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Abstract

Dual harmonic RF systems have been discussed for many years: to promote Landau damping, to
reduce transverse space-charge, and to improve Touschek lifetime. Since its introduction into the CPS
booster in 1982, the dual harmonic acceleration process suffered from an unexplained longitudinal
instability occurring when the"®harmonic cavity is anti-phased and controlled by thieatmonic gap
signal. The instability does not occur when the beam fundamental is used as reference, nor when the RF
harmonics are in-phase. The impetus for the present study arises from the conversion from harmonic
numberdh=5 and 10 td=1 and 2 for LHC operation. The instability has recently been diagnosed as a
sextupole mode. In this paper, which is a synopsis of two laboratory notes [3,4], are presented
experimental results from machine development (MD) periods, and a detailed theoretical explanation
for the instability (and its correction) that considers feedback from the beam versus the cavity
fundamental.
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Abstract

Dual harmonic RF systems have been discussed for many
years: to promote Landau damping, to reduce transverse
space-charge, and to improve Touschek lifetime. Since its
introduction into the CPS booster in 1982, the dual
harmonic acceleration process suffered from an
unexplained longitudinal instability occurring when the
2™ harmonic cavity is anti-phased and controlled by the
1* harmonic gap signal. The instability does not occur
when the beam fundamental is used as reference, nor ST _
when the RF harmonics are in-phase. The impetus for the MESOne AW 124V 4 ul 1997
present study arises from the conversion form harmonic ) )

numbers h=5 & 10 to h=1 & 2 for LHC operation. The Figure 1: bunch shape with 3 nodes.

instability has recently been diagnosed as a sextupofgese observations suggest that the instability is intrinsic
mode. In this paper, which is a synopsis of two laboratoky, the beam, albeit modified by the action of control
notes [3,4], we present experimental results from machifgops. Another feature of the instability is that the growth
development (M.D.) periods, and a detailed theoreticghte increases when the gain of the second harmonic
explanation for the instability (and its correction) thaggrrector (SHC) loop is reduced, which suggests the
considers feedback from the beam versus the cavifystapility would be even stronger without the SHC loop.
fundamental. A key observationis that short bunches (i.e. small
longitudinal emittance) are stable, whereas long bunches
1. INTRODUCTION of equal intensity (but large emittance) are unstable; and
The present understanding of the PS Booster instabilifiis indicates some kind of ‘critical’ bunch length.
builds upon two pieces of work. In 1994, Chapochnikova

[1] pointed out that (with dual harmonic) beyond a1 2. Beam Transfer Functions

critical bunch length Landau damping of all azimuthal ., . .
modes is lost. In 1996, Blas [2] proposed that théddmg a second harmonic voltagg component to the RF
. o . . waveform has three consequences:
instability is associated with the low level RF system Ioop There are twice as many inouts and outpuLs
delays and the magnitude of the beam transfer functiqn All beam transfer functigns Zre altered P
from modulations of the"2harmonic RF to modulations o .

e One must answer: “how do we synchronize the two

of the £ harmonic beam current. i
RF waves?

. The implication of the first item is that the beam response
1.1.. Machine Development Results is given by a matrix, with each of the elements given by a
Also contributing to the explanation were the M.D.frequency dependent transfer function:

experiments performed in 1997 and described by S) B.(s

Koscielniak [3]. The instability was diagnosed as a beamgquation 1;E¢p"1 S: (B.(s) Bu(9Ue, B

sextupole modent=3) with oscillation frequency 3 &nd Eﬂbz ] 8321(5) B,,(s) %0\,2 H

3 nodes in the bunch shape; see Fig.1. There was BQch of the phase modulation transfer functid)s
evidence of modear1 or m=5. The instability is only gepends on the beam distribution (e.g. bunch length) and
weakly dependent on beam current, and this excludgy the relative amplitude and phasing of the voltage
impedance or beam loading or space-charge as the SOWYBfponents. For example, voltages in-phase gitest

of the instability. Further corroboration of “not a beamy,nch gperationwhereas voltages anti-phased gikesy
loading instability” is the fact that RF feedback has beegncn operation. Moreover each of the TFs is

implemented, with a substantial reduction of the apparepftributed to by many azimuthal modes However
cavity impedance, but the instability survives. There is ngj,ce they are the only ones observed we shall restrict to
instability when the ? harmonic RF is driven in-phase m=1,3 The phase of the'Zharmonic beam component is

with the ' harmonic RF. Further, the instability is only not monitored and the matrix componeBtsandB,, are
weakly dependent on the control technology (analogue Rp: essential to our discussion.

digital).
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For the case of RF voltages in-phase, the synchrotron 2. CONTROL STRATEGIES
frequency is a monotonic decreasing function 0+he issue of
amplitude; i.e. similar to the case of single RF syste
except the frequency spread is larger and the smal
amplitude oscillation frequency is h_igher. » 2" harmonic RF locked to voltage fundamental
For the case of RF voltages antl_—phased (voltage ratio 2™ harmonic RE locked to beam fundamental.
V,/V; =-1/2) and non-accelerating RF buckets, therpe jatter two cases of dual harmonic are elaborated in
computer program BTF [1,5] can calculate the relevanhe following sections and analysed according to the
transfer functions. Examples are given in Figs. 2 & 3. Nyquist criterion. Consider a system with forward gaijn

