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It is shown how the hard thermal loop approximation can

be used in chiral perturbation theory to study some thermal

properties of Goldstone bosons. Hard thermal e�ects are �rst

studied in the non-linear sigma model. Then those results are

used to obtain the thermal corrections to the transverse and

longitudinal gauge �eld masses in the electroweak theory in

the limit of a strongly interacting Higgs boson.

I. INTRODUCTION

This talk is devoted to give a brief account on the

emergence of hard thermal loops [1] in the framework of

chiral perturbation theory (�PT) [2{4]. First, the one-

loop thermal e�ects arising in the non-linear sigma model

will be discussed [5,6]. Second, it will be shown how to

use the previous results in the electroweak model in the

limit where the Higgs boson becomes strongly interacting

[7].

The goal of this talk is showing how at a very \cheap"

price one can obtain the one-loop thermal e�ective action

for soft �elds in the two above mentioned theories. In or-

der to do so one only needs to undertand the symmetry

principles which lie behind hard thermal loops, and how

they were discovered in the context of the high tempera-

ture T phase of QCD.

Let us �rst review the high T phase of QCD and part of

the progress the community achieved in the last years [8].

The motivation which lead to the discovery of HTL's was

the failure of the naive one-loop perturbative analysis in

that regime of the theory. This problem was solved by the

now classical works of Braaten and Pisarski [1], with also

important contribution of other groups. As we learned

from those works, the naive one-loop computations at

�nite T are not complete, since there are one-loop Feyn-

man diagrams, the hard thermal loops (HTL's), which are

as important as the tree amplitudes, and therefore they

have to be included consistently in all contributions to

non-trivial order in the gauge coupling constant.

Since the pioneering work on HTL's, it is much what

we have learned about them: their interesting symme-

try properties [9], the construction of e�ective actions

�HTL[A] from di�erent approaches [10], and the success,

as well as limitations, of the resummation techniques [11].

In this talk it will be shown how the same HTL's give

account of thermal properties of Goldstone bosons.

II. QCD AT LOW ENERGIES AND

TEMPERATURES

If quarks were massless then the QCD Lagrangian

would have an exact global symmetry SUR(Nf ) �
SUL(Nf ), where Nf is the number of quark 
avors 1.

The QCD spectrum of particles indicates that this global

symmetry is spontaneously broken down to SUR+L(Nf ).

Associated to the spontaneous breaking of chiral symme-

try there are N2
f �1 Goldstone bosons. For Nf = 3 those

are the octet of pseudoscalar mesons (�0s;K 0s; �). The

above picture is only approximately valid, since quarks

have a non-vanishing mass, and thus the (pseudo) Gold-

stone bosons are not massless.

It is possible to study the low energy physics of QCD in

the framework of chiral perturbation theory (�PT) [2{4].

At low energies the physics of the strong interactions is

dominated by the lightest particles of the QCD spectrum,

the (pseudo) Goldstone bosons.

In this talk we will mainly be concerned in studying

thermal e�ects in �PT [12] in the chiral limit, that is,

1Actually, the global symmetry is larger, but it is broken by

quantum e�ects that will not be discussed here.
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in the limit of massless quarks. This will allow us to

understand the properties of a thermal gas of Goldstone

bosons. The validity of this analysis will be restricted to

low T . The reason for this being so is that at low T the

strong interactions should be dominated by the lightest

particles, that is, the Goldstone bosons. At higher T the

contribution in the partition function of heavier particles

of the QCD spectrum would start to become relevant.

A chiral Lagrangian is expanded in derivatives of the

Goldstone �elds and also in the explicit chiral symmetry

breaking parameters, such as the masses of the three light

quarks. The perturbative series in �PT is not written in

terms of a coupling constant, but rather on the energies

and masses of the pseudoscalar mesons.

The lowest order chiral Lagrangian is [3]

L2 =
f2�
4

�
Tr
�
r��

yr��
�
+ Tr

�
�y� + ��y

��
; (2.1)

where � is a SU(Nf ) matrix, which is written in term

of the pseudoscalar mesons � as � = exp (i�=f�), and

f� = 92:4 MeV can be identi�ed, to �rst order, with the

pion decay constant. The covariant derivative is de�ned

as

r�� = @��� i(v� + a�)� + i�(v� � a�) ; (2.2)

v� and a� being external vector and axial vector sources,

respectively. The �eld � = B(s + ip), where B is re-

lated to the quark condensate and s and p are scalar and

pseudoscalar external sources, respectively.

