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Abstract

This paper reports on the study undertaken to explore the capabilities of a symmetric

triplet to achieve the optics constraints required by the inner triplet of an insertion and

more generally of a complete insertion made of two symmetric triplets to match a double

focus to a FODO lattice. It is based on analytical treatment formulating a number of

constraints equal to the parameters available. This thorough and systematic analysis

made it possible to establish for an inner triplet as well as for a complete insertion the

existence of solutions and to explicitely �nd out all the solutions, without resorting to

unguided numerical searches. As a by-product, a lattice transformer, made of a single

triplet, that matches two di�erent FODO cells has been singled out and studied in details.

The results should be pro�table in a number of cases. Here, the method is applied to an

insertion of the type of an experimental LHC insertion in order to investigate its domain

of validity and tunability.
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1 INTRODUCTION

The present analysis relies on an analytical treatment of a schematic thin lens model of generic

insertions based on two symmetric triplets as described in Section 2 which are separated by

a drift. This makes it possible to explore their capabilities, establish the existence or absence

of solutions and unequivocally provide all the existing ones without using a numerical search.

These solutions can easily be extended to the equivalent thick lens model. Such generic in-

sertions can be a part of an accelerator ring, a fraction of a beam transfer line, a �nal focus

telescope of a linear collider or an experimental low � insertion of a circular collider. In most

cases, they have in common the function of transferring the beam from a given point of a

FODO lattice to a double waist or focus, with in general di�erent horizontal and vertical beam

dimensions. The building blocks of these insertions are the symmetric triplets, which have been

thoroughly studied in the framework of the design of an isochronous cell for their adaptability

and exibility [1, 2]. As a �rst step, the possibilities o�ered in this context by a single sym-

metric triplet are reviewed, making use of appropriately de�ned constraints on the �-functions

such as the existence of secondary waists or of a crossing with equal and opposite slopes (Sec-

tions 2{4). It is obvious from this initial study that a generic insertion between a double waist

and a FODO lattice, with its inherent geometrical and optical constraints, requires the use of

two symmetrical triplets for covering a large enough validity domain. In this scheme, the �rst
triplet near the double focus also referred as the Interaction Point, is often nicknamed the `inner
triplet', while the second is termed the `outer triplet'. A fully deterministic set of equations

can then be established for the parameters of such an insertion by making use of constraints
similar to those introduced for a single triplet (Section 5). In fact, the clue consists in asking

the inner triplet to provide a condition of �-crossing and using the outer triplet as a `FODO
transformer' from �-crossing to �-crossing with di�erent amplitudes. This lattice adapter is
a useful by-product which can be pro�table in other situations. Coming back to our case of

interest, the two-step adjustment mentioned provides the required exibility in the choice of
the overall insertion length and in the distance between the two triplets.

In this report, a particular insertion with geometrical parameters as close as possible to

those of an LHC (Version 4) experimental insertion is used to illustrate how to apply the
present analysis to a speci�c case. The domain of existence of solutions is given and the

tunability of the insertion in terms of �-amplitude at the Interaction Point is explored, for the
particular conditions retained. Once this deterministic evaluation is done for thin lenses, it is

shown that the extension to the thick lens model can be easily obtained by slowly increasing

the quadrupole length (of the order of 5 cm per step) and using now the non simpli�ed transfer
matrices for the quadrupoles.

2 SINGLE SYMMETRIC TRIPLET

The study of a symmetric triplet in the framework of the design of an isochronous cell has

suggested its application to the investigation of the global behaviour of an interaction point inner
triplet when reduced to a symmetric triplet. It should be noted that the term symmetric applies

to the geometry and not to the Twiss parameters. The symmetric triplet is the combination of
a doublet and its mirror image. The doublet consists of a �rst drift space of length L1 followed

by a quadrupole of magnetic gradient G2 and length lq2 followed by a second drift space of
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length L3 which separates it from a second quadrupole of magnetic gradient G4 and length lq4.

This lattice is shown in Fig. 1.

The full symmetry being too binding we have added a drift space of variable length l5 and

set lq4 = lq2 = lq. The chosen model is represented in Fig. 2.

Figure 1: Schematic of a symmetric triplet.

Figure 2: Inner triplet model.

As an example let us take the numerical values and constraints of a low-� insertion of LHC
(Version 4). The quadrupole magnetic gradients G2; G4 must be less than 225 T/m. The

distance L1 is �xed to 23 m and lq is equal to 5.5 m. The distance L3 must be larger than

2 m. The Twiss parameters at the Interaction Point are the same in both planes and should be
�� = 0:5 m and � = 0. At the operating energy of 7 TeV. The free parameters are the strength

G2, the distance L3 and the ratio k = G4/G2.

