)with respe
t to planes normal to the ve
tors

αi = ei+1 − ei , i = 1 . . . d− 1 (3.17a)
α0 = e1 + e2 . (3.17b)The group generated by Si and T is therefore a Coxeter group, familiar from the theory ofLie algebras (see [176℄ for an introdu
tion, and [177, 122℄ for a full a

ount). Its stru
ture
an be 
hara
terized by the matrix of s
alar produ
ts of these roots:

(αi)
2 = (α0)

2 = 2 (3.18a)
αi · αi+1 = α2 · α0 = −1 . (3.18b)This pre
isely reprodu
es the Cartan matrix Dd of the T-duality group SO(d, d,R), sum-marized in the Dynkin diagram:

©0

�

⊕2 − ⊕3 − · · ·− ⊕d−1

�

+1

(3.19)
The only deli
ate point is that the signature of the metri
 (3.15) on Vd+1 is not positive-de�nite. This 
an be easily evaded by noting that the invarian
e of Newton's 
onstant

∏

Ri/g
2
s implies that all roots are orthogonal to the ve
tor

δ = e1 + · · ·+ ed − 2e0 (3.20)31



with negative proper length δ2 = −(d + 4), so that the re�e
tions a
tually restri
t to thehyperplane Vd normal to δ:
δ · x = x0 = 0 . (3.21)The Lorentz metri
 on Vd+1 then restri
ts to a positive-de�nite metri
 gij = δij on Vd.The dualities Si and T therefore generate the Coxeter group Dd, whi
h is the same as theWeyl group of the Lie algebra of SO(d, d,R). In order to distinguish the various real anddis
rete forms of Dd, one needs to take into a

ount the Borel generators, whi
h we deferto Subse
tion 3.7.The Dynkin diagram (3.19) allows a number of simple observations. We may re
ognizethe Dynkin diagramAd−1 of the Lorentz group Sl(d,R) (denoted with+), extended with theroot© into the Dynkin diagram of the T-duality symmetry SO(d, d,R). T-duality betweentype IIA and type IIB 
orresponds to the outer automorphism a
ting as a re�e
tion alongthe horizontal axis of the Dynkin diagram. The 
hain denoted with ©'s represents a dual

Sl(d,R) subgroup, whi
h is nothing but the Lorentz group on the type IIB T-dual torus.The full T-duality group is generated by these two non-
ommuting Lorentz groups of thetorus and the dual torus.De
ompa
ti�
ation of the torus T d into T d−1 is a
hieved by dropping the rightmostroot, whi
h redu
es Dd to Dd−1. When the root α2 is rea
hed, the diagram dis
onne
tsinto two pie
es, 
orresponding to the identity SO(2, 2,R) = Sl(2,R) × Sl(2,R), or to thede
omposition of the torus moduli spa
e into the T and U upper half-planes‡16. Finally,for d = 1 the T-duality group SO(1, 1,Z) be
omes trivial, while the generator of O(1, 1,Z)
orresponds to the inversion R ↔ 1/R, not a symmetry of either type IIA or type IIBtheories.3.5 BPS spe
trum and highest weightsHaving proved that the transformations Si and T indeed generate the Weyl group of
SO(d, d,Z), we 
an use the same formalism to investigate the orbit of the various BPSstates of string theory. A

ording to (3.13) the mass or tension 
an be represented as aweight ve
tor in Vd+1, and one should let Weyl and Borel generators a
t on it to obtain thefull orbit. Ea
h orbit admits a highest weight from whi
h all other elements 
an be rea
hedby a sequen
e of Weyl and Borel generators (Weyl generators alone are not su�
ient,be
ause they preserve the length of the weight).All highest weights 
an be written as linear 
ombinations with positive integer 
oe�-
‡16The extra Z2 ex
hanging the two Sl(2, R) fa
tors belongs to O(2, 2, R) but not to SO(2, 2, R).
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ients of the fundamental weights
λ(1) = e1 − e0 → MwD =

R1

gs
(3.22a)

λ(2) = e1 + e2 − 2e0 → MNS =
R1R2

g2
s

(3.22b)
λ(d−2) = e1 + · · ·+ ed−2 − 2e0 → Mw...wNS =

R1 . . . Rd−2

g2
s

(3.22
)
λ(d−1) = e1 + · · · + ed−1 − 2e0

.
= −ed → MwF =

1

Rd
(3.22d)

λ(0) = −e0 → MD =
1

gs

(3.22e)dual to the simple roots, that is λ(i) · αj = −δij ‡17.We used the symbol .
= for equalitymodulo the invariant ve
tor δ in Eq. (3.20), and the notation F ,D and NS for fundamental,Diri
hlet and Neveu�S
hwarz states, respe
tively, depending on the power of the 
oupling
onstant involved, and w for ea
h wrapped dire
tion (the notation wF is justi�ed by thefa
t that the Kaluza�Klein states are in the same multiplet as the string winding states).This is summarized in the Dynkin diagram

1
gs

�

R1R2

g2
s

− R1R2R3

g2
s

− · · ·− 1
Rd

�

R1

gs

(3.23)
whi
h shows the highest weights asso
iated to ea
h node of the Dynkin diagram.In parti
ular, we see from (3.23) that the type IIA D-parti
le mass (M = 1/gsls) liesin the spinor representation dual to α1, just as do the type IIB D-string tension (T1 =
1/gsl

2
s) and D-instanton a
tion (T−1 = 1/gs), whereas the type IIB D-parti
le mass (M =

Ri/gsl
2
s) and type IIA D-string tension (T1 = Ri/gsl

3
s) and D-instanton a
tion (T = Ri/gsls)transform in the spinor representation dual to α0, of opposite 
hirality. On the other hand,the Kaluza�Klein states lie in a ve
tor representation. All highest-weight representations
an be obtained from the tensor produ
t of these �extreme� (from the point of view of theDynkin diagram) representations. T-duality on a single radius ex
hanges the two spinorrepresentations, as it should.

‡17The minus sign shows that we are really 
onsidering lowest-weight ve
tors, but we shall keep this abuseof language. 33



3.6 Weyl-invariant e�e
tive a
tionIn the previous subse
tions, we have dis
ussed how the Weyl group of SO(d, d) arises asthe �nite group generated by the permutations and double T-duality (3.11), whereas thelow-energy a
tion itself is invariant under the 
ontinuous group SO(d, d,R). This has been
he
ked in the s
alar se
tor in Eq. (3.4), by dire
t redu
tion of the 10D e�e
tive a
tion on
T d. It is however possible to rewrite the full a
tion in a manifestly Weyl-invariant way, bya step-by-step redu
tion from 10D, as was originally developed in Ref. [218℄ in the 
ontextof 11D supergravity. This pro
edure leads to a 
lear identi�
ation of �dilatoni
� s
alars,whi
h appear through exponential fa
tors in the a
tion and in
lude the dilaton gs and theradii Ri of the torus, versus �Pe

ei�Quinn� s
alars whi
h have 
onstant shift symmetriesand are better thought of as 0-forms with a 1-form �eld strength.Ea
h �eld strength F (p) gives rise to �eld strengths of lower degree F (q)

i1...iq
, with internalindi
es i1 . . . iq (given by the exterior derivative of a (q − 1)-form up to Chern�Simons
orre
tions), while the metri
 gives rise to Kaluza�Klein two-form �eld strengths F (2)i andone-form �eld strengths F i(1)

j , i < j, of the vielbein 
omponents in the upper triangulargauge
gMN = EP

ME
Q
N ηPQ , (3.24a)

EN
M =

























R1

R2 . . .
Rd−1

Rd

Eν
µ

























.

























1 A1
2 A1

3 . . . A1
d A1

µ

1 A2
3 . . . A2

d A2
µ. . . ...

1 Ad−1
d Ad−1

µ

1 Ad
µ

I11−d

























, (3.24b)
where Eν

µ denotes the vielbein in the un
ompa
ti�ed dire
tions. The a
tion (2.7) in theNeveu�S
hwarz se
tor then takes the simple form:
SNS,10−d =

∫

d10−dx
√−g V

g2
s l

8
s

[

R + (∂φ)2 +
∑

i

(

∂Ri

Ri

)2

+
∑

i<j

(

Ri

Rj
F i(1)

j

)2

+
∑

i

(

RiF (2)i
)2

+
(

l2sF
(3)
)2

+
∑

i

(

l2s
Ri
F

(2)
i

)2

+
∑

i<j

(

l2s
RiRj

F
(1)
ij

)2
]

, (3.25)where the �rst �ve terms 
ome from the redu
tion of the Einstein�Hilbert term and thelast three terms from the kineti
 term of the two-form.Putting together the forms of the same degree, we see that their 
oe�
ients form theWeyl orbit Φs, of the string tension (F (3)
λ ), the Weyl orbit ΦKK of the Kaluza�Klein and34



winding states (F (2)
λ ), and the set of positive roots Φ+ = {ei ± ej , i < j} (F (1)

α ). We 
antherefore rewrite the a
tion in the Weyl-invariant form:
SNS,10−d =

∫

d10−dx
√−g V

g2
s l8s

[

R + ∂ϕ · ∂ϕ +
∑

α∈Φ+
e−2〈ϕ,α〉

(

F (1)
α

)2

+
∑

λ∈ΦKK
e−2〈ϕ,λ〉

(

F (2)
λ

)2

+
∑

λ∈Φs
e−2〈ϕ,λ〉

(

F (3)
λ

)2
]

, (3.26)where ϕ = (ln gs, lnR1, . . . , lnRd) is the ve
tor of dilatoni
 s
alars, 〈ϕ, λ〉 the duality bra
ketin Eq. (3.13) and ∂ϕ · ∂ϕ the Weyl-invariant kineti
 term obtained from the non-diagonalmetri
 (3.15). A diagonal metri
 on the dilatoni
 s
alars is re
overed upon going to theEinstein frame.The Weyl group a
ts by permuting the various weights appearing in Eq. (3.26), and theinvarian
e in the gauge se
tor is therefore manifest. As for the s
alars, the set of positiveroots Φ+ is not invariant under Weyl re�e
tions, but the Pe

ei�Quinn s
alars undergonon-linear transformations A(0) → e−2〈ϕ,α〉A(0) that 
ompensate the sign 
hange [220℄. ThePe

ei�Quinn s
alars therefore appear as displa
ements along the positive (non-
ompa
t)roots. Together with the dilatoni
 (non-
ompa
t) s
alars ϕ, they generate the solvable Liesubalgebra that forms the tangent spa
e of the moduli spa
e H [8, 6, 7, 311℄.We have so far 
on
entrated on the Neveu�S
hwarz se
tor, but the same reasoning
an be applied to the full type II a
tion. The T-duality Weyl symmetry 
an, however,be exhibited only by dualizing the p-form gauge �elds G(p) = dR(p−1) into lower rank
(10 − d − p)-form gauge �elds when possible, and keeping them together when their dualwhen the self-duality 
ondition 10 − d − p = p is satis�ed. We then obtain, for the a
tionof the Ramond �elds

SRR =
∫

d10−dx
√−g V

g2
s l8s

[

∑

λ∈ΦDI
e−2〈ϕ,λ〉

(

G(1)
λ

)2

+
∑

λ∈ΦD0
e−2〈ϕ,λ〉

(

G(2)
λ

)2

+
∑

λ∈ΦD1
e−2〈ϕ,λ〉

(

G(3)
λ

)2

+
∑

λ∈ΦD2
e−2〈ϕ,λ〉

(

G(4)
λ

)2
]

, (3.27)where ΦDI,ΦD0,ΦD1,ΦD2 denote the Weyl orbits with highest weight 1/gsRi, 1/gsls, Ri/gsl
2
s ,

1/gsl
3
s respe
tively, 
orresponding in turn to the two spinor representations.3.7 Spe
tral �ow and Borel generatorsHaving dis
ussed the stru
ture of the Weyl group we now want to investigate the full

SO(d, d,Z) symmetry. For this purpose, it is instru
tive to go ba
k to the perturbativemultiplet of Kaluza�Klein and winding states. The a
tion of the Weyl group on the highestweight 1/Rd of the ve
tor representation generates an orbit of 2d elements, 1/Ri and Ri.However, a parti
le 
an have any number of momentum ex
itation along ea
h axis, andwind along any 
y
le of the torus T d. It is therefore des
ribed by integer momenta mi andwinding numbers mi, so that its mass on an arbitrary torus reads
M2 = mig

ijmj +migijm
j , i, j = 1 . . . d , (3.28)35



when Bij = 0. This mass formula is then invariant under modular transformations γi →
γi + ∆Ai

jγ
j of the torus, i.e. integer shifts Ai

j → Ai
j + ∆Ai

j of the o�-diagonal term of themetri
 (no sum on i)
ds2

d = R2
i (dx

i + Ai
jdx

j)2 + gjkdx
jdxk , (3.29)upon transforming the momenta and winding as

mk → mk − ∆Ai
kmi , mk → mk + δk

i ∆A
i
jm

j . (3.30)This transformation generates a spe
tral �ow on the latti
e of 
harges mi and mi.In addition, being 
harged under the gauge potential Bµi, the momentum of the parti
leshifts a

ording to mi → m̃i = mi +Bijm
j, yielding the mass (3.8). From this, we see thatthe Borel generator Bij → Bij + ∆Bij indu
es a spe
tral �ow

mk → mk + ∆Bjkm
j , mk → mk . (3.31)The two spe
tral �ows (3.30) and (3.31) 
an be understood in a uni�ed way as transla-tions on the weight latti
e by positive roots. Indeed, the set of all positive roots of SO(d, d)in
ludes the Sl(d) roots ej−ei, i < j, images of the simple roots αi = ei+1−ei, 1 ≤ i ≤ d−1under the Weyl group Sd of Sl(d), as well as the roots ei + ej, whi
h are images of theT-duality simple root α0 = e1 + e2. The translation by a root ej −ei generates in�nitesimalrotations in the (i, j) plane‡18:

∆| − ek〉 = −∆Ai
k| − ei〉 , ∆|ek〉 = δk

i ∆A
i
j |ej〉 (3.32)equivalent to the spe
tral �ow in Eq. (3.30), whereas translations by a root ei +ej generatean in�nitesimal Bij shift:

∆| − ek〉 = ∆Bjk|ej〉 , ∆|ek〉 = 0 (3.33)as in Eq. (3.31). The moduli Ai
j and Bij 
an therefore be identi�ed as displa
ements onthe moduli spa
e H along the positive roots ei − ej and ei + ej . We note that the twodispla
ements do not ne
essarily 
ommute and that only integer shifts are symmetries ofthe 
harge latti
e.3.8 D-branes and T-duality invariant massIn order to study the analogous properties of the D-brane states, we may try to write downthe moduli matrix MS ∈ SO(d, d,R)/SO(d) × SO(d) in the spinorial representation andlook for the transformations of 
harges that leave the mass mtMSm invariant, when now mis a spinor of D-brane 
harges. It is in fa
t mu
h easier to study the D-brane 
on�gurationitself and 
ompute its Born�Infeld mass [255, 152℄.

‡18The Borel generators Eα a
tually either translate the weight ve
tors λ or annihilate them.36



BPS D-brane states are obtained by wrapping Dp-branes on a supersymmetri
 p-
y
leof the 
ompa
ti�
ation manifold. In the 
ase of a torus T d, this is simply a straight 
y
le,and in the stati
 gauge the embedding is spe
i�ed by a set of integer (winding) numbers
N i

α:
X i = N i

ασ
α , i = 1 . . . d , α = 1 . . . p , (3.34)where σα and X i are the spa
e-like world-volume and embedding 
oordinates respe
tively.The numbers N i

α 
an, however, be 
hanged by a world-volume di�eomorphism, and oneshould instead look at the invariant
mijkl = ǫαβγδN i

αN
j
βN

k
γN

l
δ , (3.35)where we restri
ted to p = 4 for illustrative purposes. mijkl is a four-form integer 
hargethat spe
i�es the four-
y
le in T d. In addition, the D-brane supports a U(1) gauge �eldthat 
an be 
hara
terized by the invariants

mij =
1

2
ǫαβγδN i

αN
j
βFγδ , m =

1

8
ǫαβγδFαβFγδ , (3.36)whi
h are again integer-valued, be
ause of the �ux and instanton-number integrality. The
harges N = {m,mij , mijkl, . . . } 
onstitute pre
isely the right number to make a spinorrepresentation of SO(d, d,Z) when p = d or p = d + 1 (depending on the type of theoryand dimensionality of the torus); indeed, the spinor representation of SO(d, d) de
omposesunder Sl(d) as a sum of even or odd forms, depending on the 
hirality of the spinor. TheChern�Simons 
oupling (2.38) 
an be rewritten in terms of these 
harges (up to 
orre
tionswhen B 6= 0) as

∫

eB̂+α′FR = mR0 +
1

2
mijR0ij +

1

4!
mijklR0ijkl + . . . (3.37)so that (for p = 4) the instanton number m 
an be identi�ed as the D0-brane 
harge, the�ux mij as the D2-brane 
harge and mijkl as the D4-brane 
harge. Con�gurations with

m 6= 0 exist in SYM theory on a torus, even for a U(1) gauge group, and 
orrespond totorons [303, 150, 151℄.The mass of the wrapped D-brane 
an be evaluated by using the Born�Infeld a
tion(2.37), and depends only on the parametrization-independent integer 
hargesm,mij , mijkl, . . .Expli
itly, we obtain, for p = d, the T-duality invariant mass formula:‡19
M2 =

1

g2
s l

2
s

m̃2 +
1

2 g2
s l

6
s

(m̃ij)2 +
1

4! g2
s l

10
s

(m̃ijkl)2 + . . . (3.38a)
m̃ = m+

1

2
mijBij +

1

8
mijklBijBkl + . . . (3.38b)

m̃ij = mij +
1

2
mklijBkl + . . . (3.38
)

m̃ijkl = mijkl + . . . (3.38d)
‡19This expression was originally derived in Ref. [255℄ by a sequen
e of T-dualities and 
ovariantizations.37



where the dots stand for the obvious extra terms when d ≥ 4. A similar expression holdsfor p = d+ 1 and yields the tension of D-strings:
T 2

1 =
1

g2
s l

6
s

(m̃i)2 +
1

3! g2
s l

10
s

(m̃ijk)2 +
1

5! g2
s l

14
s

(m̃ijkll)2 + . . . (3.39a)
m̃i = mi +

1

2
mjkiBjk +

1

8
mjklmiBjkBlm + . . . (3.39b)

m̃ijk = mijk +
1

2
mlmijkBlm + . . . (3.39
)

m̃ijklm = mijklm + . . . (3.39d)where the integer 
harges read, e.g. for p = 5,
mijklm = ǫαβγδǫN i

αN
j
βN

k
γN

l
δN

m
ǫ (3.40a)

mijk =
1

2
ǫαβγδǫN i

αN
j
βN

k
γFδǫ (3.40b)

mi =
1

8
ǫαβγδǫN

i
αFβγFδǫ . (3.40
)The mass formulae (3.38) and (3.39) hold for 1/2-BPS states only; they are the analoguesof Eq. (3.8) for the two spinor representations of SO(d, d). They 
an be derived by analysingthe BPS eigenvalue equation in a similar way as in Subse
tion 2.2. This analysis is 
arriedout in Appendix A.3, and yields, in addition, the 
onditions for the state to be 1/2-BPS,as well as the extra 
ontribution to the mass in the 1/4-BPS 
ase. In the d ≤ 6 
ase, we�nd a set of 
onditions:

kijkl ≡ m[ijmkl] +m mijkl = 0 (3.41a)
ki;jklmn ≡ mi[jmklmn] +m mijklmn = 0 (3.41b)

kij;klmnpq ≡ nijnklmnpq + nij[klnmnpq] = 0 (3.41
)analogous to the level-mat
hing 
ondition ‖m‖2 = 0 on the perturbative states. In 
ontrastto the latter, they have a very 
lear geometri
 origin, sin
e they 
an be derived by expressingthe 
harges m in terms of the integer numbers N i
α (Eq. (3.38)). For d = 6, they transformin a 15 + 36 + 15 = 66 irrep of the T-duality group SO(6, 6,Z). The last line in (3.41)drops when d = 5, giving a 5 + 5 = 10 irrep of SO(5, 5,Z). When d = 4, only the

k1234 = m2 ∧m2 +m m4 ≡ 0 
omponent remains, whi
h is a singlet under SO(4, 4,Z).When the 
onditions n = 0 in (3.41) are not met, the state is at most 1/4-BPS, and itsmass re
eives an extra 
ontribution, e.g. for d = 5:
M2 =

1

g2
s l

2
s

[

m̃2 +
1

2l4s

(

m̃ij
)2

+
1

4!l8s

(

m̃ijkl
)2

+

√

1

4!l12s

(

k̃ijkl
)2

+
1

5!l16s

(

k̃i;jklmn
)2
]

, (3.42)38



where the shifted 
harges are given by
k̃ijkl = kijkl +Bmnk

m;nijkl , k̃i;jklmnp = ki;jklmnp . (3.43)For d = 6, there are still 
onditions to be imposed in order for the state to be 1/4-BPSinstead of simply 1/8-BPS, whi
h are now 
ubi
 in the 
harges m and transform as a 32of SO(6, 6,Z) (see Appendix A and Subse
tion 5.9).
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4 U-duality in toroidal 
ompa
ti�
ations of M-theoryT-duality is only a small part of the symmetries of toroidally 
ompa
ti�ed string theory,namely the part visible in perturbation theory. We shall now extend the te
hniques ofSe
tion 3 in order to study the algebrai
 stru
ture of the non-perturbative symmetries,whi
h go under the name of U-duality. In this se
tion, we fo
us on the subgroup of theU-duality symmetry that preserves 
ompa
ti�
ations on re
tangular tori with vanishingexpe
tation values of the gauge potentials. The most general 
ase of non-re
tangular toriwith gauge potentials, for whi
h the full U-duality symmetry 
an be exhibited, is dis
ussedin the next se
tion.4.1 Continuous R-symmetries of the superalgebraAs in our presentation of un
ompa
ti�ed M-theory in Se
tion 2, the superalgebra o�ers a
onvenient starting point to dis
uss the symmetries of M-theory 
ompa
ti�ed on a torus
T d. The N = 1, 11D supersymmetry algebra is preserved under toroidal 
ompa
ti�
ation:the generators Qα merely de
ompose as bispinor representations of the unbroken group
SO(1, 10 − d) × SO(d), and form an N-extended super-Poin
aré algebra in dimensions
D = 11 − d. The �rst fa
tor SO(1, 10 − d) 
orresponds to the Lorentz group in theun
ompa
ti�ed dimensions and is a
tually part of the superalgebra, while the se
ond onlya
ts as an automorphism thereof, and is also known as an R-symmetry‡20. There 
an beautomorphisms beyond the obvious SO(d) symmetry, however, and these are expe
ted tobe symmetries of the �eld theory.This symmetry enhan
ement 
an be observed at the level of the Cli�ord algebra itself[181, 220℄. The Gamma matri
es ΓM ,M = 0, d + 1 . . . 10 of eleven-dimensional super-symmetry 
an be kept to form a (redu
ible) Cli�ord algebra of SO(1, 10 − d), while thematri
es ΓI , I = 1 . . . d form an internal Cli�ord algebra. Note that we have 
hosen here,in 
ontrast to the notation of the rest of the review, the internal indi
es running from 1 to
d. The generators ΓIJ generate the SO(d) R-symmetry, but they 
an be supplemented bygenerators ΓI to form the Lie algebra of a larger R-symmetry group SO(d+ 1) ‡21. It wasthe attempt to exhibit the SO(8) symmetry of 11D SUGRA 
ompa
ti�ed on T 7 that ledto the dis
overy of hidden symmetries [73℄.The R-symmetry group is a
tually larger still. Consider the algebra generated by
Γ(2),Γ(3),Γ(6),Γ(7), where the subs
ripts denote the number of antisymmetri
 internal in-di
es, and the 
orresponding generators are dropped when the number of internal dire
tionsis insu�
ient:

• For d = 2, the only generator ΓIJ = Γ12 generates a U(1) R-symmetry.
‡20The R-symmetry is a
tually part of the lo
al supersymmetry, but we are only interested in its global�at limit.
‡21 This is the basis for the twelve-dimensional S-theory proposal [27℄. It is important that these generators
ommute with the momentum 
harge CΓµ. 40



• For d = 3, Γ(2) and Γ(3) 
ommute, and generate an SO(3) × U(1) symmetry.
• For d = 4, Γ(3) = Γ+Γ(1), where Γ+ is the spa
e-time or internal 
hirality (see Eq.(A.1)) and, together with Γ(2), generates an SO(5) symmetry.
• For d = 5, Γ(2) ± Γ+Γ(3) generate two 
ommuting SO(5) subgroups.
• For d = 6, Γ(6) appears in the 
ommutator [Γ(3),Γ(3)] and a USp(8) is generated.
• For d = 7 (resp. d = 8) the generator Γ(7) 
omes into play and one obtains an
SU(8) × U(1) (resp. SO(16)) R-symmetry group.The various R-symmetry groups are summarized in the right 
olumn of Table 4.1, whi
hfurthermore gives the de
omposition of the 528 
entral 
harges on the right-hand side ofEq. (2.13a) under the Lorentz group SO(1, 10−d) in the un
ompa
t dire
tions and the R-symmetry group. The various 
olumns 
orrespond to distin
t SO(1, 10−d) representations,after dualizing (moving) 
entral 
harges into 
harges with less indi
es when possible. Inall these 
ases, the superalgebra 
an be re
ast in a form manifestly invariant under theR-symmetry. Here we 
olle
t the 
ases D = 4, 5, 6, in
luding the 
entral 
harges, whi
htransform linearly under the R-symmetry:

• ForD = 4 (d = 7), the 32 super
harges split into 8 
omplexWeyl spinors transformingas an 8 ⊕ 8̄ of SU(8):
{

QαA, Qβ̇B̄

}

= σµ

αβ̇
Pµ δAB̄ (4.1a)

{QαA, QβB} = ǫαβ ZAB (4.1b)
{

Qα̇Ā, Qβ̇B̄

}

= ǫα̇β̇ Z
∗
ĀB̄, (4.1
)where µ = 0, 1, 2, 3 are SO(3, 1) ve
tor indi
es, α, α̇ = 1, 2 are Weyl spinor indi
es,and A, Ā = 1, · · · , 8 are 8, 8̄ indi
es of SU(8). The 
entral 
harges are in
orporatedinto a 
omplex antisymmetri
 matrix ZAB.