For the time being all the external sources will be taken

as v� = a� = s = p = 0. The generalization of the

present analysis in the presence of external background

sources is rather straightforward, as we will see later on.

In the absence of external sources the Lagrangian (2.1)

reduces to that of a non-linear sigma model. The non-

linear sigma model has a global SUR(Nf ) � SUL(Nf )

symmetry, where the �eld � transform as �0(x) =

UR�(x)U
y

L, and UR;L 2 SUR;L(Nf ).

To obtain the one-loop e�ective action the background

�eld method (BFM) will be used. The BFM is a stan-

dard technique to evaluate the loop e�ects generated by

a Lagrangian and consists in expanding it around the so-

lution of the classical equations of motion. The one-loop

e�ective action is then obtained after integrating out the

quantum 
uctuations.

In our case one de�nes

�(x) = �(x)h(x)�(x) ; (2.3)

where �� = �2 is the classical solution to the equations

of motion and h is the quantum �eld. At this point one

writes h = exp (i~�=f�), where ~� is a traceless and hermi-

tian matrix, and expands the exponentials, keeping only

terms up and including the quadratic in ~� in the La-

grangian L2 = L(0)2 +L(2)2 + � � �. It is possible to express

the above terms as [3]

L(0)2 = �f2� Tr(��)
2 (2.4)

L(2)2 =
1

4
Tr(d� ~�)

2 �
1

4
Tr([��; ~�])

2 ; (2.5)

where

d� ~� = @� ~�+ [��; ~�] ; (2.6a)

�� =
1

2

�
�y@�� + �@��

y
�
; (2.6b)

�� =
1

2

�
�y@�� � �@��

y
�
; (2.6c)

The transformation properties of � and h under the

global SUR(Nf )� SUL(Nf ) symmetry are

�0(x) = UR �(x)U
y(x) = U(x)�(x)U

y

L ; (2.7a)

h0(x) = U(x)h(x)Uy(x) ; (2.7b)

where U is a unitary matrix which depends on �(x), UR

and U
y

L. The transformation rules obeyed by the new

�elds are then deduced from (2.7a) - (2.7b)

~�0(x) = U(x)~�(x)Uy(x) ; (2.8a)

�0�(x) = U(x)��(x)U
y(x) + U(x)@�U

y(x) ; (2.8b)

�0

�(x) = U(x)��(x)U
y(x) : (2.8c)

The �eld �� transforms like a connection, while �� and

~� transforms covariantly. Thus, it can be immediately

checked that under the above symmetry each term in

(2.5) remains invariant. The Lagrangian (2.5) looks for-

mally as the the bosonic matter part of the Lagrangian of

a non-Abelian gauge theory, �� being the corresponding

vector gauge �eld, and ~� being the bosonic �eld. There is

also an additional coupling between the �� and ~� �elds,

but appart from that, things look the same as in a non-

Abelian gauge theory. This parallelism with a gauge �eld
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theory is just formal, since there is not a kinetic term for

��, neither for ��, and thus those �elds do not prop-

agate. However, this parallelism will prove to be very

useful to �nd the one-loop thermal e�ective action for

soft background �elds.

The one-loop e�ective action of the non-linear sigma

model is obtained by integrating out the ~� �elds. At

zero temperature it can be done by evaluating the de-

terminant of a di�erential operator, since the action is

quadratic in the ~� �elds2. We will not consider here the

T = 0 one-loop e�ective action (see Ref. [3] for that), and

concentrate only on the thermal part.

At this point it seems very obvious that for external

background �elds with soft momenta, that is � T , the

one-loop thermal e�ective action generated after inte-

grating out the ~� �elds in the �rst term in (2.5) is ex-

actly the same as the one that would emerge in a real

gauge �eld theory, if �� were a real background gauge

�eld. In this way, it is very easy to understand that also

HTL's appear in this model, and that the e�ective action

�HTL[��] also arises naturally. There is also a tadpole

diagram generated by the last term of (2.5). Finally, one

�nds [6]

S2 + �S2;T = �f2�(T )
Z
d4xTr(�2

�(x)) (2.9)

�
NT 2

12

Z
d
q

4�

Z
d4x d4y Tr

�
���

Q�Q�

�(Q � d)2
���

�
;

where

��� = @��� � @��� + [��;�� ] ; (2.10)

and Q = (i;q) is a null vector Q2 = 0. The angular

integral in (3.13) is done over all directions of the three

dimensional unit vector q. The second term of the r.h.s.

of Eq. (2.9) it is just �HTL[��] as written in Ref. [9].