The purpose of the study was to use the expressions derived in [2] to investigate the domains

of these free parameters providing Twiss parameters in the Analysis Point which are of interest

according to two di�erent criteria. The Twiss parameters at the Analysis Point are related to

those in the Symmetric Point (see Fig. 2) by the expressions:

�x;a = �x;s � 2�x;sl5 + x;sl
2

5

�x;a = �x;s � x;sl5

�y;a = �y;s � 2�y;sl5 + y;sl
2

5

�y;a = �y;s � y;sl5 : (1)

The chosen criteria highlight outstanding features of the �-functions such as minima (waists)
or intersections (crossings), which give clues on their overall behaviour (e.g. convergence or
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divergence, fast or slow slopes). From this analysis we get a feeling of the stability of a family

of solutions and we may discover if we are confronted with chaotic sets of solutions.

The �rst criterion is to obtain the positions of the horizontal and vertical � functions waists

for a canonical triplet, i.e. with G4 = �G2 (k = �1), the Analysis Point coinciding with the

position of the horizontal waist. It is studied in Section 3.

The second criterion is to obtain a symmetric �-crossing (�x = �y and �x = ��y) at the

Analysis Point. In Section 4 we deal with its study based on the thin-lens approximation where

the drifts L1; L3 are replaced by

l1 = L1 + lq=2

l3 = L3 + 3lq=2 :

In this approximation the expressions derived in [2] give the Twiss parameters �x;s, �x;s, �y;s,

�y;s at the Symmetric Point.

A set of FORTRAN programs have been written to compute �x;a; �x;a; �y;a; �y;a as function

of the variables G2; L3 and of the ratio k. Each one is explained in more details in the two

following sections.

3 STUDY OF THE POSITION OF THE HORIZONTAL AND VERTICAL �

FUNCTION WAISTS FOR A CANONICAL TRIPLET

In this study we assume the inner triplet to be canonical (i.e. k = �1). The requirement is
the existence of an horizontal waist at a position called the Analysis Point and of a vertical

waist at some other arbitrary point. The Analysis Point position can be easily obtained from
the expression (1) where we put �x;a = 0:

l5 = �x;s=x;s : (2)

The Analysis Point is to the right of the Symmetric Point if �x;s > 0. Its distance from the last
quadrupole of the triplet is:

lw;x =
�x;s

x;s
+ L1 :

The Twiss parameters �x;s and x;s are related to the value �
� at the Interaction Point by the

following expressions where we have used the general transformation of the Twiss parameters
through a beam transfer section starting with �1 = 0 and �1 = �� [3]:

�x;s = �tx;11(tx;21�� + tx;12

��
) ;

x;s = t2x;21�
� +

t2x;11

��
;

the quantities tx;ij being the elements of the Triplet Transfer Matrix in the horizontal plane
which in the thin lens approximation become:

tx;11 = 1� 2l3g
2

2
(l1 + l3 � l1l3g2)

tx;12 = 2(l1 + l3 � l1l3g2)(1 + l3g2 � l1l3g
2

2
)

tx;21 = �2l3g22(1� l3g2)
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where

g2[m
�1] = �0:3G2[T=m]lq[m]

p[GeV=c]

is the strength of the external quadrupole.

Similarly the distance of the vertical waist from the last quadrupole of the triplet can be

obtained from the expressions (1) where we put �y;a = 0:

lw;y =
�y;s

y;s
+ L1 = lw;x +

�y;s

y;s
� �x;s

x;s
:

The two waist positions (referenced to the Interaction Point) lw;x and lw;y depend on the two

parameters L3 and G2. A program has been written to explore the values taken by lw;x and

lw;y when varying L3 and G2 respectively. In the LHC application the domains of variations

are 2{12 m and 160{225 T/m. The main result is that the maximum value �max taken by the