• For D = 5 (d = 6), the 32 super
harges split into 8 Dira
 spinors of SO(4, 1),transforming in the fundamental representation of USp(8). The N = 8 superalgebrain a USp(8) basis is
{QαA, QβB} = Pµ (Cγµ)αβ ΩAB + Cαβ ZAB (4.2)where µ = 0, 1, 2, 3, 4 are SO(4, 1) ve
tor indi
es, α = 1, 2, 3, 4 are Dira
 spinor in-di
es, A = 1, · · · , 8 are indi
es in the 8 of USp(8), and ΩAB is the invariant symple
ti
form and ZAB is the 
entral 
harge matrix.

• For D = 6 (d = 5), the 32 super
harges form 4 
omplex spinors transforming in the
(4, 1) + (1, 4) of SO(5) × SO(5) and the superalgbra takes the form

{

Qa
α, Q

b
β

}

= ωabγµ
αβpµ, (4.3)

{

Qa
α, Q̄

b
β

}

= δαβZ
ab, (4.4)41



where a, b = 1, . . . , 4 are SO(5) spinor indi
es and ωab is an invariant antisymmet-ri
 matrix, from the lo
al isomorphism SO(5) = USp(4). The 16 
entral 
hargesare in
orporated in a matrix Zab transforming as a bispinor under the R-symmetry
SO(5) × SO(5) and satisfying the reality 
ondition Z∗ = ωZωt.The R-symmetries that we have dis
ussed here will be of use in the next se
tion to determinethe s
alar manifold of the 
ompa
ti�ed 11D SUGRA and hen
e the global symmetries.

d Qa
α

p = 0
ZI , ZIJ

ZIJKLM

p = 1
Zµ, ZµI

ZµIJKL

p = 2
ZµI

ZµνIJK

p = 3
ZµνρIJ

p = 4
ZµνρσI

p = 5
Zµνρστ H

1 (±, 16)
1 + 0
+0

1 + 1
+0

1
+0

0 1
1+

+1−
1

2 (2, 16)
2 + 1
+0

= 2 + 1

1 + 2
+0

= 2 + 1

1 + 0
= 1

1
[1]
+2

= 2 + 1

(1)

move
SO(2)

3
(2, 8+)

+(2, 8−)

3 + 3
+0

= 3+ + 3−

1 + 3
+0

= 3 + 1

1 + 1
= 1 + 1

3 + [1]
= 3 + 1

3+

+3−

= 3+ + 3−

(1)

move

SO(2)
×U(1)

4 (4, 8)
4 + 6
+0

= 10

1 + 4
+1

= 5 + 1

1 + 4
+[1]

= 5 + 1

6 + [4]
= 10

(4)

move

(1)

move
SO(5)

5
(4, 4̄)

+(4̄, 4)

5 + 10
+1

= (4, 4)

1 + 5
+5 + [1]
= (5, 1)
+(1, 5)
+2(1, 1)

1 + 10
+[5]

= (4, 4)

10+ + 10−

= (10, 1)
+(1, 10)

(5)

move

(1)

move

SO(5)
×SO(5)

6 (8, 4)

6 + 15
+6
+[1]

= 27 + 1

1 + 6
+15 + [6]
= 27 + 1

1 + 20
+[15]
= 36

(15)

move

(6)

move

(1)

move
USp(8)

7
(8+, 2)

+(8−, 2̄)

7 + 21
+21
+[7]

= 28c

1 + 7
+35 + [21]
= 63 + 1

1± + 35±

= 36c

(21)

move

(7)

move
0 SU(8)

8 (16, 2)

8 + 28
+56
+[28]
= 120

1 + 8 + 70
+[1 + 56]
= 135 + 1

(1 + 56)

move

(28)

move
0 0 SO(16)

Table 4.1: Classi�
ation of the super
harges and 
entral 
harges w.r.t the Lorentz/R-symmetry group SO(1, 10 − d) ×H . Irreps of H are in bold fa
e. Charges in parenthesisare Poin
aré-dualized (moved) into 
harges in square bra
kets. Adapted from Ref. [27℄.42



4.2 Continuous symmetries of the e�e
tive a
tionIn our dis
ussion of the 
ontinuous symmetry of the e�e
tive a
tion of the toroidally 
om-pa
ti�ed type IIA theory in Subse
tion 3.1, we have intentionnally fo
used our attentionon the Neveu�S
hwarz se
tor, and have brie�y des
ribed how the Ramond �elds wouldtransform under the symmetries of the Neveu�S
hwarz s
alar manifold. The distin
tionbetween Neveu�S
hwarz and Ramond se
tors is however an artefa
t of perturbation theoryand, as we dis
ussed in Se
tion 2, the two sets of �elds are uni�ed in the 11D SUGRAdes
ription. They mix under the eleven-dimensional Lorentz symmetries unbroken by the
ompa
ti�
ation on T d ‡22, namely Sl(d,R). The low-energy e�e
tive a
tion thereforeadmits a 
ontinuous symmetry group Gd 
ontaining
SO(d− 1, d− 1,R) ⊲⊳ Sl(d,R) , (4.5)where the symbol ⊲⊳ denotes the group generated by the two non-
ommuting subgroups.As found by Cremmer and Julia [72, 182℄, the groups Gd turn out to 
orrespond to the

Ed(d) series, listed in Table 4.2.
D d Gd = Ed(d) Hd10 1 R+ 19 2 Sl(2,R) × R+ U(1)8 3 Sl(3,R) × Sl(2,R) SO(3) × U(1)7 4 Sl(5,R) SO(5)6 5 SO(5, 5,R) SO(5) × SO(5)5 6 E6(6) USp(8)4 7 E7(7) SU(8)3 8 E8(8) SO(16)Table 4.2: Cremmer�Julia symmetry groups and their maximal 
ompa
t subgroups.The notation Ed(d) denotes a parti
ular non-
ompa
t form of the ex
eptional group Ed,namely its normal real form‡23, and from now on this distin
tion will be omitted. As ev-ident from their Dynkin diagrams shown in Table 4.3, the groups Ed form an in
reasingfamily, whose members are related by a pro
ess of group disintegration re�e
ting the de-
ompa
ti�
ation of one 
ompa
t dire
tion in T d. This is displayed in Table 4.3, and willbe dis
ussed more fully in the next subse
tion.The o

urren
e of these groups 
an be understood by �tting the number of s
alar �elds(in
luding the duals of forms of higher degree) to the dimension of a 
oset spa
e Gd/Hd,

‡22 Note that d has been upgraded by one unit with respe
t to the previous se
tion.
‡23 The normal real form has all its Cartan generators and positive roots non-
ompa
t, and is the maximalnon-
ompa
t real form of the 
omplex algebra Ed(C) [158, 132℄.43



E9 = Ê8

g g g g g g g w2 4 6 5 4 3 2 1g3
E8

g g g g g g g2 4 6 5 4 3 2g3
E7

g g g g g g2 3 4 3 2 1g2
E6

g g g g g1 2 3 2 1g2
E5 = D5

g g g g1 2 2 1g1
E4 = A4

g g g1 1 1g1
E3 = A2 ⊕A1

g g1 1 g

E2 = A1

g

Table 4.3: Dynkin diagrams of the Ed series. The group disintegration pro
eeds by omittingthe rightmost node. The integers shown are the Coxeter labels, that is the 
oordinates ofthe highest root on all simple roots.
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where Hd is the R-symmetry of the superalgebra des
ribed in the previous se
tion. Inorder to have a positive metri
 for the s
alars, it is ne
essary that Hd be the maximal
ompa
t subgroup of Gd. Together with the dimension of the s
alar manifold, this su�
esto determine Gd.S
alar �elds arise from the internal 
omponents of the metri
 gIJ of the torus T d, andfrom the expe
tation value of the three-form gauge �eld CIJK on T d; they also arise fromthe expe
tation value EIJKLMN on T d of the six-form dual to CMNP in eleven dimensions,or equivalently the expe
tation value of the s
alar dual to the three-form Cµνρ in D = 5,the axion s
alar dual to the two-form CµνI in D = 4, or to the one-form CµIJ in D = 3;similarly, the Kaluza�Klein gauge potentials gµI 
an be dualized in D = 3 into s
alars KI ,whi
h 
an be interpreted as the expe
tation value KI;JKLMNPQR on T d of the magneti
gauge potential dual to gMN in eleven dimensions. The 
ounting is summarized in Table4.4. The fa
tor R+ appearing in D = 10 and D = 9 
orresponds to the type IIA dilaton,and generates a s
aling symmetry of the e�e
tive a
tion, 
alled trombonne symmetry inRef. [78℄. Note that a quite di�erent U-duality group would be inferred if one did notdualize the Ramond �elds into �elds with less indi
es [219, 74℄, or if one would 
onsidererEu
lidean supergravities [174, 77℄.An analogous 
ounting has been performed in Tables 4.5 and 4.6 for one-form and two-form potentials, indu
ing parti
le and string ele
tri
 
harges, respe
tively. The latter 
anbe put in one-to-one 
orresponden
e to the 
entral 
harges of the supersymmetry algebradis
ussed in the previous se
tion, with two ex
eptions. Firstly, the Lorentz-invariant 
entral
harge Z01234 in �ve dimensions, where 0 . . . 4 denote the �ve spa
e-time dimensions, doesnot 
orrespond to any one-form potential [31, 27℄‡24. This trun
ation of the superalgebrais 
onsistent with U-duality and is of no 
on
ern, ex
ept for the twelve-dimensional originof M-theory. Se
ondly, there are only 120 Lorentz singlet 
entral 
harges in D = 3 for 128gauge potentials (equivalently, there are only 64 Lorentz ve
tor 
harges inD = 4 for 70 two-form gauge �elds). As we shall see shortly, U-duality implies that there should in fa
t be
248 ele
tri
 
harges in D = 3 (133 string 
harges in D = 4), yielding a linear representationof the duality group E8 (resp. E7). Of 
ourse, the notion of ele
tri
 
harge is ill-de�ned in
D = 3, where a one-form (or a two-form in D = 4) is Poin
aré-dual to a zero-form and aparti
le (or a string) to an instanton. Another manifestation of the pathology of the D = 3
ase is the non-asymptoti
 �atness of the point-like solitons (or string-like in D = 4), andthe logarithmi
 divergen
e of the kernel of the Lapla
ian in the transverse dire
tions. Inspite of these di�
ulties, we shall pursue the algebrai
 analysis of these 
ases in the hopethat they 
an be resolved.If the 
harges m under the gauge �elds 
an be put in one-to-one 
orresponden
e with the
entral 
harges Z, they are nevertheless not equal: the gauge 
harges are integer-quantized,as we will dis
uss in the next subse
tion, whereas the 
entral 
harges are moduli-dependent
‡24Equivalently, the 
entral 
harges Z01234,Z02345 . . . transform as a ve
tor in six spa
e-time dimensions.These 
harges 
ould be attributed to a KK6-brane, if only the KK6-brane did not need six 
ompa
tdire
tions to yield a string, and seven to yield a parti
le state.
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linear 
ombinations of the latter:
Z = V ·m , (4.6)where V is an element in the group Gd 
ontaining the moduli dependen
e; it is de�ned up tothe left a
tion of the 
ompa
t subgroup K = Hd, indu
ing an R-symmetry transformationon Z.The lo
al Hd gauge invarian
e 
an be 
onveniently gauge-�xed thanks to the Iwasawade
omposition (see for instan
e [202, 232℄)

V = k · a · n ∈ K · A ·N (4.7)ofGd into the maximal 
ompa
tK, AbelianA and nilpotentN . A natural gauge is obtainedby taking K = 1, in whi
h 
ase the �vielbein� V be
omes a (generalized) upper triangularmatrix V = a·n. The Abelian fa
tor A is parametrized by the �dilatoni
 s
alars�, namely theradii of the internal torus, whereas the nilpotent fa
tor N in
orporates the �gauge s
alars�,namely the expe
tation values of the gauge �elds (in
luding the o�-diagonal metri
, three-form and their duals) on the torus. Gd a
ts on the 
harges m from the left and on V fromthe right. The transformed V 
an then be brought ba
k into an upper triangular form bya moduli-dependent R-symmetry 
ompensating transformation on the left. This impliesthat the 
entral 
harges Z transform non-linearly under the 
ontinuous U-duality group
Gd. For the 
ase of T-duality in type II string theory this de
omposition is given in Eq.(3.7). In Se
tion 5, we shall obtain an expli
it parametrization of V in terms of the shapeof the torus and the various gauge ba
kgrounds.

D d g C3 E6 K1;8 total s
alar manifold10 1 1 1 R+9 2 3 3 Sl(2,R)/U(1) × R+8 3 6 1 7 Sl(3,R)/SO(3)× Sl(2,R)/U(1)7 4 10 4 14 Sl(5,R)/SO(5)6 5 15 10 25 SO(5, 5,R)/SO(5)× SO(5)5 6 21 20 1 42 E6(6)/USp(8)4 7 28 35 7 70 E7(7)/SU(8)3 8 36 56 28 8 128 E8(8)/SO(16)Table 4.4: S
alar 
ounting and s
alar manifolds in 
ompa
ti�ed M-theory.4.3 Charge quantization and U-dualityAs in the 
ase of T-duality, the 
ontinuous symmetry Ed(d)(R) of the two-derivative e�e
-tive a
tion 
annot be a symmetry of the quantum theory: the gauge potentials transform46



D d g C3 E6 K1;8 total 
harge representation10 1 1 1 19 2 2 1 3 3 of Sl(2)8 3 3 3 6 (3, 2) of Sl(3) × Sl(2)7 4 4 6 10 10 of Sl(5)6 5 5 10 1 16 16 of SO(5, 5)5 6 6 15 6 27 27 of E6(6)4 7 7 21 21 7 56 56 of E7(7)3 8 8 28 56 36 128 248 of E8(8)Table 4.5: Ve
tors and parti
le 
harge representations in 
ompa
ti�ed M-theory.
D d g C3 E6 K1;8 total 
harge representation10 1 1 1 19 2 2 2 2 of Sl(2)8 3 3 3 (3, 1) of Sl(3) × Sl(2)7 4 4 1 5 5 of Sl(5)6 5 5 5 10 10 of SO(5, 5)5 6 6 15 6 27 2̄7 of E6(6)4 7 7 35 28 70 133 of E7(7)Table 4.6: Two-forms and string 
harge representations in 
ompa
ti�ed M-theory.non-trivially under Ed, and the 
ontinuous symmetry is therefore broken by the existen
eof states 
harged under these potentials. At best there 
an remain a dis
rete subgroup

Ed(d)(Z), whi
h leaves the latti
e of 
harges invariant. For one thing, a subset of the
harges 
orresponds to the Kaluza�Klein momentum along the internal torus, and aretherefore 
onstrained to lie in the re
ipro
al latti
e of the torus. Another subset of 
harges
orresponds to the wrapping numbers of extended obje
ts around 
y
les of T d, and arethen 
onstrained to lie in the homology latti
e of T d.A way to determine the remaining dis
rete subgroup is to 
onsider M-theory 
ompa
t-i�ed to D = 4 dimensions, in whi
h 
ase Poin
aré duality ex
hanges gauge one-forms withtheir magneti
 duals [175℄. In this dimension, Dira
�Zwanziger 
harge quantization takesthe usual form
min′

i −m
′ini ∈ Z (4.8)for two parti
les of ele
tri
 and magneti
 
harges mi and ni respe
tively, and i runs from47



1 to 28, as read o� from Table 4.5. This 
ondition is invariant under the ele
tri
�magneti
duality Sp(56,Z), under whi
h (mi, ni) transforms as a ve
tor. The exa
t symmetry groupis therefore at most
E7(7)(Z) ⊂ E7(7)(R) ∩ Sp(56,Z) , (4.9)This translates into a 
ondition on Ed(d)(Z) for d ≤ 7 by the embedding Ed(d)(Z) ⊂ E7(7)(Z).A similar 
ondition 
an be obtained in D = 3, where all one-forms are dual to s
alars.The 
ondition (4.9) requires a pre
ise knowledge of the embedding ofE7(7)(R) in Sp(46,R).Instead, we shall take another approa
h, and postulate that the U-duality group of M-theory
ompa
ti�ed on a torus T d is generated by the T-duality SO(d − 1, d − 1,Z) of type IIAstring theory 
ompa
ti�ed on T d−1, and by the modular group Sl(d,Z) of the torus T d:

Ed(d)(Z) = SO(d− 1, d− 1,Z) ⊲⊳ Sl(d,Z) . (4.10)The former was argued to be a non-perturbative symmetry of type IIA string theory, asdis
ussed in the previous se
tion, while the latter is the remnant of eleven-dimensionalgeneral reparametrization invarian
e, after 
ompa
ti�
ation on a torus T d: it is thereforeguaranteed to hold, as long as M-theory, whatever its formulation may be, 
ontains thegraviton in its spe
trum. The above 
onstru
t is therefore the minimal U-duality group,and sin
e it preserves the symple
ti
 
ondition (4.8)‡25 also the maximal one.In the d = 2 
ase, the U-duality group (4.10) is the modular group Sl(2,Z) of the M-theory torus, whi
h in parti
ular 
ontains the ex
hange of Rs and R9; translated in type IIBvariables, this is simply the Sl(2,Z) S-duality of type IIB theory (in 9 or 10 dimensions),whi
h 
ontains the strong-weak 
oupling duality gs → 1/gs, as 
an be seen from Eq. (2.45).Note that we do not expe
t any quantum symmetry from the trombonne symmetry fa
tor
R+. For d = 3, the T-duality group splits into two fa
tors Sl(2,Z)×Sl(2,Z), one of whi
his a subgroup of the modular group Sl(3,Z) of the M-theory torus T 3. The de�nition(4.10) therefore yields E3(3)(Z) = Sl(3,Z) × Sl(2,Z) and is the natural dis
rete group of
E3. For d = 4, SO(3, 3,Z) is isomorphi
 to a Sl(4,Z) (in the same way as SO(6) ∼ SU(4))whi
h does not 
ommute with the modular group Sl(4,Z) of M-theory on a torus T 4.Altogether, they make the Sl(5,Z) subgroup of E4(4)(R) = Sl(5,R). For d = 5, we obtainthe SO(5, 5,Z) subgroup of E5(5)(R) = SO(5, 5,R). For d ≥ 6, this provides a de�nition ofthe dis
rete subgroups of the ex
eptional groups Ed(d)(R)‡26. These groups are summarizedin the rather tautologi
al Table 4.7. We note that it is 
ru
ial that the groups Ed(d)(R)be non-
ompa
t in order for an in�nite dis
rete group to exist. The maximal non-
ompa
tform is also required in order that all representations be real (i.e. that the mass of a parti
leand its anti-parti
le be equal, see Se
tion 4.8).
‡25A veri�
ation of this statement requires a pre
ise knowledge of the bran
hing fun
tions of Sp(56) into

E7.
‡26This is parti
ularly interesting in the d ≥ 9 
ase, where we obtain dis
rete versions of a�ne andhyperboli
 groups, see Se
tion 4.6. 48



D d Ed(d)(R) Ed(d)(Z)10 1 1 19 2 Sl(2,R) Sl(2,Z)8 3 Sl(3,R) × Sl(2,R) Sl(3,Z) × Sl(2,Z)7 4 Sl(5,R) Sl(5,Z)6 5 SO(5, 5,R) SO(5, 5,Z)5 6 E6(6)(R) E6(6)(Z)4 7 E7(7)(R) E7(7)(Z)3 8 E8(8)(R) E8(8)(Z)Table 4.7: Dis
rete subgroups of Ed.4.4 Weyl and Borel generatorsA set of generators of the U-duality group 
an easily be obtained by 
onjugating the T-duality generators under Sl(d,Z). The Weyl generators now in
lude the ex
hange of theeleven-dimensional radius Rs with any radius of the string-theory torus T d−1, in additionto the ex
hange of the string-theory torus dire
tions among themselves and T-duality ontwo dire
tions thereof. It is interesting to rephrase the latter in M-theory variables, usingrelations (2.1) and (3.11):
Tij : Ri →

l3p
RjRs

, Rj →
l3p

RsRi
, Rs →

l3p
RiRj

, l3p → l6p
RiRjRs

(4.11)These relations are symmetri
 under permutation of i, j, s indi
es, and using an Rk ↔ Rstransformation, we are free to 
hoose i, j, s along any dire
tion of the M-theory torus T d.The M-theory T-duality therefore reads
TIJK : RI → l3p

RJRK
, RJ → l3p

RKRI
, RK → l3p

RIRJ
, l3p → l6p

RIRJRK
(4.12)and in parti
ular involves three dire
tions, 
ontrary to the naive expe
tation. We em-phasize that the above equation summarizes the non-trivial part of U-duality, and arisesas a mixture of T-duality and S-duality transformations. It 
an in parti
ular be used toderive [Antoniadis:1999rm℄ the duality between the heteroti
 string 
ompa
ti�ed on T 4and type IIA 
ompa
ti�ed on K3 in the Horava-Witten pi
ture [Horava:1996ma℄, and thusunify all va
ua with 16 supersymmetries. We however restri
t ourselves to the maximallysupersymmetri
 
ase in this review.The Weyl group 
an be written in a way, similar to Eq. (3.12)‡27:

W (Ed) = Z2 ⊲⊳ Sd (4.13)
‡27This equation holds for d ≥ 3 only; when d < 3 the Z2 symmetry (4.12) 
ollapses and only thepermutation group Sd remains. 49



but it should be borne in mind that the algebrai
 relations between the Z2 symmetry T123and the permutations SIJ are di�erent from those of the T-duality generators T12 and
Sij ; in addition d di�ers by one unit from the one we used there. We also note that thetransformations TIJK and SIJ preserve the Newton's 
onstant

1

κ2
d

=

∏

RI

l9p
=
VR

l9p
, (4.14)where we have de�ned VR to be the volume of the M-theory 
ompa
ti�
ation torus.On the other hand, the Borel generators now in
lude a generator γi → γi+γs that mixesthe eleven-dimensional dire
tion with the other ones, as well as the T-duality spe
tral �ow

Bij → Bij + 1, from whi
h, by an Rs ↔ Ri 
onjugation, we 
an rea
h the more generalM-theory spe
tral �ow‡28

CIJK : CIJK → CIJK + 1 . (4.15)We should also in
lude a set of generators shifting the other s
alars from the dual gaugepotentials, as explained in Se
tion 4.2:
EIJKLMN : EIJKLMN → EIJKLMN + 1 (4.16a)

KI;JKLMNPQR : KI;JKLMNPQR → KI;JKLMNPQR + 1 . (4.16b)These s
alars and 
orresponding shifts are needed for d ≥ 6 and d ≥ 8 respe
tively. For
d ≥ 9, as will be
ome 
lear in Se
tion 4.6, the enlargement of the symmetry group to ana�ne or Ka
-Moody symmetry requires an in�nite number of su
h Borel generators. As weshall see in Subse
tion 5.4, the Borel generators (4.16) 
an be obtained from 
ommutatorsof CIJK transformations.4.5 Type IIB BPS states and S-dualityBefore studying the stru
ture of the U-duality group, we shall pause and brie�y dis
uss thea
tion of the extra Weyl generator Rs ↔ R9 on the type IIB side. Using the identi�
ation(2.45) to 
onvert to type IIB variables, this a
tion inverts the 
oupling 
onstant and res
alesthe string length as

gs ↔
1

gs

, l2s ↔ l2sgs , (4.17)in su
h a way that Newton's 
onstant 1/(g2
s l

8
s) is invariant. Its a
tion on the BPS spe
trum
an be straightforwardly obtained by working out the a
tion on the masses or tensions, andis summarized in Table 4.8.In this table, we have displayed the a
tion of the Z2 Weyl element only. Under moregeneral duality transformations, the fundamental string and the NS5-brane generate orbits

‡28As dis
ussed in Subse
tion 5.4, the C shift a
tually has to be a

ompanied by E and K shifts to be asymmetry of the equations of motion. 50



state tension S-dual dual stateD1-brane 1
gsl2s

1
l2s

F-stringD3-brane 1
gsl4s

1
gsl4s

D3-braneD5-brane 1
gsl6s

1
g2

s l6s
NS5-braneKK5-brane R2

g2
s l8s

R2

g2
s l8s

KK5-braneD7-brane 1
gsl8s

1
g3

s l8s
73-braneD9-brane 1

gsl10s

1
g4

s l10s
94-braneTable 4.8: S-dual type IIB BPS states.of so 
alled (p, q) strings and (p, q) �ve-branes. The former 
an be seen as a bound state of pfundamental strings and q D1-branes, or (in the Eu
lidean 
ase) as a 
oherent superpositionof q D1-branes with p instantons [200℄. The (p, q) �ve-branes similarly 
orrespond to boundstates of p NS5-branes and q D5-branes.On the other hand, the a
tion of S-duality on the D7 and D9-brane yields states withtension 1/g3

s and 1/g4
s respe
tively. These exoti
 states will be dis
ussed in Subse
tion4.9, where our nomen
lature will be explained as well. Again, su
h states have less thanthree transverse dimensions, and do not preserve the asymptoti
 �atness of spa
e-time andthe asymptoti
 
onstant value of the s
alar �elds. In parti
ular, the D7-brane generates amonodromy τ → τ + 1 in the 
omplex s
alar τ at in�nity. Its images under S-duality thengenerate a more general Sl(2,Z)B monodromy