Hard thermal e�ects change f� into f�(T ) as

f�(T ) = f�

�
1�

N

24

T 2

f2�

�
(2.11)

which agrees with the result computed in the literature

(see Ref. [12,13,5]).

2Note also that the jacobian of the change of variables is one

at one-loop order.

Although the same one-loop thermal e�ective action

appears in two rather di�erent models, it should be clear

that their respectively physical meanings are completely

di�erent. In a gauge �eld theory, �HTL[A�] is a gauge in-

variant Debye mass term for the chromoelectric �elds. In

the non-linear sigma model �HTL[��] describes thermal

scattering among Goldstone bosons, respectful with the

symmetries of the model. This can be checked by writ-

ing � = exp (i�=2f�), and expanding the exponentials, so

that

�� =
i

2f�
@��+O(

1

f3�
) (2.12)

�� =
1

8f2�
[�; @��] +O(

1

f4�
) : (2.13)

When the above expressions are plugged into the e�ective

action �HTL[��] one can then read the thermal correc-

tions to the four point functions, six point functions, etc.

Finally, let us explain how one can generalize the above

analysis in the presence of external vector v� and axial

vector a� currents. Introducing the combinations

FR
� = v� + a� ; FL

� = v� � a� ; (2.14)

and changing the de�nitions of the �� and �� �elds as

follows

�� =
1

2

�
�yrR

� � + �rL
��

y
�
; (2.15a)

�� =
1

2

�
�yrR

� � � �rL
��

y
�
; (2.15b)

rl
� = @� � iF l

� ; l = R;L ; (2.15c)

the same one-loop thermal e�ective action Eq. (2.9) for

soft �elds is found after integrating out the � �eld.

III. THE ELECTROWEAK MODEL IN THE

STRONGLY INTERACTING HIGGS BOSON

LIMIT

In the previous Section the one-loop thermal e�ective

action in a theory describing the interactions of soft Gold-

stone bosons has been computed. In this Section we will

consider a theory where the Goldstone bosons are eaten

by gauge �elds to become massive: we will consider the

SUW (2)� UY (1) electroweak model.

The bosonic sector of the electroweak model can be

written as [14]

3



L = �
1

2
Tr(W��W

��)�
1

4
B��B

�� (3.1)

+
1

4
Tr(D�MD�My)�

�

4

�
1

2
Tr(MMy)�

�2

�

�2

;

The covariant derivative acting on the matrix M is

D�M = @�M + igW�M � i
g0

2
M B��

3 : (3.2)

The matrixM is written in terms of the physical Higgs

�eld H and the would-be Goldstone bosons �a as

M(x) = (v +H(x)) �(x) ; �(x) = exp (i
~� � ~�
v

) (3.3)

where v =
p
�2=� is the vacuum expectation value.

This non-linear representation of the Higgs sector is

very suited to study the model in the strongly inter-

acting limit � ! 1. In that limit the Higgs mass,

MH =
p
2�v2, becomes large, and the Higgs �eld can

be integrated out. Then the e�ective Lagrangian of the

electroweak theory reduces at tree level to [14]

Leff = �
1

2
Tr(W��W

��)�
1

4
B��B

�� (3.4)

+
v2

4
Tr (D��D��y) :

That is, the low energy e�ective theory for the bosonic

sector of the electroweak model is a gauged N = 2 non-

linear sigma model.

In the unitary gauge, that is, in the gauge where all

the would-be Goldstone bosons are eaten by the gauge

�elds (i.e. where � = 1), one can read o� the masses of

the physical gauge �elds from Eq. (3.4). The �elds W+
� ,

Z� and A� are de�ned as

W�

� =
1p
2

�
W 1

� � iW 2
�

�
; (3.5a)

Z� = cos �WW 3
� � sin �WB� ; (3.5b)

A� = sin �WW 3
� + cos �WB� ; (3.5c)

where �W is the Weinberg angle, tan �W = g0=g. The

masses of those �elds are

MW =
vg

2
; MZ =

v

2

p
g2 + g02 ; (3.6)

while the mass of the photon is M
 = 0. Recall that the

electric charge is de�ned as

e =
gg0p
g2 + g02

: (3.7)

The one-loop e�ective action associated to the La-

grangian (3.4) can be computed with the help of the

background �eld method. The gauge �elds are split into

background and quantum gauge �elds as follows

W�(x) = �W�(x) + w�(x) ; (3.8a)

B�(x) = �B�(x) + b�(x) : (3.8b)

The background gauge �elds have been represented by

upper case letters with a bar, while the quantum ones

are denoted by lower case letters. The matrix � is split

multiplicatively, exactly as it was done in Eq. (2.3).