�-functions inside a canonical triplet cannot be less than 5280 m. In this limiting case there is

only one triplet with G2 = 224:35 T/m and L3 = 3:25 m. The waist positions are lw;x = 1522:9

m and lw;y = 26:5 m. The number of possible cases increase by accepting a larger �max. At the

same time the horizontal and vertical waist positions decrease. As an example, Figs. 3 and 4
show lw;x and lw;y when we impose �max to be bounded by 5500 m. It is interesting to observe

that the minimum distance of the horizontal waist from the last quadrupole of the canonical
triplet is now 410 m. For reasonable values of �max these �gures show that �x outside the
canonical triplet drops down with a slope which is too small. At the same time �y is 18 m. As

a consequence �y rises again and takes very high values at the position of the horizontal waist.
Clearly these behaviours of the �-functions cannot be accepted and thus we may conclude that

a canonical triplet cannot meet the requirements of the LHC application.
Extending the range of the ratio k, it is interesting to observe that its existence domain for

given constraints is quite limited and always less than �1. Figure 5 shows an example where

we have imposed that the largest admitted value of the �-functions inside the triplet should
not exceed 5000 m and that the distances of the horizontal and vertical waists from the last

quadrupole should be less than 200 m. Neglecting scattered points which indicate that the
corresponding behaviour of the �-functions is very sensitive to quite small variations of the
ratio k around the displayed value, it is important to notice that the largest range of the ratio

k for which the given constraints are satis�ed is of the order of 5%. Figures 6 and 7 show the
positions of the horizontal and vertical waists of the �-functions for one value of k(k = �0:88)
while still keeping the � maximum inside the symmetric triplet below 5000 m. One can easily

observe that the positions of the two waists are much less distant than for the canonical triplet

and that it is possible to �nd symmetric triplet con�gurations for which the waist positions are

less than 200 m from the last quadrupole. We may conclude that, in the given constraints of an

LHC-type experimental insertion, the inner triplet can be symmetric but with the gradient of
the central quadrupole weaker in absolute value than the gradient of the external quadrupoles.
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Figure 3: Distance of the horizontal waist from the last quadrupole of a canonical triplet. Each point

corresponds to di�erent values of the parameters G2 and of L3 satisfying the constraint �max < 5500 m.
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Figure 4: Distance of the vertical waist from the last quadrupole of a canonical triplet. Each point

corresponds to di�erent values of the parameters G2 and of L3 satisfying the constraint �max < 5500 m.
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Figure 6: Distances of the horizontal waist from the last quadrupole of the symmetrical triplet for

k = �0:88. Each point corresponds to di�erent values of the parameters G2 and of L3 satisfying the

constraint �max < 5000 m.
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Figure 7: Distances of the vertical waist from the last quadrupole of the symmetrical triplet for

k = �0:88. Each point corresponds to di�erent values of the parameters G2 and of L3 satisfying the

constraint �max < 5000 m.

4 STUDY OF THE SYMMETRIC CROSSING OF THE HORIZONTAL AND

VERTICAL � FUNCTIONS

Retaining the lesson of the previous section we would not treat anymore in this report the
canonical triplet. We will enlarge our analysis to a symmetric triplet with a predetermined

value of L1 for which analytical tools are available in the thin lens approximation. Three free

parameters specify the symmetric triplet: l3, g2 and the ratio k = g4=g2. It is di�cult to get

a clear insight of the behaviour of the horizontal and vertical � functions by exploring the full
space of these parameters. Experience has shown that valuable information can be obtained
by studying the properties of the special features of these two functions such as the waists

and the crossing with opposite slopes. At the end of the previous section we have shown some

results of the analysis of the two waists. In this section we intend to deal with the crossing.
We introduce a further simpli�cation by imposing a symmetric crossing, i.e. not only opposite

slopes but also equal in absolute value. This choice is suggested by the analogy with the FODO
structure and it has the advantage to reduce the range of the ratio k to only two values as we

will prove shortly. Moreover it allows for an easy matching to another symmetrical triplet as it

will be shown in the next section. Thus we assume that the �-functions will cross with equal
and opposite slopes at a position we call Crossing Point (a more speci�c name for the Analysis
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Point de�ned in Fig. 2). By de�nition the Twiss parameters at the Crossing Point are:

�x;c = �y;c = �c

�x;c = ��y;c = �c : (3)

We need the expressions for the distance l5 of the Crossing Point from the Symmetric Point,

for �c and �c in terms of the Twiss parameters at the Symmetric Point in order to investigate

their behaviour depending on the variation of the free parameters, the motivation being that

such � functions can be relatively easily matched to a standard FODO lattice. We obtain from

the expressions (1):

�c = �x;s � x;sl5

��c = �y;s � y;sl5 : (4)

It follows from the expressions (3):

x;c = y;c = c :

Observing that a drift does not modify , we have also:

x;s = y;s = s : (5)

From the expressions (4) we obtain:

l5 =
�x;s + �y;s

2s

�c =
�x;s � �y;s

2
: (6)

The expressions (1) become:

�c = �x;s � 2�x;sl5 + sl
2

5

�c = �y;s � 2�y;sl5 + sl
2

5
:

Adding them and using expression (6) we get

�c =
1

2
[�x;s + �y;s � l5(�x;s + �y;s)] : (7)

The expression (5) imposes a constraint on the initial free parameters which are thus reduced

from three to two. Actually in Appendix A it is shown that k is a solution of the following
equation, when it exists:

k2(a2g
4

2
+ b2g

2

2
) + k(a1g

4

2
+ b1g

2

2
+ c1) + b0g

2

2
+ c0 = 0 (8)

where a2,b2,a1,b1,c1,b0,c0 are functions of l1,l3 and ��. Both solutions of (8) when they exist

are negative as one would expect. In the following discussion we will refer to the smallest or

largest root in the real sense, i.e. including the sign.
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A program has been written to explore the values taken by k, lc = l5 + 2(l1 + l3), �c and

�c when varying L3 and G2 respectively. In the LHC application the domains of variations

are 2{8 m and 160{225 T/m. The results are reported in Figs. 8 to 15, where only values are

displayed for which the maximum value taken by the �-functions inside the triplet is less than

5000 m. Figures 11, 13 and 15 show that the largest solution of the second order equation (8) is

to be avoided because it is associated with very high values of the alpha and beta functions at

the Crossing Point. The corresponding distance from the IP is very sensitive to small changes

of the gradient G2.

It is interesting to have a feeling of how lc, �c and �c behave when we vary the value �� of

the �-function at IP. We have neglected the case of the largest solution for the ratio k because

the tuning range is very small when it exist (between 0.5 m and about 4 m) as one would expect

from the analysis of Figs. 11, 13 and 15. To reduce the number of �gures we have chosen three

values of the gradient G2: 180, 200, 220 T/m. Figures 16 to 18, 19 to 21, 22 to 24 show lc, �c
and �c for G2 = 180 T/m, G2 = 200 T/m and G2 = 220 T/m respectively. We remark that the

tuning range extends up to 20 m. This observation was the main motivation for extending the

study to a lattice composed of two symmetric triplets. It will be presented in the next section.
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Figure 19: Tuning range of the distance of the Crossing Point from the last quadrupole of the

symmetric triplet for G2 = 200 T/m. We have taken the smallest solution of (8).
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Figure 20: Tuning range of the �-function at the Crossing Point for G2 = 200 T/m. We have taken

the smallest solution of (8).
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Figure 21: Tuning range of the �-function at the Crossing Point for G2 = 200 T/m. We have taken

the smallest solution of (8).
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Figure 22: Tuning range of the distance of the Crossing Point from the last quadrupole of the

symmetric triplet for G2 = 220 T/m. We have taken the smallest solution of (8).
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Figure 23: Tuning range of the �-function at the Crossing Point for G2 = 220 T/m. We have taken

the smallest solution of (8).
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Figure 24: Tuning range of the �-function at the Crossing Point for G2 = 220 T/m. We have taken

the smallest solution of (8).
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5 STUDY OF AN INSERTION, WHICH MATCHES A DOUBLE WAIST OF

A FODO LATTICE

In the previous section we stated that one motivation for considering symmetric crossing was

that it eased the matching to a standard FODO lattice. In this section we will show how this

can be done. Let us consider the insertion shown in Fig. 25 which is composed of two symmetric

triplets (inner and outer) separated by a drift lx. The inner triplet has the role studied in the

previous section, transforming the double waist at the IP into a symmetric ��crossing (at the
Crossing Point in Fig. 25). The outer triplet matches from this symmetric ��crossing to the

following symmetric crossing corresponding to the FODO mid-cell Point.

Figure 25: Two triplets model.

By de�nition we have at the Crossing Point:

�c;x = �c;y = �c

�c;x = ��c;y = �c : (9)

And at the FODO mid-cell Point:

�FODO;x = �FODO;y

�FODO;x = ��FODO;y : (10)

In the previous section we have seen that there are in principle two inner triplets which satisfy

the expressions 9 depending on the two parameters l3 and g2. Actually we discarded one of

them for practical reasons.

Using the general transformation of the Twiss parameters through a beam transfer section
starting with �1 = 0 and �1 = �� [3], we get:

�x;s = �tx;11(��tx;21 + tx;12=�
�)

�x;s = ��t2x;11 + t2x;12=�
�

�y;s = �ty;11(��ty;21 + ty;12=�
�)

�y;s = ��t2y;11 + t2y;12=�
�

s = x;s = y;s = t2x;21�
� +

t2x;11

��
:
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Replacing these expressions in (6) and (7) we obtain the following expressions for �c,�c and lc:

�c =
1

2
[(ty;11ty;21 � tx;11tx;21)�

� + (ty;11ty;12 � tx;11tx;12)=�
�]

�c =
4 + [(ty;11ty;21 � tx;11tx;21)�

� + (ty;11ty;12 � tx;11tx;12)=�
�]2]

t2x;21�� + t2x;11=�
�

lc = ���2(tx;11tx;21 + ty;11ty;21) + (tx;11tx;12 + ty;11ty;12)

��2t2x;21 + t2x;11
+ 2(l1 + l3) :

Eventually l5, �c and �c depend upon g2 and l3.