M =

(

1 − pq p2

−q2 1 + pq

) (4.18)as
ribable to a (p, q) 7-brane‡29. We �nally remark that the relations in Table 4.8 
analso be veri�ed dire
tly using the Rs ↔ R9 �ip and the M-theory/IIB identi�
ations as(un)wrapped M-theory branes, given in Tables 2.5 and 2.6.4.6 Weyl generators and Weyl re�e
tionsIn order to understand the o

urren
e of the Ed(d) U-duality group, we shall now applythe same te
hnique as in the T-duality 
ase and investigate the group generated by theWeyl generators. We 
hoose as a minimal set of Weyl generators the ex
hange of the M-theory torus dire
tions SI : RI ↔ RI+1, where I = 1 . . . d − 1, as well as the T-duality
T = T123 on dire
tions 1,2,3 of the M-theory torus. Adapting the 
onstru
tion of Ref.
‡29It has also been proposed that the IIB 7-branes transform as a triplet of Sl(2, Z) [230℄.51



[110℄‡30and Subse
tion 3.4, we represent the monomials ϕ = (ln l3p, lnR1, lnR2, . . . , lnRd)as a form on a ve
tor spa
e Vd+1 with basis e0, e1, e2, . . . , ed, and asso
iate to any weightve
tor λ = x0e0 + x1e1 + · · ·+ xded its �tension�‡31
T = e〈ϕ,λ〉 = l3x0

p Rx1

1 R
x2

2 . . . Rxd

d . (4.19)The generators SI and T 
an then be implemented as linear operators on Vd+1, with matrix
SI =















1

1

1

Id−3















, T =



















2 1 1 1

−1 −1 −1

−1 −1 −1

−1 −1 −1

Id−3



















. (4.20)
The operators SI and T in (4.20) are easily seen to be orthogonal with respe
t to theLorentz metri


ds2 = −(dx0)2 + (dxI)2 , (4.21)and 
orrespond to Weyl re�e
tions
λ→ ρα(λ) = λ− 2

α · λ
α · αα (4.22)along planes orthogonal to the ve
tors

αI = eI+1 − eI , I = 1 . . . d− 1 , α0 = e1 + e2 + e3 − e0 . (4.23)It is very striking that l3p appears on the same footing as the other radii RI , but with aminus sign in the metri
: it 
an be interpreted as the radius of an extra time-like dire
tion,mu
h in the spirit of 
ertain proposals about F-theory [313, 27℄. The only non-vanishing(Lorentzian) s
alar produ
ts of these roots turn out to be
(αI)

2 = (α0)
2 = 2 , αI · αI+1 = α3 · α0 = −1 (4.24)summarized in the Dynkin diagram:

©0

|
+1 − ⊕2 − ⊕3 − ⊕4 − · · ·− ⊕d−1

(4.25)
‡30In Ref. [110℄, the dis
ussion was 
arried out from the gauge theory side, and the U-duality invariant(4.14) was used to eliminate the ve
tor e0, ex
ept when d = 9. This ve
tor 
an, however, be kept for any

d, and, as we shall momentarily see, appears as an extra time-like dire
tion.
‡31T a
tually has the dimension of a p-brane tension Tp, with p = −(3x0 + x1 + · · · + xd + 1).52



This is pre
isely the Dynkin diagram of Ed as shown in Table 4.3, in agreement with theanalysis based on moduli 
ounting.In Eq. (4.25) it is easy to re
ognize the diagrams of the SO(d−1, d−1,Z) (denoted by
©'s) and Sl(d,Z) (denoted by +'s) subgroups. The bran
hing of the Sl(d) diagram on thethird root re�e
ts the a
tion of T-duality on three dire
tions. The full diagram 
an be builtfrom the M-theory Lorentz group Sl(d,Z) denoted by +'s, and from the type IIB Lorentzgroup Sl(d − 1,Z) generated by the roots α0, α3, . . . , αd−1

‡32. Under de
ompa
ti�
ation,the rightmost root has to be dropped, so that Ed disintegrates into Ed−1
‡33. When theroot at the interse
tion is rea
hed, the diagram falls into two pie
es, 
orresponding to thetwo Sl(2) and Sl(3) subgroups in D = 8. The root α0 itself disappears for d = 2, leavingonly the root α1 of Sl(2,R).Again, the a
tion of the Weyl group on Vd+1 is redu
ible, at least for d ≤ 8. Indeed,the invarian
e of Newton's 
onstant ∏RI/l

9
p implies that the roots are all orthogonal tothe ve
tor

δ = e1 + · · ·+ ed − 3e0 , (4.26)with proper length δ2 = d− 9, so that the re�e
tions a
tually restri
t to the hyperplane Vdnormal to δ:
x1 + · · ·+ xd + 3x0 = 0 . (4.27)The Lorentz metri
 on Vd+1 restri
ts to a metri
 gIJ = δIJ − 1/9 on Vd, whi
h is positive-de�nite for d ≤ 8, so that SI and T indeed generate the Weyl group of the Lie algebra

Ed(R). The order and number of roots of these groups are re
alled in Table 4.9 [177℄.When d = 9, however, the invariant ve
tor δ be
omes null, so that Vd+1 no longersplits into δ and its orthogonal spa
e; the generators a
t on the entire Lorentzian ve
torspa
e Vd+1, and the generators SI and T no longer span a �nite group. Instead, they
orrespond to the Weyl group of the a�ne Lie algebra E9 = Ê8. This is in agreementwith the o

urren
e of in�nitely many 
onserved 
urrents in D = 2 spa
e-time dimensions.This 
ase requires a spe
i�
 treatment and will be dis
ussed in Subse
tion 4.12. For d > 9,that is 
ompa
ti�
ation to a line or a point, the situation is even more dramati
, with theo

urren
e of the hyperboli
 Ka
�Moody algebras E10 and E11, about whi
h very little isknown. The reader should go to [184, 183, 239, 129℄ for further dis
ussion and referen
es.4.7 BPS spe
trum and highest weightsPursuing the parallel with our presentation on T-duality, we now dis
uss the representationsof the U-duality Weyl group. The fundamental weights dual to the roots α1, . . . , αd−1, α0

‡32From this point of view, the U-duality is a 
onsequen
e of general 
oordinate invarian
e in M and typeIIB theories [209℄.
‡33There is a notable ex
eption for d = 8, where E8 disintegrates into E7 × Sl(2). This is be
ause theextended Dynkin diagram of E8 has an extra root 
onne
ted to α8. Only Sl(2) singlets remain in thespe
trum, however. The same happens in d = 4, where E3 = Sl(3)×Sl(2) in E4 = Sl(5) is not a maximalembedding. 53



d 2 3 4 5 6 7 8 9

Ed A1 A2 × A1 A4 D5 E6 E7 E8 Ê8order 2 6 × 2 5! 245! 27345 210345 7 21435527 ∞roots 2 6 + 2 20 40 72 126 240 ∞Table 4.9: Order and number of roots of Ed Weyl groups.are easily 
omputed:
λ(1) = e1 − e0 → T1 =

R1

l3p
(4.28a)

λ(2) = e1 + e2 − 2e0 → T3 =
R1R2

l6p
(4.28b)

λ(3) = e1 + e2 + e3 − 3e0 → T ′
5 =

R1R2R3

l9p
(4.28
)

λ(4) = e1 + · · · + e4 − 3e0 → T ′
4 =

R1R2R3R4

l9p
(4.28d)

. . .

λ(d−2) = e1 + · · ·+ ed−2 − 3e0 → T ′
10−d =

R1 . . . Rd−2

l9p
(4.28e)

λ(d−1) = e1 + · · ·+ ed−1 − 3e0
.
= −ed → M =

1

Rd

(4.28f)
λ(0) = −e0 → T2 =

1

l3p
(4.28g)where the symbol .= in Eq. (4.28f) denotes equality modulo δ, that is up to a power of theinvariant Plan
k length. In the above equations, we have translated the weight ve
tors intomonomials, and interpreted it as the tension Tp+1 of a p-brane:

• The weight λ(d−1) 
orresponds to the Kaluza�Klein states, with mass 1/RI , as wellas its U-duality des
endants. We shall name its orbit the parti
le multiplet, or �uxmultiplet, for reasons that will be
ome apparent in Subse
tion 6.9.
• The weight λ(1) on the other hand has dimension 1/L2, and 
orresponds to the tensionof a membrane wrapped on the dire
tion 1: it will go under the name of string mul-tiplet, or momentum multiplet. The latter name will also be
ome 
lear in Subse
tion6.9.
• The weight λ(0) is the highest weight of the membrane multiplet 
ontaining the fun-damental membrane with tension 1/l3p, together with its des
endants.54



• The weights λ(2) and λ(5) both 
orrespond to threebrane tensions T3 and T ′
3 . Eventhough they are inequivalent under the Weyl group, it turns out that λ(5) is a de-s
endant of λ(3) under the full U-duality group. The U-duality orbit of the state withtension T ′

3 is therefore a subset of the orbit of the state with tension T3, and λ(3) isthe true highest-weight ve
tor of the threebrane multiplet.
• The same holds for λ(6) asso
iated to a membrane tension T ′

2 and des
endant of thehighest weight λ(0) of the membrane multiplet under U-duality, as well as for λ(7) and
λ(1).

• The weight λ(3) 
orresponds to a �vebrane tension T ′
5 , but is again not the highestweight of the �vebrane multiplet, whi
h is instead a non-fundamental weight:

T5 =
1

l6p
→ λ = −2e6 = 2λ(0) . (4.29)Similarly, the weight λ(4) 
orresponds to a fourbrane tension T ′

4 , and is not the highestweight of the fourbrane multiplet, whi
h is instead a non-fundamental weight:
T4 =

R1

l6p
→ λ = e1 − 2e6 = λ(1) + λ(0) . (4.30)

• Finally, the instanton multiplet does not appear in Eq. (4.28). An instanton 
on�gu-ration 
an be obtained by wrapping a membrane on a three-
y
le‡34, and 
orrespondsto a weight ve
tor
T−1 =

R1R2R3

l3p
→ λ = α0 . (4.31)Sin
e this ve
tor is a simple root, it 
orresponds to a multiplet in the adjoint rep-resentation. It is, however, not the highest weight of the U-duality multiplet, whi
his instead the highest root ψ whose expansion 
oe�
ients on the base of the simpleroots are given by the Coxeter labels in Table 4.3. An expli
it 
omputation gives

d = 4 : ψ = δ − λ(1) − λ(0) (4.32a)
d = 5 : ψ = δ − λ(2) (4.32b)
d = 6 : ψ = δ − λ(0) (4.32
)
d = 7 : ψ = δ − λ(1) (4.32d)
d = 8 : ψ = δ − λ(7) . (4.32e)Sin
e the fundamental weights λ(i) are dual to the simple roots αI , it is 
lear that

ψ · αI = δi,I , where I is the index appearing on λ in Eq. (4.32) at a given d, andmoreover it 
an be easily 
he
ked that ψ2 = 2. The highest root 
an therefore beadded as an extra root in the Dynkin diagrams in Table 4.3, and turns them intoextended Dynkin diagrams.
‡34We should, however, warn the reader that it is not the representation arising in non-perturbative
ouplings, as we shall dis
uss in Subse
tion 5.8. 55



The previous 
onsiderations are summarized in the diagram
1
l3p

|
R1

l3p
− R1R2

l6p
− R1R2R3

l9p
− R1R2R3R4

l9p
− · · ·− 1

Rd

(4.33)where we have indi
ated the highest weight asso
iated to ea
h node of the Dynkin diagram.For simpli
ity, we shall hen
eforth fo
us our attention on the parti
le and string multiplets,
orresponding to the rightmost node with weight λ(d−1) and leftmost node with weight λ(1)respe
tively.4.8 The parti
le alias �ux multipletThe full parti
le multiplet 
an be obtained by a
ting with Weyl and Borel transformationson the Kaluza�Klein state with mass 1/RI . Instead of working out the pre
ise transfor-mation of the supergravity 
on�gurations‡35, we 
an restri
t ourselves to 
onsidering themasses of the various states in the multiplet. We note that the a
tion of SIJ and TIJK onthe dilatoni
 s
alars RI is independent of the dimension d of the torus, so that we 
an workout the maximally 
ompa
ti�ed 
ase D = 3, and obtain the higher-dimensional 
ases bysimply deleting states that require too many di�erent dire
tions on T d to exist.The results are displayed in Table 4.10, where distin
t letters stand for distin
t indi
es.The states are organized in representations of the Sl(8,Z) modular group of the torus T 8.These representations arrange themselves in shells with in
reasing power of l3p; sin
e lp isinvariant under Sl(8,Z), this 
orresponds to the grading with respe
t to the simple root α0.Generalized T-duality TIJK may move from one shell to the next or previous one, whereas
SIJ a
ts within ea
h shell. Eight states with mass VR/l

9
p have been added in the middleline, 
orresponding to zero-length weights that 
annot be rea
hed from the length-2 higheststate. These states are, however, ne
essary in order to get a 
omplete representation of themodular group Sl(8,Z), and 
an be rea
hed by a Borel transformation in Sl(8,Z). They
an be thought of as the eight ways to resolve the radius that appears square in the mass ofthe other states on the same line, into a produ
t of two distin
t radii. This is not requiredfor the other lines, sin
e all squares 
an be absorbed with a power of Newton's 
onstant.In the last 
olumn of Table 4.10, we have indi
ated the representation of Sl(8,Z) thatyields the same dimension. The supers
ripts denote the number of antisymmetri
 indi
es,and no symmetry property is assumed a
ross a semi
olon. In other words, m1;7 
orrespondto the V ⊗ ∧7V where V is the de�ning representation of Sl(d). These representationsare pre
isely dual to those under whi
h the various gauge ve
tors transform (see Table4.5); they a
tually 
orrespond to the 
harges of the BPS state under these U(1) gaugesymmetries (see also Subse
tion 4.2). They generalize the D-brane 
harges we dis
ussed inSe
tion 3. Altogether, these states sum up to 248, the adjoint representation of E8, whi
h

‡35See Ref. [221℄ for the 
onstru
tion of U-duality multiplets of p-brane solutions, and Ref. [115℄ for adis
ussion of the 
ontinuous U-duality orbits of p-brane solutions.56



indeed de
omposes in the indi
ated way under the bran
hing Sl(8) ⊂ E8. The o

urren
eof the adjoint representation simply follows from the last equality of Eq. (4.32) identifyingthe fundamental weight λ(7) with the highest root of E8.mass M Sl(8) irrep 
harge
1

RI
8 m1

RIRJ

l3p
28 m2

RIRJRKRLRM

l6p
56 m5

R2
I
RJRKRLRMRN RP

l9p
, 8 VR

l9p
1+63 m1;7

R2
IR2

JR2
KRLRM RN RP RQ

l12p
56 m3;8

R2
I
R2

J
R2

K
R2

L
R2

M
R2

N
RP RQ

l15p
28 m6;8

R3
IR2

JR2
KR2

LR2
M R2

N R2
P R2

Q

l18p
8 m1;8;8Table 4.10: Parti
le/�ux multiplet 248 of E8.The �rst three lines in Table 4.10 have an obvious interpretation. The state with mass

1
RI

is simply the Kaluza�Klein ex
itation on the dimension I, and mI denotes the ve
tor ofinteger momentum 
harges. The state with mass RIRJ/l
3
p is the membrane wrapped on atwo-
y
le T 2 of the 
ompa
ti�
ation torus T d, and the two-form mIJ labels the pre
ise two-
y
le, just as in the D-brane 
ase of the previous se
tion. The third line 
orresponds to the�vebrane wrapped on the �ve-
y
le labelled by mIJKLM . The states on the fourth line aremore interesting. The �rst of them involves one square radius, and therefore does not existin un
ompa
ti�ed eleven dimensions. It is simply the KK6-brane with Taub�NUT dire
tionalong RI and wrapped along the dire
tions J to P . The se
ond state with mass VR/l

9
p,however, does exist in eleven un
ompa
ti�ed dire
tions, and has the tension of a would-be8-brane. Its asymptoti
 spa
e-time is however not �at, but logarithmi
ally divergent. Thestatus of this solution is un
lear at present, together with that of the following lines of thetable. These states only appear as parti
les in D = 3, with the pe
uliarities that we havealready mentioned.Upon de
ompa
ti�
ation, the last two lines in Table 4.10 disappear sin
e they requireeight distin
t radii, and the parti
le multiplet redu
es to a representation of the 
orre-sponding U-duality group, as indi
ated in Table 4.11. When d ≥ 4, the representationremains the one dual to the rightmost root. For d = 3, the U-duality group dis
onne
tsinto Sl(3) and Sl(2), and −ed be
omes equal to λ(2) +λ(3) instead of being equal to λ(3), asin other 
ases. Consequently, the parti
le multiplet transforms as a (3, 2) representationof U-duality.The full parti
le multiplet on T d 
an be easily de
omposed in representations of theU-duality group Ed−1(Z) in one dimension higher by separating the states in Table 4.10a

ording to their dependen
e on the de
ompa
ti�ed radius Rd (whi
h gives a gradation57



with respe
t to the simple root αd−1). We obtain the general de
omposition‡36
M(d) = 1|−1 ⊕M|0 ⊕ (T1 ⊕ T ′

1 )|1 ⊕ T ′
2 |2 ⊕ (T ′

1 )2|3 , (4.34)where we have denoted the multiplets as in Eq. (4.28) and spe
i�ed the power of Rd insubs
ript. The notation (T ′
1 )2 means twi
e the fundamental weight asso
iated to T ′

1 . Themultiplets on the right-hand side of (4.34) be
ome empty as d de
reases. In parti
ular,we note that the parti
le multiplet on T d de
omposes into a singlet, 
orresponding to theKaluza�Klein ex
itation around the de
ompa
ti�ed dire
tion xd, as well as a parti
le anda string multiplet on T d−1, depending on whether the state was wrapped around xd. Thereare also a number of additional states that appear for d ≥ 6, to whi
h we shall 
ome ba
kin Subse
tion 7.7.
D d U-duality group irrep Sl(d) 
ontent10 1 1 1 19 2 Sl(2,Z) 3 2 + 18 3 Sl(3,Z) × Sl(2,Z) (3, 2) 3 + 37 4 Sl(5,Z) 10 4 + 66 5 SO(5, 5,Z) 16 5 + 10 + 15 6 E6(6)(Z) 27 6 + 15 + 64 7 E7(7)(Z) 56 7 + 21 + 21 +73 8 E8(8)(Z) 248 2(8 + 28 + 56) + 63 + 1Table 4.11: Parti
le/�ux multiplets of Ed.As a side remark, we note that Table 4.10 is symmetri
 under re�e
tion with respe
t tothe middle line: for ea
h state with mass M there is a state with mass M′ satisfying

MM′ =

(

VR

l9p

)2

, (4.35)where VR is the volume of the eight-torus. In parti
ular, the lowest weight is equal tominus the highest weight, modulo the invariant ve
tor δ. This is a general property ofreal representations of 
ompa
t group, and indeed 248 is the adjoint representation of E8,therefore real. The same also holds for the 56 representation of E7 in the d = 7 
ase.However, whether real or not with respe
t to the 
ompa
t real form of the group Ed(C), allthe representations appearing in Table 4.11 are real as representations of the non-
ompa
tgroup Ed(d), as is required by the existen
e of an anti-parti
le for ea
h parti
le. This isobvious for d ≤ 4; for d = 5, it is equivalent to the statement that the spinor of SO(8) isreal, sin
e the reality properties of spinors of SO(p, q) depend only on p− q mod 8. Thisproperty is a 
hara
teristi
 feature of the representations of the maximally non 
ompa
treal form.
‡36For d = 8, this is 248 = 1⊕ 56⊕ (133⊕ 1) ⊕ 56⊕ 1.58



4.9 T-duality de
omposition and exoti
 statesIn order to make 
onta
t with string theory solutions, it is useful to de
ompose the parti
lemultiplet into irredu
ible representations of the T-duality group SO(d−1, d−1,Z). This 
anbe simply 
arried out by distinguishing whether the indi
es lie along the eleventh dimensionor not, and substituting the mat
hing relations (2.1). Sin
e T-duality 
ommutes with thegrading in powers of the string 
oupling gs, the various irreps are then sorted out a

ordingto the dependen
e of the mass of the states on gs. Table 4.12 summarizes the de
ompositionof the parti
le/�ux multiplet for M-theory on T 8 into irredu
ible representations of the
SO(7, 7) T-duality symmetry group of type IIA string theory on T 7, as well as the Sl(8)(resp. Sl(7)) modular group of the M-theory (resp. string theory) torus.The masses of the states in the a-th 
olumn depend on the string 
oupling 
onstant as
1/ga−1

s , and are given by
V : 1

Ri
, Ri

l2s
(4.36a)

SA : 1
gs

(

1
ls
,

RiRj

l3s
,

RiRjRkRl

l5s
,

RiRjRkRlRmRn

l7s

) (4.36b)
S + AS : 1

g2
s

(

RiRjRkRlRm

l6s
,

V ′

R

l8s
,

R2
i RjRkRlRmRn

l8s
,

V ′

R
RiRj

l10s

) (4.36
)
SB :

V ′

R

g3
s l8s

(

Ri

ls
,

RiRjRk

l3s
,

RiRjRkRlRm

l5s
,

V ′

R

l7s

) (4.36d)
V ′ :

(

V ′

R

g2
s l8s

)2 (
l2s
Ri
, Ri

) (4.36e)where V ′
R denotes the volume of the string-theory seven-torus. At level 1/g0

s we observethe usual KK and winding states of the string and the level 1/gs reprodu
es the D0-,D2-,D4- and D6-branes. At level 1/g2
s , the NS5 and KK5-brane appear together with two newtypes of state, a 72-brane and a 52
2-brane. Our nomen
lature displays on-line the number ofspatial world-volume dire
tions, i.e. the number of radii appearing linearly in the mass; thesupers
ript spe
i�es the number of dire
tions (if non-zero) that appear quadrati
, 
ubi
,et
., listed from the right to the left. the subs
ript denotes the inverse power of the string
oupling appearing in the mass formula; for example, in this 
onvention the KK5-brane isa 51

2-brane. A

ording to this notation, we �nd at level 1/g3
s a 61

3-, 43
3-, 25

3- and 07
3-brane.Their masses are related to those of the even Dp-branes, by the type IIA (on T 7) mirrorsymmetry

MM′ =

(

V ′
R

g2
s l

8
s

)2

, (4.37)whi
h follows from the M-theory mirror symmetry relation (4.35). Finally, at level 1/g4
s ,a 16

4- and a 0
(1,6)
4 -brane are obtained, whose masses are related to those of the KK andwinding states by (4.37).At this point a few remarks are in order about the new type IIA states that appearin (4.36). The 72- and 52

2-brane, with mass proportional to 1/g2
s have a 
onventional59



dependen
e on the string 
oupling, but no supergravity solutions are known for thesestates. In addition, a variety of states with exoti
 dependen
e on the string 
oupling, 1/g3
sand 1/g4

s , are observed. They arise from M-theory states with mass diverging as 1/l9p orfaster. It is not 
lear what the meaning of these new states in M-theory and type IIA stringtheory is. These states 
annot be a

ommodated in weakly 
oupled string theory where themost singular behaviour is expe
ted to be 1/g2
s , 
orresponding to Neveu�S
hwarz solitons.A higher power would imply a 
ontribution of a Riemann surfa
e with Euler 
hara
teristi


χ > 2. Another way to see this is by 
onsidering the gravitational �eld 
reated by theseobje
ts, whi
h s
ales as Mκ2
10: sin
e κ2

10 ∼ g2
s , states whose mass goes like gn

s , n ≤ 2 
reatea vanishing or at most �nite gravitational �eld in the weak 
oupling limit, allowing for a �atspa
e des
ription in the spirit of D-branes. On the other hand, when n > 2, the surroundingspa
e be
omes in�nitely 
urved at weak 
oupling, and these states do not 
orrespond tosolitons anymore. In fa
t, the simplest of these states, namely 61
3, 
an be obtained by
onstru
ting an array of Kaluza-Klein along a non-
ompa
t dire
tion of the Taub-NUTspa
e ‡37, and wrapping the worldvolume dire
tions on the string theory torus T 6 [54℄. Thesummation of the poles in the harmoni
 fun
tion is logarithmi
ally divergent, implyingthat the asymptoti
 spa
e-time is logarithmi
ally divergent as well. This is the rule andnot the ex
eption for a pointlike state in 3 spa
e-time dimensions (sin
e the Lapla
ian inthe two transverse 
oordinates has a logarithmi
 kernel), and the 
onventional states withan asymptoti
ally �at spa
e-time are simply 
on�gurations with a vanishing 
harge. Thesame issue arises for p-branes in p+3 dimensions (or less). We emphasize, though, that ourpresent purpose is to examine the 
onsequen
es at the algebrai
 level of the presen
e of the
onje
tured U-duality, whi
h does require these exoti
 states. The supergravity solutionsdes
ribing these states 
an in prin
iple by 
omputed using the known duality relations,whi
h indeed do not preserve the asymptoti
 �atness of the metri
.

248(E8)⊃ SO(7,7)
∪

Sl(8)
14 (V ) 64 (SA) 1 + 91 (S ⊕ AS) 64 (SB) 14 (V ′)

8 (m1) 7 (m1) 1 (ms)
28 (m2) 7 (ms1) 21 (m2)
56 (m5) 35 (ms4) 21 (m5)
1+ 63 (m1;7) 7 (ms;s6) 1 + 1+ 48 (ms;7, m1;s6) 7 (m1;7)
56 (m3;8) 21 (ms2;s7) 35 (m3;s7)
28 (m6;8) 21 (ms5;s7) 7 (m6;s7)
8 (m1;8;8) 1 (ms;s7;s7) 7 (m1;s7;s7)Table 4.12: Bran
hing of the d = 8 parti
le multiplet into irreps of Sl(8) and SO(7, 7).The entries in the table denote the irreps under the 
ommon Sl(7) subgroup of Sl(8) and

SO(7, 7).
‡37This 
onstru
tion �rst appeared in the 
ontext of the 
onifold singularity in the hypermultiplet modulispa
e [246℄. 60



4.10 The string alias momentum multipletThe same analysis 
an be 
arried out for the string multiplet, by applying a sequen
eof Weyl re�e
tions on the highest weight RI/l
3
p des
ribing the wrapped membrane. Afteradding a multiplet of length 2 and 35 zero-weights for Sl(8,Z) invarian
e, we obtain a 3875representation of E8(8). The pre
ise 
ontent of this representation is displayed in AppendixB; instead, we display in Table 4.13 the more manageable result for the d = 7 
ase, wherethe string multiplet transforms as a 133 adjoint representation of E7(7). The o

urren
e ofthe adjoint representation is again understood from Eq. (4.32) relating the fundamentalweight λ(1) to the highest root ψ.tension T mass Sl(7) irrep 
harge

RI

l3p
7 n1

RIRJRKRL

l6p
35 n4

R2
I
RJRKRLRM RN

l9p
, 7VR

l9p
1+48 n1;6

R2
I
R2

J
R2

K
RLRMRN RP

l12p
35 n3;7

R2
IR2

JR2
KR2

LR2
MR2

N RP

l15p
7 n6;7Table 4.13: String/momentum multiplet 133 of E7.