After the splitting of �elds is done, the Lagrangian

(3.4) is separately invariant under background and quan-

tum gauge transformations.

In the spirit of the BFM the Lagrangian Leff is ex-

panded around the classical �elds, keeping terms which

are quadratic in the quantum 
uctuations. To derive

the one-loop e�ective action one has to integrate out the

quantum �elds, adding before the corresponding quan-

tum gauge-�xing and quantum Faddeev-Popov terms.

In the BFM it is possible to �x the background and

quantum gauges independently. In our case, and to

simplify the computations, it is convenient to choose

the unitary gauge for the background �elds. Then the

background Goldstone �elds disappear completely from

the Lagrangian, since they are eaten by the background

gauge �elds to become massive. In order to do so it is

convenient to use the Stueckelberg formalism [15].

If one performs the Stueckelberg transformation

�W 0
� = �y �W�� � i

g
�y@�� ; (3.9a)

�B0
�
�3

2
= �( �B�

�3

2
)�y � i

g0
�@��

y ; (3.9b)

w0
� = �yw�� ; b0�

�3

2
= �(b�

�3

2
)�y ; (3.9c)

and one writes the Lagrangian in terms of the primed

�elds, all the background �elds � disappear completely!

The Stueckelberg transformation simpli�es drastically

the one-loop computations. Once the computation is

�nished, the Stueckelberg transformation has to be in-

verted to recover the presence of the background Gold-

stone bosons in the �nal one-loop e�ective action.

In order to simplify the notation from now on I will

omit the primes in the �elds, keeping in mind that the

transformation has to be inverted at the end of the com-

putation.

4



To integrate out the quantum �elds a quantum gauge

�xing condition invariant under the background gauge

transformation has to be given. In the unitary back-

ground gauge the gauge �xing condition for the quantum

�elds is chosen as

L(2)gf = �
1

aw
Tr

�
�D
�
Ww� �

1

4
awgv�

�2

(3.10)

�
1

2ab

�
@�b� +

1

2
abg

0v�3

�2

;

where aw and ab are the gauge �xing parameters. These

gauge �xing terms are chosen such as to cancel the un-

wanted pieces @�b��3 and Tr(@�w��) in L(2)eff . The form

of the gauge �xing term in an arbitrary background gauge

can be obtained by inverting the Stueckelberg transfor-

mation.

The Faddeev-Popov terms associated to the gauge �x-

ing (3.10) are computed as usual. Finally, the complete

one-loop quantum Lagrangian reads in Minkowski space

L(2)eff + L
(2)

gf + L(2)FP (3.11)

= Tr

�
w�(g

�� �D2
W +

1� aw

aw
�D
�
W

�D�
W + 2ig �W��)w�

�

+
1

2
b�

�
g��@2 +

1� ab

ab
@�@�

�
b�

+M2
W Tr(w�w

�) +
M2

B

2
b�b

� � gg0v2w3
�b

�

+
1

4
Tr( �d��)

2 �
1

4
Tr[ ���; �]

2 �
awM

2
W

4
Tr�2 �

abM
2
B

2
�23

+ 2vTr

�
(gw� � g0b�

�3

2
)����

�
� �ya

�
�ab �D2

W + �abawM
2
W

�
�b

where M2
B = g02v2=4 and

�D
�
W = @� + ig[ �W�; ] ; (3.12a)

�d�� = @��+ [���; �] ; (3.12b)

��� =
i

2

�
g �W� + g0 �B�

�3

2

�
; (3.12c)

��� =
i

2

�
g �W� � g0 �B�

�3

2

�
: (3.12d)

The ghost �elds �a are associated to the wa
� quantum

�elds. Since the ghost associated to the b� �eld does

not couple to any background external �eld, it has been

omitted in Eq. (3.11).

The one-loop Lagrangian (3.11) is written in the uni-

tary background gauge. It can be obtained in an ar-

bitrary background gauge by inverting the Stueckelberg

transformation. However, it is much simpler to integrate

out the quantum �elds �rst, and invert the transforma-

tion afterwards to obtain the one-loop e�ective action in

a general background gauge.

For soft background �elds the leading thermal correc-

tions arise when the internal quantum �elds are hard [1],

that is, of energy � T . If one neglects corrections of

order MW =T and MZ=T in the �nal answers, then it is

possible to neglect those masses for the quantum �elds.

In other words, for hard quantum �elds the terms @2 of

the Lagrangian are of the order T 2, which are dominant

as compared to the terms M2
W;B , which therefore will be

neglected.