In Appendix B it is shown that we can obtain analytic expressions for a symmetric triplet

which matches the values of the �-functions of (9) to those of (10). It is also proved that

there are always two solutions if we do not impose any condition on the phase advances. Thus

their parameters are also functions of l3 and g2. The whole insertion depends on these two free

variables which can be determined by imposing two supplementary conditions. In the following

development we have chosen to impose the values for the distance d1 between the inner and

the outer triplets and the overall insertion length d2:

d1 = li1 + l5 + lo1

d2 = 2(li1 + li3 + lo1 + lo3) + l5

because they are generally �xed by the geometry (even if more loosely for d1).

0.0 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300.

s (m)

Example of a lattice for an experimental LHC insertion (thin lens)

0.0

1000.

2000.

3000.

4000.

5000.

6000.

β 
(m

) β x β y

Figure 26: Horizontal and vertical �-functions of an insertion matching the Interaction Point to the

Mid-cell Point with � = 72 m and � = �1 (thin lens approximation).
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Figure 27: Horizontal and vertical �-functions of an insertion matching the Interaction Point to the

Mid-cell Point with � = 72 m and � = �1 (thick lens model).
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Figure 28: Normalized gradients of the two triplets as function of the �-function value at the Inter-
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Figure 29: Horizontal and vertical phase advances as function of the �-function value at the Interaction
Point (�� = 0:5{9.8 m).

The routine DSNLEQ of the standard CERN library is able to compute the parameters of

the two triplets and the drift length l5 which satisfy these constraints if possible. A further
constraint is given by the maximum acceptable value of the �-function inside the inner triplet

which can be respected by replacing the condition of strict equality for d1 with a condition on
its range only. The following two �gures show an application to a schematic con�guration of one
LHC (Version 4) low-� insertion. The distance between the Interaction Point and the Mid-cell

Point of the FODO cell is 275 m while the distance between the last quadrupole of the inner
triplet and the �rst quadrupole of the outer triplet is 154 m in the thin lens approximation. The

values of the �-function and of the �-function at the Mid-cell Point have been selected equal to

72 m and �1 m respectively. Figure 26 shows the thin lens approximation while Fig. 27 shows
the extension to the thick lens case. A program has also been written to study the behaviour

of the quadrupole strengths when the value of the �-function at the Interaction Point increases

(`tuning'). Figure 28 shows that their change are quite smooth for values of the �-function at

IP up to very near 10 m. Figure 29 shows the corresponding variation of the horizontal and

vertical phase advances.

6 CONCLUSIONS

The �rst result concerns the inner triplet of an insertion, which cannot be canonical because it

does not provide enough focussing of the �-functions (see Fig. 3). It can also be proved that no

symmetric crossing can be obtained with this kind of triplet if we want to satisfy the constraints
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imposed by the limitations on the gradient and on the maximum value of the �-function inside

the triplet.

Thus the gradient of the outer quadrupole must be about 10{15% stronger than that of the

centre one. A second result is that a symmetric inner triplet can indeed achieve waists in the

horizontal and vertical planes at acceptable distances but the validity domains of l3 and G2 are

small and at the limit of the largest acceptable �x inside the triplet (see Fig. 4). More generally

there is a high sensitivity of the insertion to quadrupole �eld variations when l1 is large as

in the case of the LHC low-� insertion. Relative variations of order of few percents modify

considerably the positions of the waists and the slopes at the crossing. In such application an

additional quadrupole may be required to give the extra free parameters which can be used to

enlarge the acceptable domain of the triplet parameters.

The third result is that symmetric crossing is more robust with respect to variations of the

triplet parameters and has the advantage to match quite easily to a standard FODO lattice.