D d U-duality group irrep Sl(d) 
ontent10 1 1 1 19 2 Sl(2,Z) 2 28 3 Sl(3,Z) × Sl(2,Z) (3, 1) 37 4 Sl(5,Z) 5 4 + 16 5 SO(5, 5,Z) 10 5 + 55 6 E6(6)(Z) 2̄7 6 + 15 + 64 7 E7(7)(Z) 133 7 + 35 + 49 + 35 + 73 8 E8(8)(Z) 3875 8 + 70 + . . .Table 4.14: String/momentum multiplets of Ed.These states have the same interpretation as the states in the parti
le multiplet, butfor wrapping one dimension less of the world-volume. In other words, the states in theparti
le multiplet 
an be obtained by wrapping strings on one dimension more� ex
ept forthe Kaluza�Klein state, whi
h is a genuine point-like (or wave-like, rather) obje
t. We61



note again that Table 4.13 is symmetri
 under re�e
tion with respe
t to its middle line, inagreement with the reality of the 133 adjoint representation of E7.The string multiplet in higher dimensions is simply obtained by dropping the states thatrequire too many di�erent radii, as displayed in Table 4.14; in all 
ases, it 
orresponds to therepresentation dual to the leftmost root α1. We note that in d = 6 the 2̄7 string multipletis distin
t from the 27 parti
le multiplet, but is related to it by an outer automorphism of
E6 
orresponding to the Z2 symmetry of its Dynkin diagram. We also note, for later use,that in all 
ases the string multiplet representation arises in the symmetri
 tensor produ
tof two parti
le multiplets, i.e. (M⊗s M) ⊗ T always 
ontains a singlet.Like the parti
le multiplet, the full string multiplet on T d 
an be easily de
omposed inrepresentations of the U-duality group Ed−1(d−1)(Z) in one dimension higher by using thegradation in powers of the de
ompa
ti�ed radius Rd

‡38

T (d)
1 = T1|0 ⊕ (T2 ⊕ T ′

2 )|1 ⊕ T ′
3 |2 , (4.38)where we have denoted the multiplets as in Eq. (4.28) and again spe
i�ed the power of

Rd in subs
ripts. In parti
ular, we note that the string multiplet on T d de
omposes intoa string and a membrane multiplet on T d−1, depending whether the state was wrappedaround xd. There are also a number of additional states that disappear for d ≤ 6.
133(E7)⊃ SO(6,6)

∪
Sl(7)

1 (S) 32 (SB) 1 + 66 (S ′ ⊕AS) 32 (S ′
B) 1 (S ′′)

7 (n1) 1 (ns) 6 (n1)
35 (n4) 20 (ns3) 15 (n4)
1+ 48 (n1;6) 6 (ns;s5) 1 + 1+ 35 (ns;6, n1;s5) 6 (n1;6)
35 (n3;7) 15 (ns2;s6) 20 (n3;s6)
7 (n6;7) 6 (ns5;s6) 1 (n6;s6)Table 4.15: Bran
hing of the d = 7 string multiplet into irreps of Sl(7) and SO(6, 6).The entries in the table denote the irreps under the 
ommon Sl(6) subgroup of Sl(7) and
SO(6, 6).As in the previous subse
tion, we give the bran
hing of the d = 7 string multiplet interms of irreps of the T-duality SO(6, 6,Z) as well as the modular groups Sl(7,Z) and
Sl(6,Z) of the M-theory and string theory tori in Table 4.15.4.11 Weyl-invariant e�e
tive a
tionAs in our dis
ussion of T-duality, we would now like to write the supergravity a
tion (2.2)in a manifestly Weyl-invariant form. This has been 
arried out in Refs. [218, 220℄, a
‡38For d = 7, this is 133 = 27⊕ (78⊕ 1) ⊕ 2̄7. 62



simpli�ed version of whi
h will be presented here. As in Eq. (3.25), we de
ompose theeleven-dimensional �eld strength F (4) and metri
 in lower-degree forms. The a
tion thentakes the simple form:
S11−d =

∫

d11−dx
√−g V

l9p

[

R +
∑

i

(

∂Ri

Ri

)2

+
∑

i<j

(

Ri

Rj
F i(1)

j

)2

+
∑

i

(

RiF (2)i
)2

+
(

l3pF
(4)
)2

+
∑

i

(

l3p
Ri
F

(3)
i

)2

+
∑

i<j

(

l3p
RiRj

F
(2)
ij

)2

+
∑

i<j<k

(

l3p
RiRjRk

F
(1)
i

)2
]

, (4.39)where the �rst line 
omes from the redu
tion of the Einstein�Hilbert term and the se
ondfrom the kineti
 term of the three-form.In Eq. (4.39) we again re
ognize in front of the one-form �eld strength F (1) and F (1)the positive roots ei − ej and ei + ej + ek − e0, in front of the two-form �eld strength F (2)the weights −ei of the parti
le multiplet, in front of the three-form �eld strength F (3) theweights ei − e0 of the string multiplet, and in front of the four-form �eld strength F (4)the weight −e0 of the membrane multiplet. However, these weights do not form 
ompleteorbits: it is ne
essary to dualize the �eld strengths F (p) into lower-degree �eld strengths
F (11−d−p) so as to display the Weyl symmetry. In the 2p = 11 − d 
ase, both the �eldstrength and its dual should be kept. Alternatively, all �eld strengths may be doubled withtheir duals, and display an even larger symmetry [74, 75℄.We then obtain a manifestly Weyl-invariant a
tion:
S11−d =

∫

d11−dx
√−g V

l9p
[R + ∂ϕ · ∂ϕ

+
∑

α∈Φ+

e−2〈ϕ,α〉
(

F (1)
α

)2
+
∑

λ∈Φpart

e−2〈ϕ,λ〉
(

F (2)
λ

)2

+
∑

λ∈Φstring

e−2〈ϕ,λ〉
(

F (3)
λ

)2

+
∑

λ∈Φmembrane

e−2〈ϕ,λ〉
(

F (4)
λ

)2

+ . . .



 , (4.40)where ϕ = (ln l3p, lnR1, . . . , lnRd) is the ve
tor of dilatoni
 s
alars (whose �rst 
omponentis non-dynami
al), 〈ϕ, λ〉 = x0 ln l3p +x1 lnR1 + . . . is the duality bra
ket (4.19) and ∂ϕ ·∂ϕthe Weyl-invariant kineti
 term (∂l3p = 0) obtained from the metri
 (4.21). In additionto the equations of motion from (4.40), the duality equations F (p) = ∗F (11−d−p) shouldalso be imposed. As in the 
ase of T-duality, the set of positive roots Φ+ is not invariantunder Weyl re�e
tions, but the Pe

ei�Quinn s
alars undergo non-linear transformations
A(0) → e−2〈ϕ,α〉A(0) that 
ompensate for the sign 
hange [220℄.
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4.12 Compa
ti�
ation on T 9 and a�ne Ê8 symmetryAs we pointed out in Subse
tion 4.6, the 
ompa
ti�
ation on a nine-torus T 9 to two spa
e-time dimensions gives rise to a qualitative 
hange in the U-duality group: the invariantve
tor δ in (4.26) 
orresponding to the dimensionless Newton 
onstant be
omes light-likein the Lorentzian metri
 −(dx0)2 +(dx1)2 + · · ·+(dx9)2, so that the a
tion of the U-dualitygroup generated by SI and T in Eq. (4.20) 
annot be restri
ted to its orthogonal subspa
e.Instead, it generates the Weyl group of the Ê8 a�ne algebra, as was shown in Ref. [110℄;we shall re
ast their 
onstru
tion in the notation of this review, at the same time settlingseveral issues.In order to see the a�ne symmetry Ê8 arise, we simply note that the Dynkin diagram of
E9 (see Table 4.3) is nothing but the extended Dynkin diagram of E8, where the additionalroot with Coxeter label 1 
orresponds to α8 = e9−e8. The roots α0, α1, . . . , α7 generate the
E8 horizontal Lie algebra, whereas α8 and δ =

∑9
I=1 eI−3e0 are the extra dimensions neededto represent the 
entral 
harge K and degree D generators of the standard 
onstru
tion ofa�ne Lie algebras (see e.g. Ref. [121℄). To make the identi�
ation pre
ise, we re
all thatthe simple roots of an a�ne Lie algebra Ĝ 
an be 
hosen as ‡39

α̂I = (αI , 0, 0) , I = 1 . . . r , α̂0 = (−ψ, 0, 1) (4.41)in the basis (µ, k, d) of the Minkovskian weight spa
e Vr+2 = Rr +R1,1 with norm µ2 +2kd.Here, ψ is the highest root of G, r is the rank of G, k is the a�ne level, and d the L0eigenvalue. In the 
ase at hand, we have G = E8 so r = 8 and want to �nd the 
hange ofbasis between the roots αI , I = 0 . . . 8 and null ve
tor δ of our formalism and the standardroots α̂I , I = 0 . . . 8 and ve
tors γ = (0, 0, 1), κ = (0, 1, 0). From Eq. (4.32) we have,
ψ = e1 + · · ·+ e7 + 2e8 − 3e0 = δ − α8 , (4.42)so that, 
omparing with Eq. (4.41), we 
an identify δ with γ = (0, 0, 1) and

α̂I = αI , I = 1 . . . 7 , (4.43a)
α̂8 = α0 , (4.43b)
α̂0 = α8 . (4.43
)The ve
tor κ = (0, 1, 0) 
an be easily 
al
ulated from the requirements that κ2 = κ · α̂I =

0, I = 1 . . . 8 and κ · δ = 1:
κ =

1

2
(−e1 − · · · − e8 + e9 + 3e0) = e9 −

δ

2
. (4.44)The level k and degree d of any weight ve
tor λ ∈ V10 
an now be obtained from theprodu
ts δ · λ and δ · κ respe
tively, and they both have a simple interpretation:

k = δ · λ = x1 + · · · + x9 + 3x0 (4.45)
‡39In order to keep with the standard notation, the simple roots of the Lie algebra are now labelled bysubs
ripts ranging from 1 to r, as opposed to our notation for the simple roots of the U-duality groups Er,whi
h 
arry labels 0 to r − 1. 64



is simply the length dimension of the asso
iated monomial∏RxI

I l
3x0

p , and
d = κ · λ = x9 − k/2 (4.46)
ounts the power of R9 appearing in the same monomial, up to a shift k/2. This wasexpe
ted, sin
e the horizontal subalgebra E8 ⊂ Ê8 does not a�e
t R9 and by de�nition
ommutes with L0. L−n generators, on the other hand, bring additional powers of R9 andin
rease the degree d. In parti
ular, the L0 eigenvalues are integer-spa
ed, as they should.We pro
eed by 
onsidering the parti
le/�ux and string/momentum multiplets intro-du
ed in Subse
tions 4.8 and 4.10, with highest weights λ(d−1) = −e9 and λ(1) = e1 − e0respe
tively (see Eq. (4.28)). The parti
le multiplet is therefore a level −1 representationwith trivial ground state µ = 0 (that is, in the 
hiral blo
k of the identity). A bit ofexperimentation reveals the �rst Sl(9) representations o

urring in the parti
le multiplet:

m1;1;9, m1;4;9, m2;6;9, m4;7;9, m7;7;9, m2;3;9;9, . . . (4.47)with tensions s
aling from 1/l12p to 1/l24p , in addition to the representations already presentin d = 8, given in Table 4.10. However, the full orbit is in�nite. On the other hand,the string multiplet is a level −2 representation with ground state in the 3875 of E8. Inboth 
ases, the representations are in�nite-dimensional, and need to be supplemented withweights of smaller length as in the E7 and E8 
ases. The instanton multiplet, on the otherhand, is a level-0 representation of Ê8, with a non-singlet ground state in the adjoint of E8,making it obvious that the usual unitarity restri
tions for 
ompa
t a�ne Lie algebras donot apply in our 
ase. This 
on
ludes our analysis of the d = 9 
ase, and we now restri
tourselves to the better understood d ≤ 8 
ase.
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5 Mass formulae on skew tori with gaugeba
kgroundsWe would now like to generalize the mass formulae of the U-duality multiplets obtainedso far for re
tangular tori and vanishing gauge potentials to the more general 
ase of skewtori and arbitrary gauge potentials, whi
h will exhibit the full U-duality group. This willalso allow a better understanding of the a
tion of Borel generators on the BPS spe
trum.We will 
on
entrate on the d = 7 �ux multiplet, but the same method applies to the othermultiplets.5.1 Skew tori and Sl(d,Z) invarian
eWe have already argued that BPS states 
ould be labelled by a set of tensors of integer
harges des
ribing their various momenta and wrappings. In parti
ular, for the 
ase of the
d = 7 �ux multiplet, the 
harges

m1, m
2, m5, m1;7 (5.1)des
ribe the Kaluza�Klein momentum, membrane, �vebrane and KK6-brane wrappings.The position of the index has been 
hosen in su
h a way that we obtain the 
orre
t massby 
ontra
ting ea
h of them with the ve
tor of radii RI or inverse radii 1/RI . Note thatfor d = 7 the tensor m1;7 is really a tensor m1, but the extra seven indi
es a

ount for anextra fa
tor of the volume in the tension. Of 
ourse, a BPS state with generi
 
harges mwill not be 1/2-BPS state in general (for d ≥ 5): some quadrati
 
onditions on m have tobe imposed, as already dis
ussed in Subse
tions 2.2 and 3.8. We shall hen
eforth assumethese 
onditions ful�lled, deferring the study of the latter to Subse
tion 5.9.The 1/2-BPS state mass formula for a non-diagonal metri
 gIJ 
an be straightforwardlyobtained by repla
ing 
ontra
tions with the ve
tor of radii by 
ontra
tions with the metri
,and inserting the proper symmetry fa
tor and power of the Plan
k length on dimensionalgrounds:

M2 = (m1)
2 + (m2)2 + (m5)2 + (m1;7)2

= mIg
IJmJ + 1

2! l6p
mIJgIKgJLm

KL

+ 1
5! l12p

mIJKLMgINgJPgKQgLRgMSm
NPQRS + . . .

(5.2)This formula is invariant under Sl(d,Z), but not yet under the T-duality subgroup SO(d−
1, d− 1,Z) of the U-duality group. It only holds when the expe
tation value of the variousgauge �elds on the torus vanish. To reinstate the dependen
e on the three-form CIJK , weapply the following strategy.

• De
ompose the �ux multiplet as a sum of T-duality irreps.
• In
lude the 
orre
t 
oupling to the NS two-form �eld Bij using the T-duality invariantmass formulae. 66



• Study the T-duality spe
tral �ow B → B + ∆B.
• Covariantize this �ow under Sl(d,Z) into a C → C + ∆C �ow.
• Integrate the C → C + ∆C �ow to obtain the U-duality invariant mass formula.5.2 T-duality de
omposition and invariant mass formulaWe have already dis
ussed the �rst step in Subse
tion 4.9, and we only need to restri
tourselves to the 
ase d = 7. Table 4.12 then trun
ates to its upper left-hand 
orner displayedin Table 5.1, as 
an be read from the d = 7 parti
le multiplet mass formula (5.2) writtenwith s and i indi
es:

M2 =
[

m2
s

g2
s

+ (m1)
2
]

+
[

(ms1)2 + (m2)2

g2
s

]

+
[

(ms4)2

g2
s

+ (m5)2

g4
s

]

+
[

(ms;s6)2

g2
s

+ m1;s6)2

g4
s

] (5.3)
orresponding to three SO(6, 6) irreps,
V = (m1, m

s1) momentum and winding (5.4a)
S = (ms, m

2, ms4, ms;s6) D0-,D2-,D4-,D6-brane (5.4b)
V ′ = (m5, m1;s6) NS5-brane and KK5-brane (5.4
)

56(E7)⊃ SO(6,6)
∪

Sl(7)
12 (V ) 32 (SA) 12 (V ′)

7 (m1) 6 (m1) 1 (ms)
21 (m2) 6 (ms1) 15 (m2)
21 (m5) 15 (ms4) 6 (m5)
7 (m1;7) 1 (ms;s6) 6 (m1;s6)Table 5.1: Bran
hing of the d = 7 parti
le multiplet into irreps of Sl(7) and SO(6, 6).The entries in the table denote the irreps under the 
ommon Sl(6) subgroup of Sl(7) and

SO(6, 6).We 
an now use the T-duality invariant mass formulae for the T-duality irreps that weobtained in Se
tion 3. In terms of the present 
harges, they s
hemati
ally read (in units of
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ls)
M2

V =
(

mi +Bijm
sj
)

gik
(

mk +Bklm
sl
)

+msigijm
sj (5.5a)

M2
SB

=
1

g2
s

[

(

ms +m2B2 +ms4B2
2 +ms;s6B3

2

)2

+
(

m2 +ms4B2 +ms;s6B2
2

)2

+
(

ms4 +ms;s6B2

)2
+
(

ms;s6
)2
] (5.5b)

M2
V ′ =

1

g4
s

[

(

m5 +m1;s6B2

)2
+
(

m1;s6
)2
]

, (5.5
)where we used the ve
tor and spinor representation mass formulae (3.8) and (3.38). Addingthe three 
ontributions M2
{V,SB,V ′} together, we now obtain the �ux multiplet mass formulafor vanishing values of the Ramond �elds and arbitrary B-�eld:

M2 =
[

m̃2
s

g2
s

+ (m̃1)
2
]

+
[

(m̃s1)2 + (m̃2)2

g2
s

] (5.6a)
+
[

(m̃s4)2

g2
s

+ (m̃5)2

g4
s

]

+
[

(m̃s;s6)2

g2
s

+ m̃1;s6)2

g4
s

]

, (5.6b)where the tilded 
harges are shifted to in
orporate the e�e
t of the two-form as in (5.5), sothat for instan
e
m̃s = ms +

1

2
B2m

2 +
1

8
B2

2m
s4 +

1

48
B3

2m
s;s6 (5.7)is the shift in the D0-brane 
harge.5.3 T-duality spe
tral �owIn Subse
tions 3.7 and 3.8 we have already dis
ussed the spe
tral �ow Bij → Bij + ∆Bijin the ve
torial and spinorial representations. We only need to rephrase this �ow in termsof the present 
harges:

V : mi → mi + ∆Bjim
sj , msi → msi

SB : ms → ms + 1
2
∆Bijm

ij , mij → mij + 1
2
∆Bklm

sklij

msijkl → msijkl + 1
2
∆Bmnm

s;smnijkl , ms;s6 → ms;s6

V ′ : mijklm → mijklm − ∆Bnpm
n;spijklm

m1;s6 → m1;s6 .

(5.8)
The �ow indeed a
ts as an automorphism on the 
harge latti
e, and in parti
ular the
harges 
annot be restri
ted to positive integers (ex
ept for m1;7). This fa
t will be of usein Subse
tion 7.8. 68



Alternatively, the above spe
tral �ow 
an be re
ast into a system of di�erential equationsfor the shifted 
harges m̃, e.g. for the spinor representation we have
SB :

∂m̃s

∂Bij
= 1

2
m̃ij , ∂m̃ij

∂Bkl
= 1

2
m̃sijkl

∂m̃sijkl

∂Bmn
= 1

2
m̃s;sijklmn , ∂m̃s;sijklmn

∂Bpq
= 0 .

(5.9)This system 
an be integrated to yield the spinor representation mass formula; the 
onstantsof integration 
orrespond to the integer 
harges m. The integrability of this system ofdi�erential equations follows from the 
ommutativity of the spe
tral �ow.5.4 U-duality spe
tral �owsThe mass formula (5.6) obtained so far is invariant under T-duality and holds for vanishingvalues of Ramond gauge ba
kgrounds. In order to obtain a U-duality invariant mass for-mula, we have to allow expe
tation values of the M-theory gauge three-form CIJK , whi
hextends the Neveu-S
hwarz two-form Bij = Csij ; the expe
tation value of the Ramond one-form is already in
orporated as the o�-diagonal metri
 
omponent Ai = gsi/R
2
s 6= 0. For

d ≥ 6, one should also allow expe
tation values of the six-form EIJKLMN (Poin
aré-dualto CIJK in eleven dimensions). In string-theory language, this 
orresponds to the Ramond�ve-form Es5 and the Neveu-S
hwarz six-form dual to Bµν in ten dimensions ‡40.In order to reinstate the CIJK dependen
e in mass formula we 
ovariantize the Bij = Csijspe
tral �ow (5.8) under Sl(d,Z), with the result that
mI → mI + 1

2
∆CJKI m

JK

mIJ → mIJ + 1
6
∆CKLM mKLMIJ

mIJKLM → mIJKLM + 1
2
∆CNPQ mN ;PQIJKLM

m1;7 → m1;7 .

(5.10)Here, however, the C spe
tral �ow turns out to be non-integrable. De�ning ∇IJK as the�ow indu
ed by the shift CIJK → CIJK + ∆CIJK , we have the 
ommutator
[

∇IJK , ∇LMN
]

= 20∇IJKLMN , (5.11)where ∇IJKLMN is the �ow indu
ed by the shift EIJKLMN → EIJKLMN + ∆EIJKLMN :
mI → mI + 1

5!
∆EJKLMNI m

JKLMN

mIJ → mIJ + 1
5!

∆EKLMNPQ mK;LMNPQIJ

m5 → m5

m1;7 → m1;7 .

(5.12)
‡40For d = 8, we also need to in
lude the form K1;8, whi
h in string-theory language in
ludes the Ramondseven-form Ks;s7, along with a K1;s7 form. 69



The non-integrability (5.11) of the C-�ow 
an be understood as a 
onsequen
e of theChern�Simons intera
tion in the 11D supergravity a
tion Eq. (2.2) [74, 75℄: the equationof motion for C reads
d ∗ F4 +

1

2
F4 ∧ F4 = 0 , (5.13)so that the dual �eld strength of F4 has a Chern�Simons term

F7 ≡ ∗F4 = dE6 −
1

2
C3 ∧ F4 . (5.14)The equation of motion (5.14) is invariant under the gauge transformations

δC3 = Λ3 , δE6 = Λ6 −
1

2
Λ3 ∧ C3 , (5.15)for 
losed Λ3 and Λ6. Restri
ting to 
onstant shifts, this reprodu
es the 
ommutationrelations (5.11). An equivalent statement holds in D = 3, where the C3 and E6 shifts 
loseon a K1;8 shift.The non-integrability of the system (5.10) 
an therefore be evaded by 
ombining the

∆C3 shift with a ∆E6 shift
1

5!
∆EIJKLMN =

1

12
C[IJK∆CLMN ] , (5.16)upon whi
h the resulting �ow

∇′IJK = ∇IJK − 10CKLM∇KLMIJK (5.17)be
omes integrable ‡41. The extra shift is invisible in the type IIA pi
ture for zero Ramondpotentials sin
e it does not 
ontribute to the T-duality spe
tral �ow. We emphasize againthat these extra terms are generated as a 
onsequen
e of the integrability of the �ow, whi
hwe take as a guiding prin
iple for re
onstru
ting the invariant mass formula. The expli
itform of the resulting �ow equations that follow from (5.17) is then given by [244℄
∇′JKLm̃I =

1

2
m̃JKδL

I (5.18a)
∇′KLMm̃IJ =

1

6
m̃KLMIJ (5.18b)

∇′NPQm̃IJKLM =
1

2
m̃N ;PQIJKLM (5.18
)

∇′RST m̃I;JKLMNPQ = 0 , (5.18d)
‡41For d = 8 there is also a non-trivial 
ommutator [74℄ between the C3 and E6 �ow, 
losing onto the K1;8�ow, whi
h indu
es further shifts.
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∇JKLMNP m̃I =
1

5!
m̃JKLMNδP

I (5.19a)
∇KLMNPQm̃IJ =

1

5!
m̃K;LMNPQIJ (5.19b)

∇NPQRST m̃IJKLM = 0 (5.19
)
∇RSTUV W m̃I;JKLMNPQ = 0 , (5.19d)whi
h now 
an be integrated, as will be shown in Subse
tion 5.6.5.5 A digression on Iwasawa de
ompositionIn order to understand the non-
ommutativity of the spe
tral �ow from another perspe
tive,it is worthwhile 
oming ba
k to a simpler example of a non-
ompa
t group, namely theprototypi
al G(R) = Sl(n,R) group. The Iwasawa de
omposition (4.7) then takes the form

g = k · a · n ∈ K ·A ·N , (5.20)where K = SO(n,R) is the maximal 
ompa
t subgroup of G(R), A is the Abelian groupof diagonal matri
es with determinant 1 and N is the nilpotent group of upper triangularmatri
es. The fa
tor k is absorbed in the 
oset G(R)/K, and the 
oset spa
e is reallyparametrized by A ·N .Now the subgroup of G(Z) leaving A invariant is nothing but the Weyl group Sn ofpermutations of entries of A, whereas that leaving N invariant is the Borel group of integer-valued upper triangular matri
es with 1's on the diagonal. The latter is graded by thedistan
e away from the diagonal, in the sense that
[Bp, Bp′] ⊂ Bp+p′ , (5.21)where Bp is the subset of upper triangular matri
es with 1's on the diagonal and other nonzero entries on the p-th diagonal only. In parti
ular, Bp is a non-
ompa
t Abelian subgroupwhen p > n/2.Returning to the 
ase at hand, we see that ∇3, ∇6 (and ∇1;8 in the d = 8 
ase) areanalogous to the B1, B2 (and B3) Borel generators of Sl(3) (or Sl(4)). More pre
isely,they 
orrespond to the grading of the root latti
e of Ed with respe
t to the simple root α0extending the Sl(d,Z) Lorentz subgroup to the full Ed(d)(Z) subgroup, or in other words thegrading of the adjoint representation in powers of l3p. This 
an be seen from Table 4.10 for

d = 8 sin
e, in this 
ase, the parti
le multiplet happens to be in the adjoint representation
248 of E8. For d < 8, this 
an also be seen from the Coxeter label a0 of α0 in Table 4.3,i.e. the α0 
omponent of the highest root of Ed: the degree p of all the positive roots thenruns from 0 (
orresponding to the gIJ Borel generators) to a0, with intermediate values 1for the C3 �ow, 2 for E6 and 3 for K1;8. 71