The computation simpli�es once the masses of the

quantum �elds are neglected. One encounters here the

same one-loop thermal amplitudes, the HTL's, which ap-

pear in the BFM of Yang-Mills theories [1], as well as in

the non-linear sigma model in the presence of external

background sources [6]. There are also new types of ver-

tices in (3.11), which do not appear in the BFM studies

of the previous mentioned theories: those which couple

quantum gauge �elds and quantum Goldstone bosons.

However, a power counting analysis shows that the one-

loop thermal corrections generated by those vertices are

subleading as compared to the HTL's, and therefore they

will be neglected.

The one-loop thermal e�ective action for soft back-

ground gauge �elds is then a combination of the one

which appears in a Yang-Mills theory and the one in

the non-linear sigma model in the presence of external

sources. By translating those results to our case one �nds

the following one-loop thermal e�ective action [7]

Seff + �Seff;T = (3.13)Z
d4x

�
�
1

2
Tr( �W��

�W��) �
1

4
�B��

�B��

+
v2(T )

4
Tr

�
g �W� � g0 �B� �

3

2

�2
)

�
T 2

6

Z
d
q

4�

Z
d4x d4yTr

�
����

Q�Q�

�(Q � �d)2
����

�

+
g2T 2

3

Z
d
q

4�

Z
d4x d4yTr

�
�W��

Q�Q�

�(Q � �DW )2
�W ��

�
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where �W�� , �B�� are the �eld strengths of the correspond-

ing background gauge �elds, and

v(T ) = v

�
1�

1

12

T 2

v2

�
; (3.14)

���� = @���� � @� ��� + [���; ��� ] ; (3.15)

Let us remind the meaning of each term of Eq. (3.13).

The two �rst terms are the kinetic pieces for the soft

background gauge �elds. The last piece in Eq. (3.13)

is the HTL e�ective action for the non-Abelian gauge

�eld �W�, and it is generated by considering the one-loop

thermal e�ects of the hard quantum gauge �eld wa
�, and

the quantum ghosts �a [1]. The third and fourth terms in

Eq. (3.13) arise after considering the one-loop thermal

e�ects of the hard quantum Goldstone bosons �a, (see

the previous Section with the following identi�cations:

FR
� = �g �W�, F

L
� = �g0 �B�

�3

2
, and � = �y = 1.).

In the static limit the non-local terms of Eq. (3.13)

become local, and then appart from the kinetic terms for

the gauge �elds, one has

�Lstaticeff;T =
v2(T )

4
Tr

�
g �W� � g0 �B� �

3

2

�2

(3.16)

+
T 2

12
Tr

�
g �W0 + g0 �B0

�3

2

�2

+
2g2T 2

3
Tr( �W0)

2 :

If one expresses Eq. (3.16) in terms of the physical

�elds �W+, �Z� and �A�, one obtains the corrections to

their longitudinal and transverse masses, plus couplings

of the �Z0 with �A0 �leds.

The longitudinal and transverse gauge modes get dif-

ferent thermal corrections to their masses. The thermal

masses for the transverse modes are

M2
W;t(T ) =

g2v2(T )

4
; (3.17)

M2
Z;t(T ) =

(g2 + g02)v2(T )

4
; (3.18)

M2

;t(T ) = 0 ; (3.19)

while for the longitudinal ones are

M2
W;l(T ) =

g2v2(T )

4
+

3g2T 2

4
; (3.20)

M2
Z;l(T ) =

(g2 + g02)v2(T )

4
+

(g2 + g02)T 2

12
(3.21)

�
�
cos2 �W � sin2 �W

�2
+

2g2T 2

3
cos2 �W ;

M2

;l(T ) = e2T 2 : (3.22)

To express the electric thermal mass of the photon in

terms of the electric charge e, use of the relation (3.7) has

been made. The above results agree were �rst obtained

in Ref. [16].

IV. CONCLUSIONS

It has been shown how in the chiral limit hard thermal

loops appear in the framework of �PT. This fact allows us

to study certain thermal properties of Goldstone bosons

with ease, both in a theory where those are real particles,

or where those are unphysical since they are eaten by the

gauge �elds to become massive.

Some other applications of the HTL's techniques in

�PT have already been exploited. In the literature HTL's

have been used to compute thermal corrections to the

anomalous decay �0 ! 

 [17], to the Wess-Zumino-

Witten action [6], or to the electromagnetic mass di�er-

ence of pions [18]. Further applications of HTL's in �PT

will surely be found.
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