All these results bring us to an insertion based on two symmetric triplets, the inner triplet

being used to generate a �-function symmetric crossing. The �nal matching between this

crossing and the crossing associated with the FODO lattice which follows is ensured by the

outer symmetric triplet. Three conditions can be imposed simultaneously, keeping �xed the

drift preceding the inner triplet, the total length of the insertion and the distance between the
triplets in a given range. They provide a set of equations with an equal number of parameters

which although non linear can be solved in a deterministic way, avoiding the use of numerical
matching. The outer triplet is a convenient speci�c sub-system which allows to match two
FODO cells which di�er by their �-function, i.e. also phase advance and cell length, and which

can certainly be used in other applications.
Explicit solutions are given for an insertion of LHC type. At �rst inner and outer triplet

parameters are determined as explained for a �xed drift in front of the inner triplet, a given
insertion total length, a given distance between the last inner triplet quadrupole and the �rst
outer triplet quadrupole, and ��-amplitude equal to the nominal value in collision at maximum

energy. They typically match the �-crossing of the FODO cell of the dispersion suppressor.
Once this is done, the geometry is frozen and only the gradients of both symmetric triplets are

varied in order to match detuned �� values to the same dispersion suppressor cell. The triplet

gradients could be adjusted for a detuning reaching about a factor 20, the phase advances of
course changing accordingly. Detuning is bounded by the mentioned constraints and by the

limitations on the maximum value of the �-function inside the triplet. The corresponding thick

lens model can be easily obtained by numerical adjustment to �nite quadrupole lengths. This

model can be re�ned to include control on the maximum value of the �-functions inside the inner

triplet, on the tunability range and on the phase advance changes during tuning by relaxing
the two conditions on the distance between the triplets and on the overall length. Hence it is

demonstrated that the proposed method makes it possible to determine unequivocally inside

the complete given parameter space the existing solutions of a realistic lattice for a tunable
LHC-type experimental insertion, only based on symmetric triplets.
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APPENDIX A: RATIO k = g4=g2 OF A SYMMETRIC TRIPLET MATCHING A

DOUBLE WAIST TO A SYMMETRIC POINT WITH x = y

The condition x;s = y;s at the exit of a symmetric triplet implies a relation between the

parameters k; g2 and l3. It is the purpose of this appendix to derive it. Let us assume that

the beam at the entrance of the symmetric triplet is a double waist with �� being the common

value of the two �-functions. There is no lack of generality in making this assumption which

greatly simpli�es the computations. The form of the �nal expression remains the same and

only the coe�cients are more complex. By making explicit the dependence of the -functions

on the transfer matrices of each plane and on the value ��, we may write using the general

transformation of the Twiss parameters through a beam transfer section starting with �1 =

0 and �1 = �� [3]:

t2x;21�
� +

t2x;11

��
= t2y;21�

� +
t2y;11

��

or

(t2x;21 � t2y;21)�
�2 = (t2y;11 � t2x;11) : (A.1)

Let us obtain the following quantities [2]:

tx;21 � ty;21 = 2(1 + l3g2)(g2 + g4 + l3g2g4)� 2(1� l3g2)(�g2 � g4 + l3g2g4)

= 4(g2 + g4) + 4l2
3
g2
2
g4

= 4g2[(1 + l2
3
g2
2
)k + 1]

tx;21 + ty;21 = 2(1 + l3g2)(g2 + g4 + l3g2g4) + 2(1� l3g2)(�g2 � g4 + l3g2g4)

= 4l3g2(g2 + 2g4)

= 4l3g
2

2
(2k + 1)

ty;11 � tx;11 = 1 + 2(l1 + l3 � l1l3g2)(�g2 � g4 + l3g2g4)�
1� 2(l1 + l3 + l1l3g2)(g2 + g4 + l3g2g4)

= �4(l1 + l3)(g2 + g4)� 4l1l
2

3
g2
2
g4

= �4g2[(l1 + l3 + l1l
2

3
g2
2
)k + l1 + l3]

ty;11 + tx;11 = 1 + 2(l1 + l3 � l1l3g2)(�g2 � g4 + l3g2g4) +

1 + 2(l1 + l3 + l1l3g2)(g2 + g4 + l3g2g4)

= 2 + 4l3(2l1 + l3)g2g4 + 4l1l3g
2

2

= 2[2l3g
2

2
(2l1 + l3)k + 1 + 2l1l3g

2

2
] :

Inserting these expressions into (A.1), we get:

16��2l3g
3

2
[(1 + l2

3
g2
2
)k + 1](2k + 1) =

� 8g2[(l1 + l3 + l1l
2

3
g2
2
)k + l1 + l3][2l3g

2

2
(2l1 + l3)k + 1 + 2l1l3g

2

2
] :
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Expanding and simplifying:

2��2l3g
2

2
[2(l2

3
g2
2
+ 1)k2 + (l2

3
g2
2
+ 3)k + 1] =

� 2(l1l
2

3
g2
2
+ l1 + l3)(2l1l3g

2

2
+ l2

3
g2
2
)k2

� [(l1l
2

3
g2
2
+ l1 + l3)(1 + 2l1l3g

2

2
) + 2(l1 + l3)(2l1l3g

2

2
+ l2

3
g2
2
)]k

� (l1 + l3)(1 + 2l1l3g
2

2
) :

Grouping together the same powers of k we obtain the second order equation

k2(a2g
4

2
+ b2g

2

2
) + k(a1g

4

2
+ b1g

2

2
+ c1) + b0g

2

2
+ c0 = 0

where the coe�cients

a2 = 2l3
3
[2��2 + l1(2l1 + l3)]

b2 = 2l3[2�
�2 + (l1 + l3)(2l1 + l3)]

a1 = 2l3
3
(��2 + l2

1
)

b1 = l3[6�
�2 + 2(l1 + l3)(3l1 + l3) + l1l3]

c1 = (l1 + l3)

b0 = 2l3[�
�2 + l1(l1 + l3)]

c0 = (l1 + l3)

are functions only of the drift lengths and of the value of the � function at the entrance of the

symmetric triplet.
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APPENDIXB: STUDYOF A SYMMETRIC TRIPLETMATCHING TWOROUND

BEAMS EACH ONE WITH OPPOSITE TRANSVERSE DIVERGENCES

Let us assume that the betatron functions at the entrance and at the exit of a symmetric triplet

are respectively:

�x;1 = �y;1 = �1
�x;1 = ��y;1 = �1

and

�x;2 = �y;2 = �2

�x;2 = ��y;2 = �2 (B.1)

and that in addition they satisfy the inequality �1�2 + �2�1 6= 0. Then the horizontal and

vertical matrices may be written under the form [2]:

Th = �
�
T11 T12
T21 T11

�

Tv = �
� �T11 T12

T21 �T11

�

where

T11 = (�1 + �2)=�0

T12 = (�1 � �2)=�0

T21 = (1 � 2)=�0 (B.2)

�0 =

p
(�2 � �1)2 + (�1�2 + �2�1)2p

�1�2

1 =
1 + �2

1

�1
; 2 =

1 + �2

2

�2

It should be noted that T11 and T21 have the same signs as �1 + �2 and 1 � 2 respectively.

The phase advance corresponding to the sign + in front of the horizontal transfer matrix is
given by [2]:

�+h = � + sign

�
�1 � �2

�2�1 + �1�2

�
arctan

���� �1 � �2

�2�1 + �1�2

���� (B.3)

The other phase advances are:

��h = �+h + �

�+v = ��h = �+h + �

��v = �+h
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If we accept any of these phase advances, there are four sets of transfer matrices which transform

the entrance betatron functions into the exit betatron functions:

Th =

� �T11 �T12
�T21 �T11

�
; Tv =

�
T11 �T12
�T21 T11

�

Th =

� �T11 �T12
�T21 �T11

�
; Tv =

� �T11 T12
T21 �T11

�

Th =

�
T11 T12
T21 T11

�
; Tv =

�
T11 �T12
�T21 T11

�

Th =

�
T11 T12
T21 T11

�
; Tv =

� �T11 T12
T21 �T11

�

Let us compute the quantities a; b; c; d for each set [2]:

a = �1=2; b = �T11=2; c = �T21=2; d = 0 (B.4)

a = �T11 + 1

2
; b = 0; c = 0; d = �T21=2 (B.5)

a =
T11 � 1

2
; b = 0; c = 0; d = T21=2 (B.6)

a = �1=2; b = T11=2; c = T21=2; d = 0 (B.7)

The sets (B.4) and (B.7) can be treated at the same time. Solutions exist if bc � ad 6= 0
(eighth case of [2]). This implies T11 6= 0 or T21 6= 0 that is:

�1 + �2 6= 0

1 � 2 6= 0 (B.8)

The corresponding triplet parameters are given by

l1 =
bz � 1=2

c
(B.9)

g2 =
c

b(1� z2)
(B.10)

l3 =
b(1� z2)

cz
(B.11)

g4 = � cz3

1� z2
(B.12)

where z is a solution of the cubic equation z3+z�1=b = 0. The discriminant � = 1=27+1=4b2

being positive, there is only one real solution given by

zr =
3

q
1=2b+

p
�+

3

q
1=2b�

p
�
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From the cubic equation we have

1=b = z3r + zr

or

bzr =
1

z2r + 1
(B.13)

Inserting this expression in (B.9) and in (B.11) we get for the two sets (B.4) and (B.5):

l1 =
1� z2r

2c(1 + z2r )
(B.14)

l3 =
1� z2r

cz2r (1 + z2r )
= 2l1=z

2

r (B.15)

Thus if l1 is positive also l3 is positive.