We �nally note that, in the notation of Eq. (5.20), the mass formula we are seekingtakes the form,
M2 = mt Rt(a · n)R(a · n) m , (5.22)where m is the ve
tor of integer 
harges transforming in the appropriate linear representa-tion R of Ed(d)(R).5.6 Parti
le multiplet and U-duality invariant mass formulaThe �ow (5.18) 
an be integrated to obtain the E7(7)(Z)-invariant mass formula for theparti
le multiplet of M-theory 
ompa
ti�ed on a torus T 7 with arbitrary shape and gaugeba
kground. The result is:

M2 = (m̃1)
2 +

1

2! l6p

(

m̃2
)2

+
1

5! l12p

(

m̃5
)2

+
1

7! l18p

(

m̃1;7
)2

, (5.23)where the shifted 
harges depend on the gauge potentials as
m̃I = mI +

1

2
CJKIm

JK +

(

1

4!
CJKLCMNI +

1

5!
EJKLMNI

)

mJKLMN

+

(

1

3!4!
CJKLCMNPCQRI +

1

2 · 5!
CJKLEMNPQRI

)

mJ ;KLMNPQR

(5.24a)
m̃IJ = mIJ +

1

3!
CKLMm

KLMIJ

+

(

1

4!
CKLMCNPQ +

1

5!
EKLMNPQ

)

mK;LMNPQIJ

(5.24b)
m̃IJKLM = mIJKLM +

1

2
CNPQm

N ;PQIJKLM (5.24
)
m̃I;JKLMNPQ = mI;JKLMNPQ . (5.24d)The shifts indu
ed by the expe
tation values of C3 and E6 give an expli
it parametrizationof the upper triangular‡42 vielbein V in terms of the physi
al 
ompa
ti�
ation parameters(see Eq. (4.6)). The mass formula (5.23) is now invariant under T-duality, besides themanifest Sl(d,Z) symmetry.As an illustration, we 
an look at the shift in T-duality ve
tor 
harge ms1 implied bythe above equation:

m̃s1 + A1m̃
2 = ms1

+ A1m
2 + (C3 + A1B2)m

s4 + (Es5 + C3B2 + A1B2B2)m
s;s6

+ (A1C3)m
5 +

(

E6 + C3
3 + A1Es5 + A1B2C3

)

m1;s6 . (5.25)
‡42V is a
tually upper triangular in blo
ks, be
ause we did not de
ompose the metri
 gIJ in a produ
t ofupper triangular vielbeins. 72



The se
ond line pre
isely involves the tensor produ
t of the 
harge spinor representation Swith the spinor representation made up by the Ramond moduli. In fa
t, to see that the set
(A1,C3 +A1B2, Es5 + C3B2 +A1B2B2) transforms as a spinor, one may simply note that itis pre
isely the 
ombination that appears in the expansion in powers of F of the T-dualityinvariant D-brane 
oupling ∫ eB+l2sF ∧R. Formula (5.23) redu
es to the d = 5 result of Ref.[91℄ for vanishing expe
tation values of the gauge ba
kgrounds (see also [298℄).5.7 String multiplet and U-duality invariant tension formulaExa
tly the same analysis 
an be done for the momentum multiplet. We give here theresult for d = 6. The 
ontributing 
harges n1, n4, n1;6 de
ompose into SO(6, 6) T-dualitymultiplets

I = (ns) , S ′ = (n1, ns3, ns;s5) , V = (n4, n1;s5) , (5.26)and we obtain the E6(6)(Z)-invariant tension formula for the d = 6 string multiplet:
T 2 =

[

1

l6p

(

ñ1
)2

+
1

l12p

(

ñ4
)2

+
1

l18p

(

ñ1;6
)2
]

, (5.27)where the shifted 
harges are
ñ1 = n1 + C3n

4 + (C3C3 + E6)n
1;6

ñ4 = n4 + C3n
1;6

ñ1;6 = n1;6

(5.28)The 
ombinatorial fa
tors and expli
it index 
ontra
tions are easily reinstated in this equa-tion by 
omparison with (5.24a). This yields the parametrization of the vielbein V of Eq.(4.6) in the representation appropriate to the string multiplet.5.8 Appli
ation to R4 
ouplingsAs an illustration of the result (5.27), we display the d ≤ 5 string multiplet invarianttension formula. Be
ause of antisymmetry, only the 
harges n1 and n4 
ontribute, so thatthe tension of the string multiplet is given by
T 2 =

1

l6p

(

nI +
1

3!
nIJKLCJKL

)

gIM

(

nM +
1

3!
nMNPQCNPQ

)

+
1

4! l12p

nIJKLgIMgJNgKPgLQn
MNPQ . (5.29)This is pre
isely the U-duality invariant quantity that was obtained in the study of instanton
orre
tions to R4 
orre
tions in type II theories in Ref. [200℄, where it was 
onje
tured that73



the 
oupling for d = 5 is given by the SO(5, 5,Z) Eisenstein series
A =

V

l9p

ˆ∑

nI ,nIJKL

[

T 2
]−3/2

=
2πV

l9p

∫ ∞

0

dt

t5/2

ˆ∑

nI ,nIJKL
e−πT 2/t , (5.30)where T is given by the tension formula (5.29), and V denotes the volume of the M-theorytorus T d. As will be
ome 
lear in the next Subse
tion (see Eq. (5.38a)), the sum has tobe restri
ted to integers su
h that n[InJKLM ] = 0, in order to pi
k up the 
ontributionof half-BPS states only. The generalization of this 
onstru
tion to 
ompa
ti�
ations ofM-theory to lower dimensions was addressed in Ref. [243℄.Under Poisson resummation on the 
harge ns, the U-duality invariant fun
tion (5.30)exhibits a sum of instanton e�e
ts of order e−1/gs , 
orresponding to the D0-branes (with
harge n1) and D2-branes (with 
harge ns3), but there is also a 
ontribution of the extra
harge n4 super�
ially of order e−1/g2

s . The NS5-brane does not yield any instanton on T 4,so these e�e
ts seem rather mysterious. On the other hand, we may interpret Eq. (5.30)as a sum of loops from all perturbative and non-perturbative strings. The o

urren
eof the NS5-brane of the string multiplet is then no longer surprising. This soliton loopinterpretation should, however, be taken with 
are, sin
e in any 
ase we have not su

eededyet in re
overing the one-loop R4 
oupling from the SO(5, 5,Z) Eisenstein series.5.9 Half-BPS 
onditions and Quarter-BPS statesThe U-duality mass formulae (5.23) and (5.27) that we have obtained only hold for 1/2-BPSstates, and require parti
ular 
onditions on the various integer 
harges. These 
onditions
an be obtained from a pre
ise analysis of the BPS eigenvalue equation, as in Subse
tion 2.2,or from a sequen
e of U-dualities from the perturbative level-mat
hing 
ondition ‖m‖2 = 0in Eq. (3.8). In analogy to the latter 
ondition, they should be quadrati
 in the integer
harges, be moduli-independent, and 
onstitute a representation of the U-duality group
Ed(d)(Z), appearing in the symmetri
 tensor produ
t of two 
harge multiplets.We have already noti
ed in Subse
tion 4.10 that the string multiplet always appearsin the symmetri
 produ
t of two parti
le multiplets, and indeed all the 
omputations inAppendix A point to the fa
t ‡43 that the 1/2-BPS 
ondition on the parti
le multiplet is thestring multiplet 
onstru
ted out of the parti
le 
harges. This has also been observed in Ref.[115℄, where it was shown that for d = 7 the 1/2-BPS 
onditions on the 56 parti
le multipletwere transforming in a 133 adjoint representation of E7, whi
h is the 
orresponding stringmultiplet.In order to extra
t the pre
ise 
onditions, it is 
onvenient to 
onsider the bran
hing
‡43The naive in
lusion of the KK6-brane as an extra ΓIJKLMNZ0IJKLMN term does not seem, however,to yield a U-duality invariant mass formula by this method.
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under the ST-duality group:
E7(7) ⊃ SO(6, 6) × Sl(2) (5.31)

56 = (12, 2) + (32, 1)

133 = (1, 3) + (3̄2, 2) + (66, 1),where the 32 
orrespond to the D-brane 
harges ms, m
2, ms4, ms;s6 and the two 12's tothe Kaluza�Klein and winding 
harges m1, m

1s and the NS5-brane/KK5-brane 
harges
m5, m1;s6 respe
tively (see also Tables 5.1 and 4.15). The 133 in the symmetri
 tensorprodu
t 56 ⊗s 56 of two parti
le multiplets is therefore

(1 ∈ 12 ⊗s 12, 3) + (3̄2 ∈ 12 ⊗ 32, 2) + (66 ∈ 32 ⊗s 32 + 12 ∧ 12, 1) . (5.32)So as to work out the tensor produ
ts in Eq. (5.32), it is advisable to 
onsider thefurther bran
hing
SO(6, 6) ⊃ Sl(6) × O(1, 1) (5.33)

12 = 61 + 6̄−1

32 = 13 + 1̄51 + 15−1 + 1−3

66 = 152 + 10 + 350 + 1̄5−2 .The de
omposition of the 133 
onditions in terms of the various Sl(6) ⊂ SO(6, 6) 
hargesis therefore
12 : ks ≡ m1m

s1 (5.34a)
321 :















k1 ≡ m1m
2 +msm

s1

k3s ≡ m1m
s4 +ms1m2

ks;s5 ≡ m1m
s;s6 +ms1ms4

(5.34b)
660 :















k4 ≡ msm
s4 +m2m2 +m1m

5

k1;s5 ≡ m2ms4 +msm
s;s6 +ms1m5 +m1m

1;s6

ks2;s6 ≡ m2ms;s6 +ms4ms4 +ms1m1;s6

(5.34
)
10 : ks;6 ≡ ms1m5 +msm

s;s6 (5.34d)
32−1 :















k1;6 ≡ m5m2 +m1;s6ms

k3;s6 ≡ m5ms4 +m1;s6m2

ks5;s6 ≡ m5ms;s6 +m1;s6ms4

(5.34e)
1−2 : k6;s6 ≡ m5m1;s6 (5.34f)where the subindex denotes the SO(1, 1) ⊂ Sl(2) 
harge, and the 
ontra
tions are theobvious ones. In parti
ular, for D-brane 
harges only, the 
ondition 660 redu
es to the one75



introdu
ed in Subse
tion 3.8. The 
ondition 12 is the familiar perturbative level-mat
hing
ondition, whereas 1−2 is the analogous 
ondition on NS5�KK5 bound states. The other
onditions mix di�erent T-duality multiplets. For example, the spinor 
onstraints (5.34b)and (5.34e) are 
omposed of produ
ts of D-brane 
harges with either KK- and winding
harges or NS5- and KK5-brane 
harges.As suggested by the index stru
ture of the 
onditions k in (5.34), the 
onstraints 
ombinein a string or momentum multiplet as‡44
k1 = m1m

2 (5.35a)
k4 = m1m

5 +m2m2 (5.35b)
k1;6 = m1m

1;7 +m2m5 (5.35
)
k3;7 = m2m1;7 +m5m5 (5.35d)
k6;7 = m5m1;7 (5.35e)If these 
omposite 
harges do not vanish, the state is at most 1/4-BPS, in whi
h 
ase itsmass formula is given by

M2 = M2
0(m) +

√

[T (k)]2 , (5.36)where M0(m) and T (k) are given by the half-BPS mass and tension formulae (5.23) and(5.27).Noting from Eq. (4.34) that the string multiplet T1 appears in the de
ompa
ti�
ationof the parti
le multiplet M, we 
an obtain the half-BPS 
ondition on the string multipletby allowing non-zero ms1, ms4, m1;s6 
harges only, where s denotes a �xed dire
tion on thetorus:
ks;s5 = ms1ms4 (5.37a)
ks2;s6 = ms1m1;s6 +ms4ms4 (5.37b)
ks5;s6 = ms4m1;s6 (5.37
)and identifying these 
harges with the n1, n4, n1;6 
harges of the string multiplet in onedimension lower. We therefore obtain a multiplet of half-BPS 
onditions

k5 = n1n4 (5.38a)
k2;6 = n1n1;6 + n4n4 (5.38b)
k5;6 = n4n1;6 (5.38
)This is easily seen to transform as a T ′

3 multiplet, as 
an also be inferred from the de
om-position (4.38) at level 2 of the string multiplet under de
ompa
ti�
ation. For d = 6, this is
‡44One 
ould have alternatively derived these 
onditions from the bran
hing E7 ⊃ Sl(7), but the one weused is more 
onstrained and more 
onvenient. 76



a 2̄7 quadrati
 
ondition on the 2̄7 string multiplet of E6, whereas for d = 5 only the �rst
ondition remains, giving a singlet 
ondition on the 10 multiplet of SO(5, 5). For d < 5, aBPS string state is automati
ally 1/2-BPS, while for d = 7 the T ′
3 
ondition transform asa 1539 of E7. The tension of a 1/4-BPS string 
an also be obtained by de
ompa
tifyingone dire
tion in Eq. (5.36), and has an analogous stru
ture

T 2 = T 2
0 (n) +

√

[T ′
3 (k)]2 (5.39)where T0(n) and T ′

3 (k) are given by the half-BPS tension (5.27) and the half-BPS 3-branetension, whi
h 
an be worked out easily.For d ≥ 6 (resp d ≥ 5), there still remain 
onditions to be imposed on the parti
lemultiplet (resp. string multiplet) in order for the state to be 1/4-BPS and not 1/8. Inthe d = 7 
ase, it should be required that the 56 in the third symmetri
 tensor power ofthe 56 parti
le 
harges vanishes [115℄. For d = 6, this redu
es to the statement that thesinglet in 273 should vanish. This 
ondition is empty for d ≤ 5. We shall however notinvestigate the 1/8-BPS 
ase any further, and refer to Appendix A.4 for the 1/8-BPS massformula of a NS5�KK-winding bound state in d = 6 (D = 5). In 
ontrast to 1/2-BPSstates, 1/4-BPS and 1/8-BPS states in general have a non-trivial degenera
y and thereforeentropy, whi
h still has to be a U-duality invariant quantity depending on the 
harges m[167, 189, 79, 92, 5℄. This allows non-trivial 
he
ks on U-duality and predi
tions on BPSbound states, whi
h we shall only mention here [314, 315, 282℄.
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6 Matrix gauge theoryThe de�nition of M-theory as the strong-
oupling limit of type IIA string theory and the�nite energy extension of the eleven-dimensional SUGRA does not allow the systemati

omputation of S-matrix elements, sin
e type IIA theory is only de�ned through its per-turbative expansion and 11D SUGRA is severely non-renormalizable. In Ref. [24℄, Banks,Fis
hler, Susskind and Shenker (BFSS) formulated a proposal for a non-perturbative def-inition of M-theory, in whi
h M-theory in the in�nite momentum frame (IMF) with IMFmomentum P = N/R, is related to the supersymmetri
 quantum me
hani
s ‡45 of N ×NHermitian matri
es in the large-N limit, the same as the one des
ribing the intera
tionsof N D0-branes indu
ed by �u
tuations of open strings. Despite the powerful 
onstraintsof supersymmetry, it is still a formidable problem to solve this quantum me
hani
s in thelarge-N limit.As was argued by Susskind [300℄, sense 
an however be made of the �nite-N Matrixgauge theory, as des
ribing the Dis
rete Light-Cone Quantization (DLCQ) of M-theory, thatis quantization on a light-like 
ir
le. This stronger 
onje
ture has been further motivatedin Ref. [278℄, relating through an in�nite Lorentz boost the 
ompa
ti�
ation of M-theoryon a light-like 
ir
le to 
ompa
ti�
ation on a vanishing spa
e-like 
ir
le, i.e. to type IIAstring theory in the presen
e of D0-branes. This argument gives a general pres
ription for
ompa
ti�
ation of M-theory (see also Sen's argument Ref. [283℄), and we shall brie�y gothrough it in this Se
tion.Upon toroidal 
ompa
ti�
ation on T d, the extra degrees of freedom brought in by thewrapping modes of the open strings extend this quantum me
hani
s to a quantum �eldtheory, namely a U(N) Yang�Mills theory with 16 supersymmetries on the T-dual torus
T̃ d in the large-N limit [127, 305℄. This pres
ription is 
onsistent up to d ≤ 3, but breaksdown for 
ompa
ti�
ation on higher-dimensional tori, owing to the ill-de�nition of SYMtheory at short distan
es. Several proposals have been made as to how to supplementthe SYM theory with additional degrees of freedom while still avoiding the 
oupling togravity, whi
h will be brie�y dis
ussed in this se
tion. Besides their relevan
e for M-theory
ompa
ti�
ation, these theories are also interesting theories in their own right, as non-trivialintera
ting �eld theories in higher dimensions.Our aim is to provide the ba
kground to dis
uss in Se
tion 7 the impli
ations of U-duality for the Matrix gauge theory des
ribing toroidal 
ompa
ti�
ation of M-theory. Therelation between the M-theory 
ompa
ti�
ation moduli, in
luding gauge ba
kgrounds, andMatrix gauge-theory parameters will be obtained, as well as the spe
trum of ex
itationsthat Matrix gauge theory should exhibit in order to des
ribe 
ompa
ti�ed M-theory. Thiswill leave open the issue of what is the 
orre
t Matrix gauge theory reprodu
ing thesefeatures.
‡45This model was �rst introdu
ed in Ref. [68, 118, 17℄.
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6.1 Dis
rete Light-Cone QuantizationThe �nite-N 
onje
ture of Ref. [300℄ is formulated in the framework of the DLCQ, the es-sentials of whi
h we review �rst. In �eld theory, it is 
ustomary to use equal-time (t = x0)quantization, whi
h breaks Poin
aré invarian
e, but preserves invarian
e under the kine-mati
al generators 
onsisting of spatial rotations and translations. However, an alternativequantization pro
edure exists, in whi
h the theory is quantized with respe
t to the propertime x+ = (x0 + x1)/
√

2, whi
h is referred to as light-
one quantization. In this 
ase, thetransverse translations P i and rotations Lij , as well as the longitudinal momentum P+ andthe boosts L−i, L+− do not depend on the dynami
s, while the generator P− generatesthe translations in the x+ dire
tion and plays the role of the Hamiltonian. The usual dis-persion relation H =
√
P iPi + M2 in equal-time quantization, is repla
ed in the light-
onequantization by

P− =
P iPi + M2

2P+
, (6.1)exhibiting Galilean invarian
e on the transverse spa
e. Parti
les, with positive energy

P− > 0, ne
essarily have positive longitudinal momentum P+, while antiparti
les will havenegative P+. The va
uum of P− is hen
e redu
ed to the Fo
k-spa
e state |0〉, and thenegative-norm ghost states are de
oupled as well. This simpli�
ation of the theory is atthe expense of instantaneous non-lo
al intera
tions due to the P+ = 0 pole in (6.1).Dis
rete light-
one quantization pro
eeds by 
ompa
tifying the longitudinal dire
tion
x− on a 
ir
le of radius Rl:

x− ≃ x− + 2πRl . (6.2)This results into a quantization of the longitudinal momentum of any parti
le i a

ordingto
P+

i =
ni

Rl
. (6.3)Be
ause the total momentum is 
onserved, the Hilbert spa
e de
omposes into �nite-dimensionalsupersele
tion se
tors labelled by N =

∑

ni. Note that the �nite dimension does not re-quire imposing any ultraviolet 
ut-o� on the eigenvalues ni, but follows from the 
ondition
ni > 0.It is important to note that, be
ause the x− dire
tion is a light-like dire
tion, the length
Rl of the radius is not invariant, but 
an be modi�ed by a Lorentz boost L+−,

(

x0

x1

)

→
(

cosh β − sinh β

− sinh β cosh β

)(

x0

x1

)

, (6.4a)whi
h amounts to
Rl → eβRl , P− → eβP− , P+ → e−βP+ . (6.5)This implies that the Hamiltonian P+ depends on the radius Rl through an over-all fa
tor

P+ = RlHN , (6.6)so that the mass M2 = 2P+P− is independent of Rl.79



6.2 Why is Matrix theory 
orre
t ?Following Ref. [278℄, we will now derive the Hamiltonian HN des
ribing the DLCQ ofM-theory, and obtain the BFSS Matrix-theory 
onje
ture. The basi
 idea is to 
onsider the
ompa
ti�
ation on the light-like 
ir
le as Lorentz-equivalent to a limit of a 
ompa
ti�
ationon a spa
e-like 
ir
le. A
ting with a boost (6.4) on an ordinary spa
e-like 
ir
le, we �nd
(

cosh β − sinh β

− sinh β cosh β

)(

0

Rs

)

=
Rl√

2

(

−1 + e−2β

1 + e2β

)

→ 1√
2

(

−Rl

Rl

) (6.7)where Rs = Rle
−β. Sending β → ∞ while keeping Rl �nite, we see that the light-like 
ir
leis Lorentz-equivalent to a spa
e-like 
ir
le of radius Rs → 0.In order to keep the energy �nite, whi
h from Eq. (6.6) and on dimensional ground s
alesas Rl/l

2
p, we should also res
ale the Plan
k length (and any other length) as lp,s = e−β/2lp.Altogether, M-theory with Plan
k length lp on the light-like 
ir
le of radius Rl in themomentum P+ = N

Rl
se
tor is equivalent to M-theory with Plan
k length lp,s on the spa
e-like 
ir
le of radius Rs in the momentum P = N

Rs
se
tor, with

Rs = Rle
−β , lp,s = e−β/2lp (6.8)in the limit β → ∞. Eliminating β, we obtain the following s
aling limit:

Rs → 0 , M =
Rs

l2p,s

=
Rl

l2p
= fixed . (6.9)Following Ref. [278℄, we shall denote the latter theory as M̃ theory.Sin
e the spa
e-like 
ir
le Rs shrinks to zero in lp,s units, this relates the DLCQ of M-theory to weakly 
oupled type IIA string theory in the presen
e of N D0-branes 
arryingthe momentum along the vanishing 
ompa
t dimension. Using Eq. (2.1), the s
aling limitbe
omes

gs = (RsM)3/4 , α′ = l2s =
R

1/2
s

M3/2
, Rs → 0 , M = �xed . (6.10)In parti
ular, gs and α′ go to zero, so that the bulk degrees of freedom de
ouple, and onlythe leading-order Yang�Mills intera
tions between D0-branes remain. This validates theBFSS 
onje
ture, up to the possible ambiguities in the light-like limit β → ∞ [159, 52℄.Several di�
ulties have also been shown to arise for 
ompa
ti�
ation on 
urved manifolds[103, 102℄, but sin
e we are only 
on
erned with toroidal 
ompa
ti�
ations, we will ignorethese issues.6.3 Compa
ti�
ation and Matrix gauge theoryFor toroidal 
ompa
ti�
ations of M-theory, we 
onsider the same s
aling limit as in (6.9),and keep the torus size 
onstant in Plan
k length units, that is

RI = rI

(

Rs

M

)1/2

, rI =
RI

lp,s
= fixed . (6.11)80



However, 
omparing (6.9) and (6.11), we �nd that the size of the torus goes to zero in thes
aling limit. To avoid this it is 
onvenient to 
onsider the theory on the T-dual torus T̃ d,obtained by a maximal T-duality in all d dire
tions. From Eq. (2.5), this has the e�e
tthat, IIA with N D0-branes → { IIA with N Dd-branes d = evenIIB with N Dd-branes d = odd
(6.12)Using the maximal T-duality transformation ∏d

I=1 TI , with TI given in (2.5), the type IIparameters then be
ome
gs =

(RsM)(3−d)/4

∏

rI
, α′ = l2s =

R
1/2
s

M3/2
, R̃I =

1

rIM
, (6.13a)

Rs → 0 , M =
Rs

l2p,s

= fixed , rI =
RI

lp,s
= fixed , (6.13b)so that, in parti
ular, the size of the dual torus is �xed in the s
aling limit. We willsometimes refer to the type II theory in this T-dual pi
ture as the ĨI-theory.The behaviour of the string 
oupling in the s
aling limit is now di�erent a

ording tothe dimension of the torus:

gs →















0 d < 3

finite d = 3

∞ d > 3

(6.14)In parti
ular for d < 3 we still have weakly 
oupled type IIA or IIB string theory inthe presen
e of N Dd-branes, so that M-theory is des
ribed by the SYM theory with 16super
harges living on the world-volume of the N Dd-branes. The gauge 
oupling 
onstantof this Matrix gauge theory and the radii sI of the torus on whi
h the D-branes are wrappedread
g2
YM = gsl

d−3
s =

M3−d

Vr

, Vr ≡
∏

I

rI , sI = R̃I =
1

rIM
(6.15)showing, in parti
ular, that g2

Y M is �nite in the s
aling limit.The spe
ial 
ase of Matrix theory on a 
ir
le (d = 1) yields (after an S-duality transform-ing the ba
kground D1-strings into fundamental strings) Matrix string theory [234, 93, 94℄,in whi
h an identi�
ation between the large-N limit of two-dimensional N=8 supersym-metri
 YM theory and type IIA string theory is established. We will not further dis
ussthis topi
 here, and refer to Ref. [116, 291℄ for the next 
ase d = 2 and its relation to typeIIB string theory. Moving on to the 
ase d = 3, the same 
on
lusion as in the d < 3 
ase
ontinues to hold, sin
e although the string 
oupling is �nite, the string length goes to zero81



so that loop 
orre
tions are suppressed in the α′ → 0 limit. Consequently, the d = 3 Matrixgauge theory is N=4 supersymmetri
 Yang Mills theory.For d > 3, however, the 
oupling gs blows up, and the weakly 
oupled string des
riptionof the D-branes is no longer valid. This 
oin
ides with the fa
t that the Yang�Mills theorybe
omes non-renormalizable and strongly 
oupled in the UV. Hen
e, in order to de�ne a
onsistent quantum theory, one needs to supplement the theory with additional degrees offreedom. In the following we brie�y review the proposals for d = 4 and d = 5, and showthe 
ompli
ation that arises for d = 6. These proposals follow from the above pres
ription,using further duality symmetries, whi
h will be examined in more detail in Se
tion 7. Otherde
oupling limits have been 
onsidered in [171℄.6.4 Matrix gauge theory on T 4In the 
ase d = 4, it follows from (6.12) that the e�e
tive theory is 4+1 SYM 
oming fromthe type IIA D4-brane world-volume theory. In the s
aling limit the type IIA theory be-
omes strongly 
oupled and using the 
orresponden
e between strongly 
oupled IIA theoryand M-theory a new eleventh dimension is generated, whi
h plays the role of a �fth spa
edimension in the gauge theory [265, 47, 45℄. Using Eqs. (2.11) and (6.13a), the radius and11D Plan
k length are
R̃ = gsls =

1

MVr
, l̃p = g1/3

s ls = R1/6
s M−5/6V −1/3

r . (6.16)Moreover, 
omparing with (6.15) we �nd that the radius R̃ is in fa
t equal to the YM
oupling 
onstant
R̃ = g2

YM . (6.17)Hen
e, in the s
aling limit (6.9), the Plan
k length l̃p goes to zero so that the bulkdegrees of freedom de
ouple, while the radius R̃ remains �nite. The N type IIA D4-branesbe
ome N M5-branes wrapped around the extra radius R̃, and M-theory on T 4 × S1 isthen des
ribed by the (2,0) world-volume theory of N M5-branes, wrapped on T 4 and theextra radius R̃, related to the Yang�Mills 
oupling 
onstant by Eq. (6.17). The properformulation of this theory is still un
lear, but Matrix light-
one des
riptions have beenproposed in Refs. [56, 279, 214, 15, 2, 188, 128℄ and the low-energy formulation studied inRefs. [125, 148℄. In parti
ular, at energies of order 1/g2
YM the Kaluza�Klein states alongthe extra 
ir
le 
ome into play. They 
an be identi�ed as instantons of 4D SYM lifted asparti
les in the (4+1)-dimensional gauge theory. Additional eviden
e for this 
onje
turethat follows from the U-duality symmetry will be dis
ussed in Se
tion 7.6.5 Matrix gauge theory on T 5In the 
ase d = 5, we have N type IIB D5-branes at strong string 
oupling, so that it isuseful to perform an S-duality that maps the D5-branes to NS5-branes. Using Eqs. (4.17))82



and (6.13a), we �nd that the string 
oupling and length be
ome
ĝs =

1

gs
= (RsM)1/2Vr , l̂2s = gsl

2
s =

1

M2Vr
, R̂I = R̃I . (6.18)Moreover, 
omparing with Eq. (6.15), we �nd that the string tension is related to the gauge
oupling 
onstant by

l̂2s = g2
YM . (6.19)The string 
oupling ĝs goes to zero in the s
aling limit, so that the bulk modes arede
oupled from those lo
alized on the NS5-branes. However, the string theory on the NS5-branes is still non-trivial, and has a �nite string tension in the s
aling limit [47℄. As a
onsequen
e, we �nd that M-theory on T 5 × S1 is des
ribed by a theory of non-
riti
alstrings propagating on the NS5-brane world-volume with a tension related to the gauge
oupling by Eq. (6.19). The proper formulation of this theory is still un
lear, but light-
oneMatrix formulations have been proposed [279, 290℄. The string 
an be identi�ed with a 4DYang�Mills instanton lifted to 1+5 dimensions. This des
ription is 
lose but not identi
alto the proposal in Refs. [92, 91℄ a

ording to whi
h the (1/4-) BPS se
tor of M-theoryshould be des
ribed by the (1/2-) BPS ex
itations of the M5-brane, whose dynami
s wouldbe des
ribed by a (ground-state) non-
riti
al �mi
ro-string� theory on its six-dimensionalworld-volume. In parti
ular, the theory on the type IIB NS5-brane is non-
hiral, whereasthat on the M5-brane is 
hiral. We refer the reader to the work of [94℄ for a dis
ussion ofthese two approa
hes.6.6 Matrix gauge theory on T 6Finally, we dis
uss the problems that arise for d = 6, in whi
h 
ase we have N type IIAD6-branes at strong 
oupling. As in the d = 4 
ase, an eleventh dimension opens up, andwe �nd M-theory 
ompa
ti�ed on a 
ir
le of radius R̃ with

R̃ = gsls =
1

R
1/2
s M3/2Vr

, l̃p = g1/3
s ls =

1

MV
1/3

r

. (6.20)The N D6-branes a
tually 
orrespond to N 
oin
iding Kaluza�Klein monopoles with Taub�NUT dire
tion along the eleventh dire
tion, and as R̃ → ∞, the monopoles shrink to zerosize and redu
e to an AN singularity in the eleven-dimensional metri
. It was suggested inRef. [155℄ that the bulk dynami
s still de
ouples from the (6+1)-dimensional world-volume,and that the latter 
an be des
ribed in the IMF by the m(atrix) quantum me
hani
s of N1D0-branes inside N ten-dimensional Kaluza�Klein monopole, in the large-N1 limit. Thisis very reminis
ent to the BFSS des
ription of M-theory, but the quantum me
hani
s isnow a matrix model with eight supersymmetries and 
orresponds to the Coulomb phaseof the quiver gauge theory in 0+1 dimensions asso
iated to the Dynkin diagram AN [101℄.In other words, this is a sigma model with ve
tor multiplets in the adjoint representationof [U(N1)]
⊗N and hypermultiplets in bifundamental representations (N1, N̄1) of U(N1)k ×83



U(N1)k+1 for k = 1 . . .N , with U(N1)k denoting the k-th 
opy of U(N1) and U(N1)1identi�ed with U(N1)N ; this model is restri
ted to its Coulomb phase, where the hypershave no expe
tation value. In the low-energy limit, it is expe
ted to redu
e to SYM in 1+6dimensions, with gauge 
oupling
l̃3p = g2

YM . (6.21)Other approa
hes have been proposed in Refs. [57, 126℄. We shall 
ome ba
k to the d = 6
ase in Se
tion 7 when we display the BPS states in terms of the low-energy SYM theory.6.7 Di
tionary between M-theory and Matrix gauge theoryWe �nally give the di
tionary that allows us to go from M-theory on T d × S1 (with S1a light-like 
ir
le) in the se
tor P+ = N/Rl and Matrix gauge theory on T̃ d. This 
anbe obtained by solving (6.13a) and (6.15), for the parameters (sI , N, gYM) of the U(N)Matrix gauge theory in terms of the parameters (RI , Rl, lp) of M-theory 
ompa
ti�
ationon T d × S1:
sI =

l3p
RlRI

(6.22a)
g2
YM =

l
3(d−2)
p

Rd−3
l

∏

RI

. (6.22b)For 
ompleteness we also give the inverse relations
RI =

1

sI

(

RlVs

g2
YM

)1/2

, l3p =

(

R3
l Vs

g2
YM

)1/2

, P+ =
N

Rl

, (6.23)where we have de�ned Vs =
∏

I sI as the volume of the dual torus on whi
h the Matrixgauge theory lives.6.8 Comparison of M-theory and Matrix gauge theory SUSYIn order to des
ribe the M-theory BPS states from the point of view of the gauge the-ory, we need to understand how the spa
e-time supersymmetry translates to the braneworld-volume. This is in 
omplete analogy with the perturbative string in the Ramond�Neveu�S
hwarz formalism, in whi
h spa
e-time supersymmetry emerges from world-sheetsupersymmetry (see [144℄, Se
tion 5.2), and the 
ase of the M5-brane has been thoroughlydis
ussed in Ref. [91℄. We will abstra
t their argument and dis
uss the 
ase of a general1/2-BPS brane, whether D, M, KK or otherwise, referring to that work for 
omputationaldetails.In the presen
e of a p-brane, the breaking of the 11D N = 1 spa
e-time supersymmetryis only spontaneous. The unbroken SUSY 
harges generate a superalgebra on the world-volume of the brane, whereas the broken ones generate fermioni
 zero modes. The �xing of84



the reparametrization invarian
e on the world-volume is most easily done in the light-
onegauge. The 32-
omponent super
harge Qα then de
omposes as a‡46 (spinor,spinor,spinor)of the unbroken Lorentz group SO(1, 1)×SO(p−1)×SO(10−p). The algebra is graded bythe eigenvalue ±1/2 of the generator of SO(1, 1), so that the unbroken generators Q+
aα have
harge +1/2 and the broken ones Q−

aα 
harge −1/2, where a is the spinorial index of the
SO(10− p) R-symmetry and α the spinorial index of the SO(p− 1) Lorentz world-volumesymmetry. The anti
ommutation relations then take the form

{Q+, Q+} = H + P + Z++ (6.24a)
{Q+, Q−} = p+ Z0 (6.24b)
{Q−, Q−} = Z−− . (6.24
)In this expression, H and P are the world-volume Hamiltonian and momentum, Z++, Z0,

Z−− some possible 
entral 
harges and p is the transverse momentum. A 
ontra
tion of the
entral 
harges with the appropriate Gamma matri
es is also assumed. In the following,we absorb the momentum in the 
harges Z++, and set p = 0 by 
onsidering a parti
le atrest in the transverse dire
tions.The 
entral 
harges Z0 and Z±± are simply a renaming of the ZMN , ZMNPQR 
entral
harges of the 11D superalgebra (2.13a). As their indi
es show, Z0 is a singlet of SO(1, 1),whereas Z++ and Z−− 
ombine in a ve
tor of SO(1, 1); Z0 is therefore identi�ed withthe ZIJ , ZIJKLM 
harges, whereas Z±± 
orrespond to the Z1I , Z1IJKLM 
harges, whereas usual I, J, . . . , are dire
tions on the torus and 1 is the spa
e-time dire
tion 
ombinedwith the time dire
tion on the light 
one. In other words, Z0 is identi�ed with the parti
le
harges, whereas Z±± 
orrespond to the string 
harges. In order for the superalgebra(6.24a) to reprodu
e the spa
e-time superalgebra (2.13a) with parti
le 
harges only, wetherefore need to impose Z±± = 0 on the physi
al states. This is the analogue of the
L0 = L̄0 level-mat
hing 
ondition.The broken generators Q− and the 
entral 
harges Z0 are given by the fermioni
 andbosoni
 zero modes only. On the other hand, the unbroken generators as well as the 
entral
harges Z±± have a non-zero-mode 
ontribution:

Q+ = Q+
0 + Q̂+ , Z±± = Z±±

0 + Ẑ±± , H = H0 + Ĥ . (6.25)The zero-mode part of the generators Q+
0 is built out of the bosoni
 and fermioni
 zeromodes Z0 and Q−, and anti
ommutes with the os
illator part Q̂+. It generates the samealgebra as in Eq. (6.24a), while the os
illator parts generate the same algebra on their ownand anti
ommute with the zero-mode broken generators Q− = Q−

0 . The level-mat
hing
onditions Z±± = 0 are a
hieved through a 
an
ellation of the zero-mode part, quadrati
in the parti
le 
harges Z0, and the os
illator parts.Let us now 
onsider the Hamiltonian H . Be
ause of supersymmetry, both H0 and Ĥare positive operators and for given zero modes Z0, the supersymmetri
 ground state isgiven by the 
ondition Ĥ = 0, or Q̂+|0〉 = 0. This state is therefore annihilated by all the
‡46or a sum of, depending on the parity of p. 85



Q̂+ supersymmetries, that is half the spa
e-time supersymmetries, and must have vanishing
Ẑ±± 
harge, that is from the level-mat
hing 
onditions Z±±

0 = (Z0)2 = 0. This 
ondition is,in less detail, the 1/2-BPS 
ondition k = 0 with k de�ned as in Eq. (2.21b). The energy ofthis state is given by the zero-mode part H0 = {Q+
0 , Q

+
0 } quadrati
 in the parti
le 
harges

Z0. This is equivalent to the mass formula Eq. (2.18) for 1/2-BPS states in spa
e-time.On the other hand, BPS states preserving 1/4 of the spa
e-time supersymmetry areonly annihilated by half the world-volume super
harges Q̂+, and their energy is shifted bythe non-zero-mode 
ontribution Ĥ . The latter is quadrati
 in the non-zero-mode part ofthe string 
harges Ẑ±± = −Z±±
0 = −(Z0)2, therefore quarti
 in the parti
le 
harge. Thisis pre
isely what was found in Eq. (2.21a):
E = M2(Z) +

√

[T (K)]2 . (6.26)This equation has a simple interpretation: the quadrati
 term 
orresponds to the 1/2-BPSbound state between the heavy mass Mp p-brane and the mass M parti
le, with bindingenergy
E =

√

M2
p + M2 −Mp ≃

M2

Mp
, (6.27)whereas the se
ond 
orresponds to a 1/4-BPS bound state between the p-brane and themass M = RT of the string with tension T wrapped on the 
ir
le R:

E = (Mp + M) −Mp = RT . (6.28)There is therefore a 
omplete identity between i) the spa
e-time supersymmetry algebraand parti
le spe
trum in the absen
e of the p-brane, ii) the p-brane world-volume gaugetheory and iii) the bound states of the p-brane with other parti
les. This also holds atthe level of spa
e-time �eld 
on�gurations, whi
h 
an be seen as 
on�gurations on theworld-volume [60, 39℄.6.9 SYM masses from M-theory massesWe shall now expli
it the 
orresponden
e of the previous subse
tion in the D-brane 
ase,relevant for Matrix gauge theory, and relate the energies in the Yang�Mills theory to themasses in spa
e-time. This has been dis
ussed in parti
ular in Refs. [299, 127, 116, 136℄.Based on the last interpretation as bound states of the N ba
kground D-branes with otherparti
les, we identify R = Rl and Mp = P+ = N/Rl, where Rl is the radius of the light-likedire
tion, and �x the normalization of the Yang�Mills energies as
EYM =

Rl

N
M2(Z) +Rl

√

[T (K)]2 . (6.29)We then pro
eed by using the di
tionary (6.22) to obtain the Yang�Mills energy of theBPS states we dis
ussed previously. 86



We now apply these 
onsiderations to the highest-weight states of the two U-dualitymultiplets of Subse
tions 4.8 and 4.10. The highest-weight state of the parti
le multipletis a Kaluza�Klein ex
itation on the I-th dire
tion, whi
h be
omes, after the maximal T-duality, an NS-winding state bound to the ba
kground Dd-brane. Hen
e, it is a boundstate with non-zero binding energy, and using Eq. (6.27) we �nd
EYM =

(1/RI)
2

N/Rl
=
g2
YMs

2
I

NVs
, (6.30)where in the se
ond step we used the di
tionary (6.22) to translate to Matrix gauge theoryvariables. This is the energy of a state in the gauge theory 
arrying ele
tri
 �ux in the I-thdire
tion. For this reason, the parti
le multiplet is also 
alled the �ux multiplet.Next we turn to the highest-weight state of the string multiplet, wrapped on the light-like dire
tion Rl. The highest weight is a membrane wrapped on RI and Rl, whi
h be
omes,after the maximal T-duality, a Kaluza�Klein state bound to the ba
kground Dd-brane.These two states form a bound state at threshold and a

ording to (6.28) we have

EYM =
RlRI

l3p
=

1

sI
, (6.31)where Eq. (6.22) was used again in the se
ond step. This is the energy of a massless parti
lewith momentum along the I-th dire
tion in the gauge theory, so that we may alternatively
all the string multiplet the momentum multiplet from the point of view of Matrix gaugetheory.This translation 
an be 
arried out for all other members of the U-duality multiplets,and sin
e U-duality preserves the supersymmetry properties of the bound state, one �ndsthe following general relation between SYM masses and M-theory masses:parti
le/�ux multiplet : EYM =

Rl

N
M , (6.32a)string/momentum multiplet : EYM = RlT1 . (6.32b)In Subse
tion 7.2, we will expli
itly see for the 
ases d = 3, 4, 5 that indeed all non-zero bind-ing energy and threshold bound states appear in the parti
le/�ux and string/momentummultiplets respe
tively. Finally, we remark that the equalities in the two equations (6.30)and (6.31) 
an be solved to yield the di
tionary (6.22), so that the 
omparison of these twotypes of energy quanta gives a 
onvenient short-
ut to (6.22).
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7 U-duality symmetry of Matrix gauge theoryIf any of the previously dis
ussed Matrix gauge theories purports to des
ribe 
ompa
ti�edMatrix gauge theory, it should 
ertainly exhibit U-duality invarian
e. In this se
tion, wewish to investigate the impli
ations of U-duality on the Matrix gauge theory at the algebrai
level, irrespe
tive of its pre
ise realization.To this end we use the di
tionary (6.22) between 
ompa
ti�ed M-theory and Matrixgauge theory. We �rst re
ast the Weyl transformations of the U-duality group (see Subse
-tion 4.4) in the gauge-theory language and interpret them as generalized ele
tri
�magneti
dualities of the gauge theory. Then, we translate the U-duality multiplets of Subse
tions4.8 and 4.10 in Matrix gauge theory and dis
uss the interpretation of the states. Finally,we use the results of Subse
tion 5.4 to dis
uss the realization of the full U-duality groupin Matrix gauge theory and in parti
ular the 
ouplings indu
ed by non-vanishing gaugepotentials.At the end of this se
tion a more spe
ulative aspe
t of �nite-N matrix gauge theory isdis
ussed. By promoting the rank N to an ordinary 
harge, we show the existen
e of an
Ed+1(d+1)(Z) a
tion on the spe
trum of BPS states. In this way, we �nd that the 
onje
turedextended U-duality symmetry of matrix theory on T d in DLCQ has an implementation asa
tion of Ed+1(d+1)(Z) on the BPS spe
trum, as demanded by eleven-dimensional Lorentzinvarian
e.7.1 Weyl transformations in Matrix gauge theoryThe dis
ussion of Matrix gauge theory from M-theory in Se
tion 6 has been restri
ted tore
tangular tori with vanishing gauge potentials, so that we �rst fo
us on the transforma-tions in the Weyl subgroup of the U-duality group ‡47

W(Ed(d)(Z)) = Z2 ⊲⊳ Sd . (7.1)The permutation group Sd that inter
hanges the radii RI of the M-theory torus obviouslystill permutes the radii sI of the Matrix gauge theory T-dual torus. On the other hand,the generalized T-duality TIJK in (4.12), using the di
tionary (6.22), translates into thefollowing transformation of the Matrix gauge theory parameters:
SIJK :















g2
YM → g

2(d−4)
YM

W d−5 W ≡∏a6=I,J,K sa

sα → sα α = I, J,K

sa → g2
YM

W
sa a 6= I, J,K

(7.2)For d = 3 the transformation (7.2) is pre
isely the (Weyl subgroup of) S-duality sym-metry of N = 4 SYM in 3+1 dimensions [299, 127℄:
g2
YM → 1/g2

YM , (7.3)
‡47We restri
t to the 
ase d ≥ 3; the 
ase d = 1 has trivial Weyl group, while for the 
ase d = 2 there isonly the permutation symmetry S2. 88



obtained for zero theta angle. The transformation (7.2) generalizes this symmetry to the
ase d > 3, by a
ting as S-duality in the (3+1)-dimensional theory obtained by redu
ingthe Matrix gauge theory in d + 1 dimensions to the dire
tions I, J,K and the time only[110℄. Indeed, the 
oupling 
onstant for the e�e
tive (3+1)-dimensional gauge theory reads
1

g2
eff

=
W

g2
YM

, (7.4)and the transformation (7.2) be
omes
(g2

eff , sα, sa) → (1/g2
eff , sα, g

2
effsa) . (7.5)To summarize, we see that from the point of view of the Matrix gauge theory the U-dualities are a

ounted for by the modular group of the torus on whi
h the gauge theorylives (yielding the Sl(d,Z) subgroup) as well as by generalized ele
tri
�magneti
 dualities(implementing the T-dualities of type IIA string) ‡48.We now dis
uss in more detail the d = 4, 5, 6 
ases, in order to give more support tothe proposals dis
ussed in Se
tion 6. Expli
itly, one obtains

d = 4 : SIJK

{

g2
YM ↔ sa a 6= I, J,K

sα → sα α = I, J,K
(7.6a)

d = 5 : SIJK















g2
YM → g2

YM

sa → g2
YM

sb
a, b 6= I, J,K

sα → sα α = I, J,K

(7.6b)
d = 6 : SIJK















g2
YM → g4

YM

sasbsc
a, b, c 6= I, J,K

sa → g2
YM

sbsc

sα → sα α = I, J,K

(7.6
)For d = 4 we see that (7.6a) indu
es a permutation of the YM 
oupling 
onstant with theradii, in a

ordan
e with the interpretation (6.17) of the YM 
oupling 
onstant as an extraradius. For d = 5, Eq. (7.6b) takes the form of a T-duality symmetry (2.41) of the non-
riti
al string theory living on the type IIB NS5-brane world-volume with the YM 
ouplingrelated to the string length as in (6.19). Finally, for d = 6, we see by 
omparing (7.6
) withthe U-duality transformation in (4.12) that we re
over the symmetry transformation TIJKin M-theory with the YM 
oupling 
onstant related to the Plan
k length by (6.21).At this point, it is also instru
tive to re
all the full U-duality groups for toroidal
ompa
ti�
ations of M-theory, as summarized in Table 4.2, and dis
uss their interpre-tation in view of the Matrix gauge theories for d = 3, 4, 5 (see Table 7.1). For d = 3,
‡48From the point of view of type IIB theory, it 
an be shown that the latter also a

ount for the restorationof the transverse Lorentz invarian
e [291℄. 89



D d U-duality origin8 3 Sl(3,Z) × Sl(2,Z) S-duality × symmetry of T 37 4 Sl(5,Z) symmetry of T 5 of M5-brane6 5 SO(5, 5,Z) T-duality symmetry on NS5-brane
D ≤ 5 d ≥ 6 Ed(d)(Z) un
learTable 7.1: Interpretation of U-duality in Matrix gauge theory.the Sl(3,Z) × Sl(2,Z) U-duality symmetry is the produ
t of the (full) S-duality and thereparametrization group of the three-torus. For d = 4, the Sl(5,Z) symmetry is the modu-lar group of the �ve-torus, 
orroborating the interpretation of this 
ase as the (2,0) theoryon the M5-brane [265℄. Finally, for d = 5 the SO(5, 5,Z) symmetry should be interpretedas the T-duality symmetry of the string theory living on the NS5-brane [91, 47℄. The

E6(6)(Z) symmetry is by no means obvious in the IMF des
ription dis
ussed in Subse
tion6.6, but this is expe
ted sin
e part of it are Lorentz transformations broken by the IMFquantization. The interpretation of the ex
eptional groups Ed(d)(Z), d = 7, 8 is not obviouseither, sin
e a 
onsistent quantum des
ription for these 
ases is la
king as well.In Subse
tions 7.4�7.6, the pre
ise identi�
ation of the full U-duality groups for d =
3, 4, 5 will be dis
ussed in further detail. Note also that as we are 
onsidering M-theory
ompa
ti�ed on a torus times a light-like 
ir
le, it has been 
onje
tured that the Ed(d)(Z)U-duality symmetry should be extended to Ed+1(d+1)(Z), as a 
onsequen
e of Lorentz in-varian
e. This extended U-duality symmetry will be dis
ussed in Subse
tion 7.7.Finally, we 
an translate the U-duality invariant Newton 
onstant (4.14) in the Matrixgauge theory language. The most 
onvenient form is obtained by writing

Id =
V d−5

s

g
2(d−3)
YM

=

(

VR

l9p

)2

R9−d
l , (7.7)whi
h depends on the invariant D-dimensional Plan
k length and the radius of the light-like 
ir
le, invariant under the Ed(d)(Z) transformations a
ting on the transverse spa
e.Again, in agreement with the Matrix gauge theory des
riptions, we see that for d = 3 theinvariant I3 = 1/V 2

s is related to the volume Vs of the three-torus; for d = 4 the invariant
I4 = 1/(Vsg

2
YM) is related to the total volume of the �ve-torus, 
onstru
ted from the four-torus and the extra radius R̃ = g2

YM; for d = 5 the invariant I5 = 1/g4
YM is related to the�nite string tension T = 1/g2

YM of the string theory. Finally, note also that for d = 6 theU-duality invariant I6 = Vs/g
6
YM is related to the 5-D Plan
k length, when using l3p = g2

YM.7.2 U-duality multiplets of Matrix gauge theoryWe now turn to the translation of the U-duality multiplets of Subse
tions 4.8 and 4.10in the Matrix gauge theory pi
ture. To this end we use the di
tionary (6.22) and the90



mass relations in Eq. (6.32). Equivalently, one may start with the highest-weight states
orresponding to ele
tri
 �ux (6.30) and momentum states (6.31) in the Matrix gauge theoryand subsequently a
t with the transformations (7.2) of the Weyl subgroup. Of 
ourse thesetwo methods lead to the same result, whi
h are summarized in Tables 7.2 and 7.3, forthe parti
le/�ux and string/momentum multiplet respe
tively. As a 
ompromise betweenexpli
itness and 
omplexity, we have 
hosen to write down the 
ontent for d = 7 in the �rst
ase, and for d = 6 in the latter 
ase. The tables list the mass M in M-theory variables,the 
orresponding gauge theory energy EYM and their asso
iated 
harges, obtained fromthe M-theory 
harges by raising lower indi
es or lowering upper indi
es.
M EYM 
harge
1