Now dealing with the set (B.4) we obtain from the equations (B.9) to (B.12) the following

triplet parameters:

l1 =
T11zr;1 + 1

T21

g2 =
T21

T11

1

1� z2r;1

l3 = 2l1=z
2

r;1

g4 = �T11z3r;1g2=2
Where zr;1 is the (only) real solution of the cubic equation z3 + z + 2=T11 = 0.

Similarly dealing with the set (B.7) we get the following triplet parameters :

l1 =
T11zr;2 � 1

T21

g2 =
T21

T11

1

1� z2r;2

l3 = 2l1=z
2

r;2

g4 = T11z
3

r;2g2=2

Where zr;2 is the (only) real solution of the cubic equation z3 + z � 2=T11 = 0.

It is easy to show that zr;2 = �zr;1. Observing that T11zr;2 � 1 = �(T11zr;1 + 1), the only

acceptable solution corresponding to positive l1 as well as to positive l3 because of (B.15) is
either zr;1 or zr;2 depending upon the sign of T21. Thus the two sets B.4 and B.7 provide only

one solution given by:

l1 =

����T11zr;1 + 1

T21

����
g2 =

T21

T11

1

1� z2r;1

l3 = 2l1=z
2

r;1

g4 = T11z
3

r;1g2=2 (B.16)
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Where the betatron functions must satisfy the two conditions (B.8):

�2 6= ��1

2 6= 1

The set (B.5) has two solutions if T11 > �1 and T11 6= 0 (third case of [2]). The �rst

solution is:

l1 =

p
1 + T11

T21

g2 =
T21

T11

l3 = l1T11

g4 = �g2=2

l1 is positive if T21 > 0 and l3 is positive if T11 > 0. These conditions may be written under the

form (B.2):

�1 + �2 > 0 and 1 > 2

The second solution is:

l1 = �
p
1 + T11

T21

g2 =
T21

T11

l3 = l1T11

g4 = �g2=2

l1 is positive if T21 < 0 and l3 is positive if T11 > 0. These conditions are equivalent to (B.2):

�1 + �2 > 0 and 1 < 2

The set (B.6) has also two solutions (third case of [2]). The �rst one is:

l1 = �
p
1� T11

T21

g2 =
T21

T11

l3 = �l1T11
g4 = �g2=2

l1 is positive if T21 < 0 and l3 is positive if T11 < 0. These conditions may be written under the
form (B.2):

�1 + �2 < 0 and 1 < 2
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The second solution is

l1 =

p
1 + T11

T21

g2 =
T21

T11

l3 = �l1T11
g4 = �g2=2

l1 is positive if T21 > 0 and l3 is positive if T11 < 0. These conditions are equivalent to (B.2):

�1 + �2 < 0 and 1 > 2

Inspecting the four solutions it is possible to give a unique representation for the results of

the two sets (B.5) and (B.6):

l1 =

p
1 + jT11j
jT21j

g2 =
T21

T11
l3 = l1jT11j
g4 = �g2=2 (B.17)

Where the only conditions on the betatron function are

�1 + �2 6= 0 and 2 6= 1

Summarizing we may say that there are always two symmetric triplets which match the
betatron functions at its entrance and exit as speci�ed in (6) and (B.1) with the additional

conditions:
�2 6= ��1

2 6= 1

�1�2 + �2�1 6= 0

The parameters of the two symmetric triplets (B.16) and (B.17) can be obtained by replacing

T11 and T21 with the expressions (B.2):

First solution:

l1 =

����(�1 + �2)zr;1 + �0

1 � 2

����
g2 =

1 � 2

(�1 + �2)

1

1� z2r;1

l3 = 2l1=z
2

r;1

g4 =
(�1 + �2)z

3

r;1g2

2�0
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Where zr;1 is the (only) real solution of the cubic equation

z3 + z + 2�0=(�1 + �2) = 0, i.e.

zr;1 =
�0

�1 + �2

2
64 3

vuuts1 +
(�1 + �2)2

27�2

0

� 1� 3

vuuts1 +
(�1 + �2)2

27�2

0

+ 1

3
75

Second solution:

f = 1=g2 =
�1 + �2

1 � 2

l1 = jf=(�1 + �2)j
p
�0(�0 + j�1 + �2j)

l3 = jf j
p
1 + j�1 + �2j=�0

g4 = �g2=2
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