RI

g2
YMs2

I

NVs
m1

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

m2

RIRJRKRLRM

l6p

V 3
s

Ng6
YM(sIsJsKsLsM )2

m5

RI ;RJRKRLRMRN RP RQ

l9p

V 5
s

Ng10
YM(sI ;sJsKsLsMsNsP sQ)2

m1;7Table 7.2: Flux multiplet (56 of E7) for Matrix gauge theory on T 7.
M EYM 
harge

RlRI

l3p

1
sI

n1

RlRIRJRKRL

l6p

Vs

g2
YMsIsJsKsL

n4

RlRI ;RJRKRLRMRN RP

l9p

V 2
s

g4
YMsI ;sJsKsLsMsNsP

n1;6

RlRIRJRK ;RLRM RN RP RQRRRS

l12p

V 3
s

g6
YMsIsJsK ;sLsMsN sP sQsRsS

n3;7

RlRIRJRKRLRM RN ;RP RQRRRSRT RURV

l15p

V 4
s

g8
YMsIsJsKsLsMsN ;sP sQsRsSsT sUsV

n6;7Table 7.3: Momentum multiplet (133 of E7) for Matrix gauge theory on T 7.In Table 7.2, the �rst entry 
orresponds to a state with ele
tri
 �ux in the I-th dire
tion,while the se
ond one 
arries magneti
 �ux in the I, J dire
tion. The �rst entry in Table 7.3is a KK state of the gauge theory, while the se
ond one is a YM instanton in 3+1 dimensions,lifted to d+ 1 dimensions. For d ≥ 5, new states appear. As a further illustration, we takea 
loser look at the spe
ial 
ases d = 3, 4, 5, 6, whi
h 
an be obtained from the tables byomitting those states that have too many 
ompa
ti�ed dimensions. The Tables 7.4�7.7list the 
ontent of ea
h of the two multiplets for these 
ases [110, 244, 269℄, in
luding theM-theory mass, the YM energy, the multipli
ity of ea
h type of state and its interpretationboth in the Matrix gauge theory and as a bound state with the N ba
kground type ĨIDd-branes. For d = 4, 5 we have also added a 
olumn giving the bound-state interpretationin the M5- and NS5-brane theories respe
tively.91



M EYM # YM state b.s. of N D3
1

RI

g2
YMs2

I

NVs
3 ele
tri
 �ux NS-w

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

3 magneti
 �ux D1
RlRI

l3p

1
sI

3 momentum KKTable 7.4: Flux and momentum multiplet for d = 3: (3, 2) and (3, 1) of Sl(3) × Sl(2).
M EYM # YM state b.s. of N D4 b.s. of N M5
1

RI

g2
YMs2

I

NVs
4 ele
tri
 �ux NS-w M2

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2

6 magneti
 �ux D2
RlRI

l3p

1
sI

4 momentum KK KK
RlVR

l6p

1
g2
YM

1 YM parti
le D0Table 7.5: Flux and momentum multiplet for d = 4: 10 and 5 of Sl(5).
M EYM # YM state b.s. of N D6
1

RI

g2
YMs2

I

NVs
6 ele
tri
 �ux NS-w

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2

15 magneti
 �ux D4
VR

RI l6p

Vss
2
I

Ng6
YM

6 new se
tor KK5
RlRI

l3p

1
sI

6 momentum KK
RlVR

RIRJ l6p

sIsJ

g2
YM

15 YM membrane D2
RlRIVR

l9p

Vs

g4
YMsI

6 new se
tor NS5Table 7.7: Flux and momentum multiplet for d = 6: 27 and 2̄7 of E6.A few 
omments on these tables are in order.
• A number of states in the Matrix gauge theory have a uniformly valid interpretationas bound states with the ba
kground Dd-branes, namely, for the �ux multiplet,ele
tri
 �ux = Dd�NS-winding bound state (7.8a)magneti
 �ux = Dd�D(d− 2) bound state (7.8b)92



M EYM # YM state b.s. of N D5 b.s. of N NS5
1

RI

g2
YMs2

I

NVs
5 ele
tri
 �ux NS-w D1

RIRJ

l3p

Vs

Ng2
YM(sIsJ)2

10 magneti
 �ux D3 D3
VR

l6p

Vs

Ng6
YM

1 new se
tor NS5 D5
RlRI

l3p

1
sI

5 momentum KK KK
RlVR

RI l6p

sI

g2
YM

5 YM string D1 NS-wTable 7.6: Flux and momentum multiplet for d = 5: 16 and 10 of SO(5, 5).and for the momentum multiplet,KK momentum = Dd�KK bound state (7.9a)YM state = Dd�D(d− 4) bound state (7.9b)where the YM state denote the 4D Yang�Mills instanton lifted to d + 1 dimensions.The 
orresponden
es in Eq. (7.8) and (7.9) were noted in Refs. [250, 97, 320℄.
• In the d = 3 
ase, only perturbative states are observed in Table 7.4.
• For d = 4 one non-perturbative state o

urs in Table 7.5, whi
h 
orresponds pre
iselyto momentum along the dynami
ally generated �fth dire
tion, i.e. to a Yang�Millsinstanton lifted to 4+1 dimensions [265℄. From the M5-brane point of view, the�ux multiplet des
ribes the M2-brane ex
itations, while the momentum multiplet
omprises the KK states, as indi
ated in the last 
olumn.
• For the 
ase d = 5 in Table 7.6, we fo
us on the last 
olumn obtained by S-duality fromthe D5-brane pi
ture of the ĨI theory. The YM string in the momentum multipletarises in this 
ase from the wound strings on the NS5-brane. The wrapped transverse�vebrane on T 5 appears as a bound state of D5-branes with the ba
kground NS5-branes, with non-zero binding energy (sin
e it is related by ele
tri
�magneti
 dualityto the D1�NS1 bound state). It 
orresponds to a new se
tor in the Matrix gaugetheory Hilbert spa
e, with energy s
aling as 1/g6

YM. This state does not 
orrespondto any known 
on�guration of the 1+5 gauge theory, but may be understood as amagneti
 �ux along one ordinary dimension together with the dynami
ally generateddimension in a 1+4 gauge theory obtained by redu
ing the original one on a 
ir
le[154℄.For the d = 6 
ase, we see from Table 7.7 that all BPS states of type IIA theory on T 6 areinvolved in the bound states of the �ux and momentum multiplet, ex
ept for the D6�D093



�bound state�. It has been argued that the latter forms a non-supersymmetri
 resonan
ewith the un
onventional mass relation [88, 304℄:
M =

(

M2/3
D6 + M2/3

D0

)3/2

. (7.10)As a 
onsequen
e we expe
t to �nd a state in the gauge theory with energy
EYM =

(

M2/3
ND6 + M2/3

D0

)3/2

−MND6 ≃ M2/3
D0 M

1/3
ND6 . (7.11)Using the 
orresponding D-brane masses and the relation g2

YM = gsl
3
s we then obtain

EYM = N1/3V
1/3
s

g2
YM

= N1/3I
1/3
6 . (7.12)In the last step we have expressed the mass in terms of the U-duality invariant (7.7),expli
itly showing that this extra state transforms as a singlet under the U-duality group

E6(6)(Z). Sin
e the D0-brane is mapped onto a D6-brane under the maximal T-duality,the spa
e-time interpretation of this extra U-duality multiplet follows from the M-theoryorigin of the D6-brane, i.e. the state is KK6-brane with the TN dire
tion along the light-like dire
tion. The 
orresponding data of this extra singlet are summarized in Table 7.8.The d = 7 
ase is dis
ussed in Appendix C, and exhibits a number of similar states (withM-theory masses depending on multiple fa
tors of Rl) as the extra singlet in d = 6.
M EYM # YM state b.s. of N D6

R2
l VR

l9p

N1/3V
1/3
s

g2
YM

1 new se
tor D0Table 7.8: Additional multiplet for d = 6: 1 of E6.7.3 Gauge ba
kgrounds in Matrix gauge theoryOur dis
ussion of the Matrix gauge theory U-duality symmetries and mass formulae hasso far been restri
ted to the re
tangular-torus 
ase, with zero expe
tation values for theM-theory gauge potentials. However, gauge ba
kgrounds in M-theory yield moduli, andshould have a 
ounterpart as 
ouplings in the Matrix gauge theory.As a simple example, 
onsider �rst M-theory on T 3, in whi
h 
ase we 
an swit
h on anexpe
tation value for the 
omponent C123 of the three-form. Together with the volume Vof T 3, it forms a 
omplex s
alar
τ = C123 + i

V

l3p
, (7.13)94



whi
h transforms as a modular parameter under the subgroup Sl(2,Z) of the U-dualitygroup Sl(3,Z) × Sl(2,Z) [146℄. On the other hand, a

ording to Eq. (6.22a) the volumeis identi�ed in the Matrix gauge theory with 1/g2
YM, whi
h together with the theta angleforms a 
omplex s
alar

S =
θ

2π
+ i

4π

g2
YM

, (7.14)transforming as a modular parameter under the ele
tri
�magneti
 duality group Sl(2,Z).One should therefore identify C123 with θ, or in other words the three-form ba
kgroundindu
es a topologi
al 
oupling ∫ F ∧ F on the D3-brane world-volume.This 
an be derived more generally for any d by making use of Seiberg's argument andthe well-known 
oupling of Ramond gauge �elds to the D-brane world-volume. Details ofthe derivation 
an be found in Ref. [244℄ and we only quote the result whi
h is that theexpe
tation value of the three-form indu
es the following topologi
al 
oupling in Matrixgauge theory:
SC = CIJK

∫

dt

∫

T̃ d

F0IFJK . (7.15)This 
oupling redu
es to the θ term (7.14) for d = 3 and was 
onje
tured in Ref. [35℄. Aswe now show, the 
oupling (7.15) 
an also be inferred from the U-duality invariant massformulae.To see this, we �rst translate the general U-duality invariant mass formulae (5.23) intothe gauge theory language using (6.22) and (6.32), restri
ting to d ≤ 6 for simpli
ity:
EYM =

g2
YM

NVs

[

(

m̃1
)2

+

(

Vs

g2
YM

)2

(m̃2)
2 +

(

Vs

g2
YM

)4

(m̃5)
2

]

+

√

(ñ1)
2 +

(

Vs

g2
YM

)2

(ñ4)
2 +

(

Vs

g2
YM

)4

(ñ1;6)
2 (7.16)in whi
h we have added the �ux multiplet and momentum multiplet together, as was arguedin Subse
tion 6.8. Index 
ontra
tions are performed with the dual metri
 g̃IJ = gIJ l6p/R

2
l ,and upper (lower) indi
es in the M-theory pi
ture have be
ome lower (upper) indi
es in theMatrix gauge theory pi
ture. We also re
all that Vs is the volume of the dual torus T̃ d onwhi
h the Matrix gauge theory lives. The expression of shifted 
harges is then given by

m̃1 = m1 + C3m2 +
(

C3C3 + E6
)

m5 (7.17a)
m̃2 = m2 + C3m5 (7.17b)
m̃5 = m5 (7.17
)
ñ1 = n1 + C3n4 +

(

C3C3 + E6
)

n1;6 (7.17d)
ñ4 = n4 + C3n1;6 (7.17e)
ñ1;6 = n1;6 . (7.17f)95



As we will see below, the linear shift in C3 is in agreement with the 
oupling obtained inEq. (7.15). As a preview, the interpretation of the C3 
oupling in the various Matrix gaugetheories is summarized in Table 7.9. We will dis
uss these formulae in further detail for
d = 3, 4, 5 below. There is as yet no derivation of the 
oupling of the E6 gauge potential tothe Matrix gauge theory.

D d CIJK interpretation8 3 1 θ-parameter7 4 4 o�-diagonal 
omponent AI of T 5-metri
6 5 10 BIJ -ba
kground �eld of string theory on 5-brane
D ≤ 5 d ≥ 6

(

d
3

) un
learTable 7.9: Matrix gauge theory interpretation of three-form potential.7.4 Sl(3,Z)× Sl(2,Z)-invariant mass formula for N=4 SYMin 3+1 dimensionsAs a �rst 
ase, we 
onsider the mass formula (7.16) for d = 3,
EYM =

g2
YM

NVs

(

mI +
1

2
CIJKmJK

)

g̃IL

(

mL +
1

2
CLMNmMN

) (7.18)
+

Vs

Ng2
YM

(

mIJ g̃
IK g̃JLmKL

)

+
√

nI g̃IJnJ .This in
ludes the energy of the ele
tri
 �ux mI (i.e. the momentum 
onjugate to ∫ F0I)and the magneti
 �ux mIJ =
∫

FIJ in the diagonal Abelian subgroup of U(N), togetherwith the energy of a massless ex
itation with quantized momentum nI . We observe thatthe e�e
t of the M-theory ba
kground value of the three-form C3 is to shift the ele
tri
 �ux
mI , whi
h is a manifestation of the Witten e�e
t and indi
ates that the 
oupling of C3 togauge theory o

urs through the topologi
al term (7.15). Indeed, the only e�e
t of su
h a
oupling is to shift the momentum 
onjugate to ∂0AI by a quantity CIJK

∫

FJK .Moreover, introdu
ing the dual magneti
 
harge mI
∗ = 1

2
ǫIJKmJK and setting CIJK =

θǫIJK , the mass formula (7.18) 
an be written in the alternative form
EYM =

1

NVs
(g2

YM(mI + θmI
∗)g̃IJ(mJ + θmJ

∗ ) +
1

g2
YM

mI
∗g̃IJm

J
∗ )

+
√

nI g̃IJnJ ,

(7.19)whi
h manifestly exhibits the Sl(2,Z) S-duality symmetry as well as the Sl(3,Z) modulargroup of the three-torus. 96



7.5 Sl(5,Z)-invariant mass formula for (2,0) theory on the M5-braneMoving on to the 
ase d = 4, an extra momentum 
harge n4 appears in (7.16), whi
h
orresponds to the momentum along the dynami
ally generated 5th dimension. After somealgebra, the total mass (7.16) 
an be rewritten in a manifestly U-duality (Sl(5,Z))-invariantform:
EYM =

1

NV5
mABg̃AC g̃BDm

CD +
√

nAg̃ABnB (7.20)where A,B, · · · = 1 . . . 5 and V5 = Vsg
2
YM is the volume of the �ve-dimensional torus. Here,the two-form and ve
tor 
harges mAB, nA on the �ve-torus are related to the original seton the four-torus by

mI5 = mI , mIJ =
1

2
ǫIJKLmKL (7.21a)

nI = nI , n5 =
1

4!
ǫIJKLnIJKL I, J, · · · = 1, . . . , 4 (7.21b)where the 
harge mAB is the quantized �ux (in the diagonal Abelian group) 
onjugateto the two-form gauge �eld that lives on the (5+1)-dimensional world-volume, and nA issimply the momentum along the dire
tion A. The gauge potential CIJK 
ombines with thegauge 
oupling and the T 4 metri
 to make the metri
 on T 5:

ds2
5 = R̃2(dx5 + AIdxI)

2 + ds2
4 (7.22a)

R̃ = g2
YM , AI =

1

3!
ǫIJKLCJKL . (7.22b)In parti
ular, it is seen that the three-form potential plays the role of the o�-diagonal
omponent of the �ve-dimensional metri
 relevant to the M5-brane.As a 
he
k, we re
all that the bosoni
 part of the M5-brane a
tion 
an be written in anon-
ovariant form by solving the self-duality 
ondition after singling out a spe
ial (�fth)spa
e-like dire
tion and integrating the resulting equations of motion [274, 251, 1℄. Inparti
ular, it 
ontains the 
oupling

L = −1

4
ǫµνλρσ

G5λ

G55
H̃µνH̃ρσ (7.23a)

H̃µν =
1

6
ǫµνρλσHρλσ , µ, ν = 0 . . . 4 , (7.23b)whi
h pre
isely reprodu
es, upon the identi�
ations in (7.22), the topologi
al 
oupling(7.15) in the e�e
tive (4+1)-dimensional SYM theory, where the �eld strength Fµν is iden-ti�ed with the dual �eld strength H̃µν . Finally, we note that EYM in (7.20) depends on thevolume of T 5 through an over-all fa
tor V −1/5

5 , in agreement with the s
ale invarian
e ofthe 
onje
tured (5+1)-dimensional (2,0) theory.97



7.6 SO(5, 5,Z)-invariant mass formula for non-
riti
al stringtheory on the NS5-braneFinally, we 
onsider the 
ase d = 5, for whi
h a

ording to the reasoning in Subse
tion6.5 the Matrix gauge theory should 
orrespond to a non-
riti
al string theory on the typeIIB NS5-brane with vanishing string 
oupling ĝs
‡49 and �nite string tension l̂2s = g2

YM.After some algebra, the mass formula (7.16) 
an be rewritten in the manifestly U-duality(SO(5, 5)) invariant form
EYM =

1

NMNS5

M2(D1,D3,D5) +
√

M2(KK,F1) , (7.24)where MNS5 = Vs

ĝ2
s l̂6s

is the mass of the ba
kground NS5-brane.The se
ond part of (7.24) involves the momentum (n1) and winding (n1, dual to n4)ex
itations of the strings living on the world-volume, whi
h form the ve
tor representation
10 of the SO(5, 5) T-duality group. The 
orresponding invariant mass

M2(KK,F1) = (n1 +B2n
1)2 +

1

l̂2s
(n1)2 (7.25)dire
tly follows from the se
ond part of (7.16), using the identi�
ation

BIJ =
1

3!
ǫIJKLMCKLM (7.26)for the ba
kground antisymmetri
 tensor �eld in terms of the 
omponents of the three-formgauge potential on the �ve-torus.The �rst term in (7.24) involves the D-brane ex
itations arising from the 
harges

(m1, m2, m5) that 
an be dualized into (m1, m3, m5). It exhibits the 
orre
t invariant massEq. (3.39) for a spinor representation of SO(5, 5):
M2(D1,D3,D5) =

(

m̃1

ĝsl̂2s

)2

+

(

m̃3

ĝsl̂4s

)2

+

(

m5

ĝs l̂6s

)2 (7.27a)
m̃1 = m1 +B2m

3 +B2
2m

5 , m̃3 = m3 +B2m
5 (7.27b)where we again used the identi�
ation (7.26).As a further 
he
k, let us note that the Green�S
hwarz term ∫

d6xB ∧ F ∧ F in thee�e
tive a
tion of the six-dimensional string theory, 
orre
tly gives the topologi
al term(7.15) after using the relation (7.26) between the ba
kground string theory B-�eld and theva
uum expe
tation values of the M-theory three-form.
‡49ĝs 
an
els out in the following formulae. 98



7.7 Extended U-duality symmetry and Lorentz invarian
eM(atrix) theory still la
ks a proof of eleven-dimensional Lorentz 
ovarian
e to shorten itsname to M-theory. In the original 
onje
ture, this feature was 
redited to the large-Nin�nite-momentum limit. The mu
h stronger Dis
rete Light Cone (DLC) 
onje
ture, if
orre
t, allows Lorentz invarian
e to be 
he
ked at �nite N � or rather at �nite N 's, sin
ethe non-manifest Lorentz generators mix distin
t N supersele
tion se
tors. In parti
ular,M(atrix) theory on T d in the DLC should exhibit a U-duality Ed+1(d+1)(Z), if it is assumedthat U-duality is una�e
ted by light-like 
ompa
ti�
ations [172, 54, 244℄. In this se
tion,we show that an a
tion of Ed+1(Z) on the M-theory BPS spe
trum 
an be de�ned whenwe in
lude the light-like 
ir
le S1 on an equal footing with the spa
e-like torus T d.parti
le multiplet 
harge string multiplet 
harge missing 
harges ext. part.
1

RI
m1(7) N(1) M1(8)

RIRJ

l3p
m2(21) RlRJ

l3p
n1(7) M2(28)

RIRJRKRLRM

l6p
m5(21) RlRIRJRKRL

l6p
n4(35) M5(56)

R2
IRJRKRLRMRN RP

l9p
m1;7(7)

RlR
2
IRKRLRMRN RP

l9p
n1;6(49) N6(7), N7(1) M1;7(64)

RlR
2
I
R2

J
R2

K
RLRMRN RP

l12p
n3;7(35) N2;7(21) M3;8(56)

RlR
2
I
R2

J
R2

K
R2

L
R2

M
R2

N
RP

l15p
n6;7(7) N5;7(21) M6;8(28)

N1;7;7(7), N7;7(1) M1;8;8(8)Table 7.10: Parti
le multiplet and string multiplet wrapped on Rl for d = 7. Together withthe rank multiplets, they form the d = 8 parti
le multiplet.In the presen
e of an extra (light-like) 
ompa
t dire
tion of radius Rl, the states fromthe string multiplet in Table 4.13 
an be wrapped to yield extra parti
les in the spe
trumthat join the already existing states from the parti
le multiplet in Table 4.10. We havesummarized in Table 7.10 the various parti
les obtained in the 
ase d = 7. It 
learlyappears that altogether, the d = 7 parti
le and string multiplets build a parti
le multipletof the d = 8 U-duality group, whose 
harges M are obtained from the parti
le m and string
n 
harges through the relations

m1 = M1 m1;7 = M1;7 , n1;6 = M1;l6

m2 = M2 , n1 = M l1 m3,8 = M3;8 , n3,7 = M3;l7

m5 = M5 , n4 = M l4 m6,8 = M6,8 , n6,7 = M6;l7

(7.28)where we have denoted the light-
one dire
tion by an index l ‡50. This is not quite 
orre
t,however, sin
e in parti
ular there is no 
andidate for the Ml state, whi
h would 
orrespond
‡50As usual, the same relations hold for d < 7 by dropping the tensors with too many antisymmetri
indi
es. 99



to a Kaluza�Klein ex
itation along the light-like dire
tion. Obviously, this missing 
hargeis nothing but the rank of the gauge group
N = Ml , (7.29)whi
h indeed denotes the momentum along the light-like dire
tion, and should thereforebe 
onsidered as a 
harge on the same footing as the others. labelling the va
uum of someM(eta) theory on whi
h the eleven-dimensional Lorentz group is represented. This 
hargehas to be invariant under the U-duality group Ed(d)(Z), but it gets mixed with other 
hargesunder Ed+1(d+1)(Z).While N is the only missing 
harge for d ≤ 5, there is still, for d ≥ 6, an extra missingU-duality singlet
N6 = M l;l6 (7.30)whi
h 
an be interpreted as the D6�D0 bound state of Eq. (7.12). For d = 7, one needseven more extra 
harges, namely

N2;7 ≡M l2;l7 , N6 ≡M l;l6 , N5;7 ≡M l5;l7 , N1;7;7 ≡M1;l7;l7 , (7.31)whi
h form the 56 of E7, isomorphi
 to the parti
le multiplet of Table 5.1, as well as thetwo singlets
N7 = M l;7 , N7;7 = M l;l7;l7 , (7.32)for whi
h Table C.2 gives the bound-state interpretation as well. These extra 
harges alongwith N were referred to in [244℄ as the rank multiplet. The results are summarized inthe Table 7.11, whi
h lists, for all d's, the dimensions of the parti
le and string multiplet,as well as the rank multiplets that are needed to 
omplete the �rst two into the parti
lemultiplet of the d+ 1 
ase.We note that the above dis
ussion follows immediately from the de
omposition (4.34)of the parti
le multiplet of Ed(d) into the parti
le and string multiplet of Ed−1(d−1) plusextra irreps for d ≥ 6. In parti
ular, the extra representations that appear are nothingbut the extra 
harges forming the rank multiplet. If we omit the light-like dire
tion, weindeed see an extra T ′

1 |1 for d = 6; for d = 7 we have the extra representations T ′
1 |1, T ′

2 |2and (T ′
1 )2|3, whose subs
ripts are in pre
ise 
orresponden
e with the number of times thelight-like dire
tion appears in the 
harges of (7.30) and (7.31),(7.32).7.8 Nahm-type duality and interpretation of rankTo see the physi
al signi�
an
e of the U-duality enhan
ement, we dis
uss the extra genera-tors in Ed+1(d+1)(Z). First there is the Weyl generator, ex
hanging the light-
one dire
tionwith a 
hosen dire
tion I on T d:

Rl ↔ RI . (7.33)100



U-duality Flux Mom. Rank Total
D d Ed(d)(Z) {m} {n} {N} {M}10 1 1 1 1 1 39 2 Sl(2) 3 2 1 68 3 Sl(3) × Sl(2) (3, 2) (3, 1) 1 107 4 Sl(5) 10 5 1 166 5 SO(5, 5) 16 10 1 275 6 E6 27 2̄7 1+1 564 7 E7 56 133 56 + 1 248+1+13 8 E8 248 3875 ∞ ∞Table 7.11: Flux, momentum and rank multiplets.The a
tion of this Weyl transformation leaves the other RJ 's and lp invariant. In parti
ular,Newton's 
onstant in 11 − (d+ 1) dimensions

1

κ2
=
VRRl

l9p
= R

(d−7)/2
l

V
(d−5)/2
s

gd−3
(7.34)is invariant under U-duality. In terms of Matrix gauge theory, this means

g2
YM →

(

Rl

RI

)d−4

g2
YM , sI → sI , sJ 6=I →

(

Rl

RI

)

sJ . (7.35)Note that the transformed parameters depend on the original ones and on Rl. On the otherhand, the only dependen
e of the gauge theory on Rl should be through a multipli
ativefa
tor in the Hamiltonian, sin
e Rl 
an be res
aled by a Lorentz boost (see Eq. (6.4)). Thisleaves open the question of how the M(eta) theory itself depends on Rl.The a
tion on the 
harges follows from the ex
hange of the I and l indi
es, so thatrestri
ting to d = 6 for simpli
ity, we have
N ↔ mI

n1 ↔ mI1

n4 ↔ mI4

n1;6 ↔ m1;I6 .

(7.36)In parti
ular, the rank N of the gauge group is ex
hanged with the ele
tri
 �ux mI , whereasthe momenta are ex
hanged with magneti
 �uxes. This is reminis
ent of Nahm duality,101



relating (at the 
lassi
al level) a U(N) gauge theory on T 2 with ba
kground �ux m to a
U(m) gauge theory on the dual torus with ba
kground �ux N [236℄. In the 
ontext ofhigher-dimensional Yang-Mills theories, this symmetry was �rst observed at the level ofthe multipli
ities of the BPS spe
trum of SYM in 1 + 3 dimensions [153℄, and extended inthe 
ontext of Matrix theory on T d in Refs. [173, 54, 244, 85℄. Non-
ommutative geometrymay provide the 
orre
t framework for this duality [237℄.The other generator is the Borel generator,

ClJK → ClJK ,+∆ClJK (7.37)whi
h is obtained from the usual Ed(d)(Z) shifts by 
onjugation under Nahm-type duality.It is therefore not an independent generator, but still gives a spe
tral �ow on the BPSspe
trum
N → N + ∆Cl2 m

2

m1 → m1 + ∆Cl2 n
1

m2 → m2 + ∆Cl2 n
4

m5 → m5 + ∆Cl2 n
1;6 .

(7.38)In parti
ular, this implies that states with negative N need to be in
orporated in the M(eta)theory if it is to be Ed+1(d+1)(Z)-invariant. This is somewhat surprising sin
e the DLCquantization sele
ts N > 0, and it seems to require a revision both of the interpretationof N as the rank of a gauge theory and of the relation between N and the light-
onemomentum P+ ‡51.Finally, let us 
omment in some more generality on the o

urren
e of this extendedU-duality group. At least at low energies, the Matrix gauge theory des
ribing the DLCQ ofM-theory 
ompa
ti�ed on T d is nothing but the gauge theory on the N Dd-brane wrappedon T d. The latter is 
ertainly invariant under the T-duality SO(d, d,Z), and not only
SO(d − 1, d − 1,Z) ⊲⊳ Sl(d). Its spe
trum of ex
itations, or equivalently bound states, istherefore invariant under SO(d, d,Z), and very plausibly under the extended duality group
Ed+1(d+1)(Z). On the other hand, we have expanded the bound-state mass in the limitwhere the N Dd-branes are mu
h heavier than their bound partners, whereas T-duality 
anex
hange the Dd-branes with some of their ex
itations. SO(d, d,Z) is therefore expli
itlybroken, and Ed+1(d+1)(Z) is broken to Ed(d)(Z). The invarian
e of the mass spe
trum 
anbe restored by using the full non-
ommutative Born�Infeld dynami
s instead of its small α′Yang�Mills limit [70℄. While not relevant for M(atrix) theory anymore, interesting insights
an 
ertainly be obtained by studying these truly stringy gauge theories.A
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ts ERBFMRX-CT96-0045 and ERBFMRX-CT96-0090.Note added in proof :Boundaries of M-theory moduli spa
eAs we dis
ussed in Se
tion 2, M-theory arises in the strong 
oupling regime of type II stringtheory, and redu
es at low energy to 11D supergravity. It is important to determine whatportion of the M-theory moduli spa
e are 
overed by these weakly 
oupled des
riptions,and thus what room is left for truly M-theoreti
 dynami
s. The te
hniques we developedin Se
tion 4 allow us to easily answer this question, �rst addressed in Ref. [319℄ for 
om-pa
ti�
ations down to D ≥ 4, and re
ently for D = 2 in Ref. [23℄. We �rst 
onsiderthe 
ase D > 2, and 
onsider an asymptoti
 dire
tion in the moduli spa
e, representedby an arbitrarily large weight ve
tor λ in the weight spa
e Vd+1, see Se
tion 4.6. ModuloU-duality, λ 
an be 
hosen in the fundamental Weyl 
hamber λ ·α > 0 for all positive roots
α. This 
orresponds to 
hoosing

R1 < R2 < · · · < Rd , R1R2R3 > l3p , (7.39)where the inequalities are understood to be large inequalities, in order to have a maximaldegeneration in the moduli spa
e [319℄. The 11D supergravity des
ription is valid providedall radii are larger than the Plan
k length, i.e.
11D SUGRA : lp < R1 . (7.40)On the other hand, when the radius R1 is mu
h smaller than lp, we 
an have a type IIAdes
ription with weak 
oupling g2

s = (R1/lp)
3, provided all radii are larger than the stringlength l2s = l3p/R1 :

IIA : R1 < lp , R1R
2
2 > l3p . (7.41)If this is not the 
ase, then we may instead try a type IIB des
ription with weak 
oupling

gs = R1/R2, same string length l2s = l3p/R1 and 10-th radius RB = l3p/(R1R2). The IIB radii
RB and R3, . . . , Rd are larger than the string length provided R1R

2
2 < l3p and R1R

2
3 > l3p,and it is not di�
ult to see that, using Eq. (7.39), the �rst implies R1 < lp, and the se
ondis automati
ally satis�ed. The type IIB des
ription thus hold in the region

IIB : R1 < lp , R1R
2
2 < l3p . (7.42)103



The weakly 
oupled 11D supergravity, type IIA and type IIB des
riptions therefore 
over,up to U-duality, the entire asymptoti
 moduli spa
e of M-theory on T d, d > 2. Of 
ourse,these des
riptions fail when any of the large inequalities above be
ome approximate equali-ties, hen
e the need for a more fundamental de�nition of M-theory. On the 
ontrary, when
D ≤ 2, there are asymptoti
 se
tors of the moduli spa
e where no perturbative des
rip-tion is possible. Indeed, the weight spa
e Vd+1 is now intrinsi
ally Minkovskian, and thelight-
one λ · λ = −(x0)2 +

∑

(xi)2 = 0 separates the moduli spa
e into three se
tors that
an never be related to ea
h other by U-duality. For instan
e, the 11D supergravity region(7.39) has xi > x0/3 for all i, so that λ ·λ > 0. It therefore sits in the interior of the futurelight-
one if x0 > 0, or past light-
one if x0 < 0 (one may 
hoose x0 = 0 by working in
lp units). In fa
t, the time-like region 
an be shown to have a weakly 
oupled 11D super-gravity, type IIA or type IIB des
ription, whereas the spa
elike region 
an be argued to be
osmologi
ally forbidden by the holographi
 prin
iple [23℄.Appendi
esA BPS mass formulaeIn this Appendix, we analyse the BPS eigenvalue equation (2.14) for various 
hoi
es ofnon-vanishing 
entral 
harges. This gives a 
he
k on the mass formulae obtained on thebasis of duality, and yields the 
onditions on the 
harges for a state to preserve a givenfra
tion of supersymmetry.A.1 Gamma Matrix theoryIn order to maintain manifest eleven-dimensional Lorentz invarian
e, we use the 11D Clif-ford algebra [ΓM ,ΓN ] = 2ηMN , with signature (−,+, . . . ), even after 
ompa
ti�
ation. Thematri
es ΓM are then 32 × 32 real symmetri
 ex
ept for the 
harge 
onjugation matrix
C = Γ0, whi
h is real antisymmetri
. All produ
ts of Gamma matri
es are tra
eless ex
eptfor

Γ0Γ1 . . .Γ9Γs = 1 , (A.1)where we denote by s the eleventh dire
tion. We de�ne ΓMN... = ΓMΓN . . . if the p indi
es
M,N, . . . are distin
t, zero otherwise, and abbreviate it as Γ(p). We have

(Γ(p))
2 = (−1)[

p

2 ] , (Γ0Γ(p))
2 = (−1)[

p−1
2 ] , (A.2)
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where the p indi
es are non-zero and the square bra
kets denote the integer part. Further-more,
Γ(p)Γ(q) + (−)pqΓ(q)Γ(p) =

∞
∑

k=0
p+q−4k≥|p−q|

Γ(p+q−4k) (A.3a)
Γ(p)Γ(q) − (−)pqΓ(q)Γ(p) =

∞
∑

k=0
p+q−2−4k≥|p−q|

Γ(p+q−2−4k) , (A.3b)with no restri
tions on the p + q indi
es. On the right-hand side of Eq. (A.3a) (resp.(A.3b)), a 
ontra
tion between the �rst 2k (resp. 2k + 1) indi
es of Γ(p) and the �rst 2k(resp. 2k + 1) indi
es of Γ(p) is implied. In parti
ular,
[Γ(2),Γ(p)] = Γ(p) , (A.4)sin
e Γ(2) generates Lorentz rotations.A.2 A general 
on�guration of KK-M2-M5 on T 5Here we 
onsider M-theory 
ompa
ti�ed on T 5, and allow for non-vanishing 
entral 
harges

ZI , ZIJ , ZIJKLM , where the indi
es I, J, . . . are internal indi
es on T 5. We therefore lookfor solutions to the eigenvalue equation
Γǫ = Mǫ (A.5)
Γ ≡ ZIΓ

0I + ZIJΓ0IJ + ZIJKLMΓ0IJKLM .Squaring this equation, we obtain
ZIZJ{ΓI ,ΓJ} − ZIJZKL{ΓIJ ,ΓKL} + ZIJKLMZNPQRS{ΓIJKLM ,ΓNPQRS}

+ 2ZIZ
JK
[

ΓI ,ΓJK

]

+ 2ZIZ
JKLMN

{

ΓI ,ΓJKLMN

}

− 2ZIJZKLMNP [ΓIJ ,ΓKLMNP ] ⊜ M2 , (A.6)where the symbol⊜ denotes the equality when a
ting on ǫ. Using the identities (A.3a),(A.3b),this redu
es to
(ZI)

2 + (ZIJ)2 + (ZIJKLM)2 + +ZJZ
IJΓI +

(

ZMZ
MIJKL + ZIJZKL

)

ΓIJKL ⊜ 1 (A.7)A 1/2-BPS state is obtained under the 
onditions
kI ≡ ZJZ

IJ = 0 (A.8a)
kIJKL ≡ ZMZ

MIJKL + ZIJZKL = 0 , (A.8b)105



whi
h indeed form a string multiplet (10) of E5 = SO(5, 5), and has a mass given by
M2

0 = (ZI)
2 + (ZIJ)2 + (ZIJKLM)2 . (A.9)If the 
onditions are not satis�ed, we 
an de�ne kI = ǫIJKLMk

IJKL/4!, Γ6 = Γ12345 andrewrite Eq. (A.7) as
kIΓI + kIΓ6Γ

I
⊜ M2 −M2

0 . (A.10)Note that the SO(5, 5) ve
tor (kI , k
I) is null: kIk

I = 0. Squaring again yields the 1/4-BPSstate mass formula
M2 = (ZI)

2 + (ZIJ)2 + (ZIJKLM)2 +
√

(kI)2 + (kI)2 . (A.11)This result 
an be straightforwardly made invariant under the full U-duality group byin
luding the 
ouplings to the gauge potentials through the lower 
harges as found for theparti
le and string multiplet in (5.23) and (5.27).A.3 A general 
on�guration of D0,D2,D4-branes on T 5We now 
onsider the D-brane se
tor of M-theory on T 6, that is a general 
on�guration ofD0,D2,D4-branes. The eigenvalue equation be
omes
Γǫ = Mǫ (A.12a)

Γ ≡ ZΓ0s + Z ijΓ0ij + Z ijklΓ0ijkls , (A.12b)where Z, Z ij, Z ijkl denote the D0,D2,D4-brane 
harges respe
tively, and i, j, . . . run from1 to 5. Squaring this equation, we obtain
2Z2 + Z ijZkl{Γij,Γkl} + Z ijklZmnpq{ΓijklΓmnpq}

+ 4Z Z ijklΓijkl + 2Z ijZklmn [Γij,Γklmn] Γs ⊜ M2 . (A.13)Using identities (A.3a),(A.3b), this be
omes
Z2 + (Z ij)2 + (Z ijkl)2 + kijklΓijkl + (k′)ijklΓijkls ⊜ M2 , (A.14)where we de�ned

kijkl ≡ Z [ijZkl] + Z Z ijkl (A.15a)
k

′ijkl ≡ Zm[iZjkl]m . (A.15b)The se
ond 
ombination 
an be rewritten on T 5 as a form ki;jklmn = Z i[jZklmn]. Then, k4and k1;5 
an be dualized into a 10 null ve
tor (ki, k
i) of the T-duality group SO(5, 5). Astate with k = k′ = 0 is 1/2-BPS with mass

M2
0 = (Z)2 + (Z ij)2 + (Z ijkl)2 . (A.16)106



If these 
onditions are not met, we 
an rewrite Eq. (A.14) as
kiΓ

iΓ6 + k′iΓ
iΓ6Γs ⊜ M2 −M2

0 , (A.17)implying a mass formula
M2 = (Z)2 + (Z ij)2 + (Z ijkl)2 + 2

√

(ki)2 + (ki)2 (A.18)or, in terms of the natural undualized 
harges,
M2 = (Z)2 + (Z ij)2 + (Z ijkl)2 + 2

√

(kijkl)2 + (ki;jklmn)2 . (A.19)A.4 A general 
on�guration of KK�w�NS5 on T 5Finally, we 
onsider the Neveu�S
hwarz se
tor of the theory 
onsidered in the AppendixA.3, namely the bound states of NS5-branes, winding and Kaluza�Klein states. The eigen-value equation then reads
(

ziΓ
0i + ziΓ0si + zijklmΓ0ijklm

)

ǫ = Mǫ . (A.20)Taking the square gives
z2 + (zi)2 + (zi)

2 + 2zziΓ6i + 2zziΓ6si − 2Γsz
izi ⊜ M2 , (A.21)so the 1/2-BPS 
onditions appear to be

z zi = z zi = zizi = 0 . (A.22)This agrees with the vanishing of the entropy zzizi and its �rst derivatives, as obtained inRef. [115℄. We 
an go further and �nd the 
omplete 1/8-BPS mass formula: multiply Eq.(A.20) by zΓ06:
−z ziΓ6i − z ziΓ6si − z2ǫ ⊜ zMΓ06 (A.23)and 
ombine with Eq. (A.21) to obtain:

(

−z2 + (zi)2 + (zi)
2 + 2zMΓ60 − 2ziziΓs

)

⊜ M2 . (A.24)Now Γs and Γ06 
ommute, are tra
eless and square to 1, so this is a se
ond-order equation:
−z2 + (zi)2 + (zi)

2 ± 2zM± 2zizi ⊜ M2 , (A.25)with solutions
M = ±z ±

√

(zi ± zi)2 (A.26)or, equivalently:
M2 = z2 + (zi)

2 + (zi)2 + 2|ziz
i| + 2|z|

√

(zi)2 + (zi)2 + 2|zizi| . (A.27)This redu
es to the usual mass formula for perturbative string states (z = 0) and for KK�NS5 or w�NS5 bound states. For momentum and winding 
harges along a single dire
tion,this redu
es to M = ±z±z1±z1, in agreement with the identi�
ation of 
entral 
harges inRef. [115℄. The U-duality invariant generalization of this mass formula is however un
lear.107



B The d = 8 string/momentum multipletFor 
ompleteness, we give in Table B.1 the 
ontent of the string/momentum multiplet for
d = 8 in the 3875 of E8(8). It 
omprises the 2160 states in the Weyl orbit of the highestweight Ri/l

3
p of length 4, together with 7 
opies of the 240 weights of length 2 with tension

T =
VR

l9p
× (d = 8 parti
le multiplet) , (B.1)as well as 35 zero weights with tension

T =

(

VR

l9p

)2

. (B.2)As in d = 7, the resulting multiplet exhibits a mirror symmetry, whi
h relates ea
h statewith tension R3a−2/l3a
p , a = 1 . . . 6 to another state with tension R34−3a/l

3(12−a)
p throughthe relation

MM′ =

(

VR

l9p

)4

, (B.3)where VR is the volume of the eight-torus. For this reason, Table B.1 only gives the expli
itform of the tensions for the lower half a = 1 . . . 5 and the self-mirror part a = 6. These
ond 
olumn gives the Sl(8) irreps at ea
h level graded by 1/l3a
p , while the last 
olumnlists the 
orresponding 
harges. Here the notation is as follows: a semi
olon denotes anordinary tensor produ
t as before (so in general 
ontains more than one Sl(8) irrep); twosupers
ripts (p; q) grouped within parentheses and separated by a semi
olon denote theirrep, whose Young tableau is formed by juxtaposition of a 
olumn with p rows and onewith q rows.As an aid to the reader, we give the 
harges of the dual states at level l3(12−a)

p :
a = 1 : n7;8;8;8 , a = 2 : n4;8;8;8 , a = 3 : n2;7;8;8 (B.4)
a = 4 : n1;5;8;8, n(7;7);8;8 , a = 5 : n(1;2);8;8, n4;7;8;8Finally, we display the de
omposition of the d = 8 string multiplet under the T-dualitysubgroup group SO(7, 7,Z). Here, we may again restri
t to those states with (type IIA)tensions M ∼ 1/ga

s , a = 0 . . . 4, for ea
h of whi
h there is a dual state with tension M′related to it by
MM′ =

(

V ′
R

g2
s l

8
s

)4

, (B.5)where V ′
R stands for the seven-dimensional type IIA torus. The type IIA mirror symmetry(B.5) easily follows from (B.3) using the M-theory/type IIA 
onne
tion in (2.11). Theresults are summarized in Table B.2. 108



mass Sl(8) irrep 
harge
RI

l3p
8 n1

RIRJRKRL

l6p
70 n4

R2
IRJRKRLRMRN

l9p
, 7 VR

RI l9p
8 + 216 n1;6

R2
I
R2

J
R2

K
RLRM RN RP

l12p

VRR2
I

l12p
, 7VRRIRJ

l12p
28 + 36 + 420 n3;7, n(1;1);8

R2
I
R2

J
R2

K
R2

L
R2

M
R2

N
RP

l15p

VRR2
IRJRKRL

l15p
, 7VRRIRJRKRLRM

l15p
56 + 168 + 404 n(6;7), n1;4;8

VRR2
I
R2

J
RKRLRM RN

l18p
, 7VRR2

I
RJRKRLRM RN RP

l18p
, 35V 2

R

l18p
1 + 63 + 720 n(1;7);8, n2;6;8Table B.1: String/momentum multiplet 3875 of E8.Here the type IIA states in the a-th 
olumn, have a tension proportional to 1/ga−1

s .The �rst 
olumn is the singlet irrep formed by the fundamental string. The se
ond 
olumnis the spinor irrep 
onsisting of Dp=0-,2-,4-,6-branes, with one unwrapped world-volumedire
tion. The third 
olumn 
an be de
omposed into the SO(7, 7) irreps 378 = 1 ⊕ 3 ×
91⊕ 104, and 
ontains, together with NS5 and KK5 with one unwrapped dire
tion, manynon-standard states with tension ∼ 1/g2

s . The fourth 
olumn 
ontains the representation
896 = 14⊗64 formed by tensor produ
t of ve
tor and spinor representation, and has stateswith tension ∼ 1/g3

s . The �fth 
olumn 
onsists of 1197 states with tension ∼ 1/g4
s . The setof duals of these states in
ludes states with tension up to 1/g8

s , all of whi
h are at presentfar from understood.We note that the string state with tension VRR2
I

l12p
is presumably related to the 
onje
turedM9-brane [38, 43℄, whi
h should more properly be 
alled M8-brane. In fa
t, for d = 9 therewill be a 
orresponding parti
le with mass VRR2

I

l12p
, where VR is now the volume of the nine-torus. Taking RI = Rs = lsgs, this redu
es to the mass of the type IIA D8-brane, whiletaking Rs in one of the other world-volume dire
tions gives an 8-brane with exoti
 mass

V ′

RR2
i

l11s g3
s
. Verti
al redu
tion, on the other hand, would give a type IIA 9-brane.C Matrix gauge theory on T 7In this appendix we dis
uss in some detail the Matrix gauge theory on T 7, performing theanalysis of Subse
tion 7.2 for the 
ase d = 7.For our dis
ussion, it will be useful to �rst 
onsider the type IIB states obtained fromthe set of type IIA states in (4.36), by performing a maximal T-duality on the seven-torus. Using (2.41), we �nd the following T-duality multiplets for type IIB string theory109



3875(E8)⊃ SO(7,7)
∪

Sl(8)
1 64 378 896 1197 896 . . .8 1 770 35 35224 21 154 49484 1 154 294 35728 35 292 294 7847 154 539 154728 7 294 292 . . .484 35 294 . . .... ... . . .Table B.2: Bran
hing of the d = 8 string multiplet into representations of Sl(8) and

SO(7, 7). The entries in the table denote the 
ommon Sl(7) reps. The full table 
an bere
onstru
ted using mirror symmetry in the point with Sl(7) representation 539.
ompa
ti�ed on T 7

V : Ri

l2s
, 1

Ri
(C.1a)

SB : 1
gs

(

VR

l8s
,

RiRjRkRlRm

l6s
,

RiRjRk

l4s
, Ri

l2s

) (C.1b)
S + AS : 1

g2
s

(

VRRiRj

l10s
, 8VR

l8s
,

R2
i RjRkRlRmRn

l8s
,

RiRjRkRlRm

l6s

) (C.1
)
SA : VR

g3
s l8s

(

RiRjRkRlRmRn

l6s
,

RiRjRkRl

l4s
,

RiRj

l2s
, 1
) (C.1d)

V ′ :
(

VR

g2
s l8s

)2 (

Ri,
l2s
Ri

)

. (C.1e)Here we have given the states in ea
h multiplet in the order in whi
h they are obtainedfrom the 
orresponding type IIA states. At the levels 1/ga
s , with a even, we obtain thesame set of states as in type IIA. At odd level, however, the spinor representations areinter
hanged, so that at level 1/gs we obtain the odd Dp branes, while at level 1/g3

s we �ndthe set of p7−p
3 branes with p = 1, 3, 5, 7.We also give the S-duality stru
ture of the type IIB states (C.1). Using (4.17), thefollowing list of S-duality singlets (appearing at ea
h level) is found:KK , D3 , 72 , KK5 , 34

3 , 0
(1,6)
4 . (C.2)The remaining states pair up into S-duality doubletsF1�D1 , D5�NS5 , D7�73 , 52

2�52
3 , 16

3�16
4 . (C.3)110



The M-theory mass, gauge-theory energy and bound-state interpretation of the �ux andmomentum multiplets is given in Table C.1.
M EYM # YM state b.s. of N D7
1

RI

g2
YMs2

I

NVs
7 ele
tri
 �ux NS�w

RIRJ

l3p

Vs

Ng2
YM(sIsJ )2

21 magneti
 �ux D5
VR

RIRJ l6p

Vs(sIsJ)2

Ng6
YM

21 new se
tor 52
2

VRRI

l9p

V 3
s

Ng10
YMs2

I
7 new se
tor 16

3

RlRI

l3p

1
sI

7 KK momentum KK
RlVR

RIRJRK l6p

sIsJsK

g2
YM

35 YM threebrane D3
RlRIVR

RJ l9p

VssJ

g4
YMsI

49 new se
tor KK5, 72

RlRIRJRKVR

l12p

V 2
s

g6
YMsIsJsK

35 new se
tor 34
3

RlV
2
R

RI l15p

V 2
s sI

g8
YM

7 new se
tor 0
(1,6)
4Table C.1: Flux and momentum multiplet for d = 7: 56 and 133 of E7.Comparing the states in the last 
olumn of this table with the total set of 1/2 BPSstates (C.1) for type IIB on T 7, we note that there is a large number of states that do notappear. In analogy with the extra D6�D0 multiplet (a singlet) that appeared for d = 6,we 
an 
onstru
t in this 
ase an extra multiplet that 
ontains the D7�D1 bound state, forwhi
h we 
onje
ture (by T-duality) the same bound-state mass formula as in Eq. (7.10),so that

EYM = M2/3
D1M

1/3
ND7 = N1/3V

1/3
s s

2/3
I

g2
YM

, (C.4)where we used g2
YM = gsl

4
s . The relevant data of the 
orresponding U-duality multiplet,whi
h forms the 56 of E7(7)(Z), is given in Table C.2. The easiest way to obtain thistable, starting with the gauge-theory mass (C.4) obtained for the D7�D1 bound state, isby noti
ing that this state is, up to a multipli
ative U-duality invariant fa
tor I1/3

7 (see Eq.(7.7)) and up to a power of 1/3, exa
tly analogous to the �ux multiplet of Table C.1. Notethat the 56 states are pre
isely the S-dual states of those involved in the �ux multipletbound states. The bound states relevant to the momentum multiplet, on the other hand,involve S-duality singlets.Besides the D7 itself, this leaves two more possible states left in the type IIB, whi
h
an form a bound state with the D7, namely the two 7-branes with mass
Vs

g2
s l

8
s

,
Vs

g3
s l

8
s

. (C.5)111



For the �rst one, we know already from the momentum multiplet that the mass relation is
EYM = M =

Vs

g4
YM

= I
1/2
7 (C.6)and hen
e a U-duality singlet. For the se
ond state in (C.5), we dedu
e the mass relationby the requirement that the bound-state energy be su
h that

EYM = [Ma
ND7 + Ma]1/a −MND7 ≃ MaM1−a

ND7 (C.7)i) 
an be written in gauge-theory variables, and ii) is a U-duality singlet. Either of theserequirements yields a = 1/2, and we are left with a gauge-theory state with energy
EYM = M1/2

73
M1/2

ND7 = N1/2 Vs

g4
YM

= N1/2I
1/2
7 . (C.8)The singlets in Eqs. (C.6) and (C.8) are also given in Table C.2.

M EYM # YM state b.s. of N D7
R2

l VR

RI l9p

N1/3V
1/3
s s

2/3

I

g2
YM

7 new se
tor D1
R2

l RIRJVR

l12p

N1/3Vs

g
8/3

YM(sIsJ)2/3
21 new se
tor NS5

R2
l V

2
R

RIRJ l15p

N1/3Vs(sIsJ)2/3

g
14/3

YM

21 new se
tor 52
3

R2
l RIV

2
R

l18p

N1/3V
5/3
s

g6
YMs

2/3

I

7 new se
tor 16
4

RlVR

l9p

Vs

g4
YM

1 new se
tor 72

R3
l V

2
R

l18p

N1/2Vs

g4
YM

1 new se
tor 73Table C.2: Additional multiplets for d = 7: 56, 1 and 1 of E7.
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