‘ and gain B in the feedback path. The open loop gain is
dual harmonic RF; B,  rpe=0.38  V,/V,=—0.5 . . .

w w w 3 AxB. Assuming negative feedback if there are
: (m=prn=2) frequencies at which the phase-sHifAB= -7 and the
gain |AB| >1 then the system will be unstable when the

“how to synchronize” can be answered in
ree possible ways:
Perfect feed-forward of'2harmonic (academic)

loop is closed. Ifpositive feedbacks used, the system is
unstable if the clockwise phase-shitAB=0 and the

gain |AB| =1 for certain frequencies.
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LN -3 2.1. 2“RF locked to voltage fundamental

‘ ‘ \ —4 The control scheme is shown in Figurek4.is the beam
w/w,, phase loop gain anld, is the second harmonic corrector
(SHC) gain. It should be evident that the beam response
Figure 2: B, for small emittance bunch B,, is outside the domain of control of the SHC loop.
Because there are several loops we must be careful to
dual harmonic RF; By rna=080 v,/v,=-05 specify which are closed and which is open. Suppose the

(m=T)+(m=3) SHC loop is closed and the phase loop (at fundamental) is
2 opened just before the summing point AfQ, with

1 ref

@, .Ifthe SHC gain is large, then phaggis a copy of

28Dy

@,- Hence the open loop transfer function is:

K,e™s' o
ls {Blz (S) + Bll(s) _]}<0v1f )

-3 For short bunches, the dipole and sextupole resonances of
L B,, andB,, are both damped progressivelyrasl,3,5; so

: 2 3 4 if the gain-delay product is small enough for stability at

O ormrens o m=1, then it is also small enough at the higher

resonances. As the bunch is lengthened, so the sextupole

mode becomes more prevalent, particularly for excitation

The incoherent synchrotron frequency initially increaselsy 2 harmonic, and the form &, departs from that of

with amplitude, reaches a maximuen, = 0.778Gv,, B,. For long bunches botf8, and B,, are multiply

at a critical amplituder =0.7235 (i.e. bunch length resonant (with no Landau damping) at the same

233.1085), and then decreases toward zero. This imp”g?%?quency locations. Despite these changes, the gain and

the oscillation frequency is not a single valued function ?ss.'lih'ft are fprott))ablyrf]lot z;dequgt(teh to _|tr_1du|c|e atnh
amplitude ¢); and so two P.V. integrals and residued"StaNIty (even for bunches beyon e critical length)

must be calculated. Moreover, whedgo. /dr =0 the unlessthere are delays in t_he feedback. Howeyer when
i ) . s the phase-loop feed-back is delayed, then it is almost
local density of oscillators per unit frequency becomegeyitable that the additional negative phase-shifts will
infinite, leading to a resonant response of the formpquce an instability where the sumBjf andB,,, may be
Equation 2:B, (s) = > ~Bo jmi/,/sz +w? , Where large; such as in the vicinity ofu The open-loop Bode
m plot for beam and phase loop with delay Tpd8onfirms
k=1 ork=2 andw,, = Mw, . that the phase passes through 0 clockwise where the gain
is large, and anti-clockwise where the gain is small; and
so the system is unstable

/
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Equation3: Ag,, =

Log, [Amplitude ]

Figure 3: B, for large emittance bunch



2.2. Physical Explanation In more detail, let us ask: “is the system stable when the
Sbeam-phase loop is closed?” We answer in terms of the

In simple terms, the mechanism of instability is as )
gain and phase of the open-loop transfer function

follows: the beam response is resonarB@k, and at this

frequency the loop delay is large enough that the Kes" OB (s) 0
correction pushes the beam in the wrong directioEquation 4 Ag, = —* o -1,
because the correction uses information which is too old. S -B,(s) 0O
@ ™) with loop delay T=1fs andK; (125 kHz.
=) In the previous synchronisation scheme discussed, the
A, system was stable until we introduced the effect of loop
delay. However for the scheme discussed here, there may
be large phase-shifts due to loop delay but in the vicinity
(+) of the m=3 resonance, the phase passes through 0
o3 by o clockwise where the gain is small, and anti-clockwise
(ﬂé where the gain is large; and so the system is stable
according to the Nyquist condition.
(+)
[A]f<f 2.4. Physical explanation
(=) The mechanism of stabilisation is as follows. Suppose
that either due to drive by, or spontaneous self-
ref ’J%H excitation, the beam phase starts to oscillate; then the
Pre » Prz SHC loop will generate a signgl, that, in turn, acts
(] Pz through B, (i.e. through the 2 harmonic cavity) to

modify the initial oscillationq,. This signal (which

Figure 4: system schematic for 2nd harmonic locked toincludes a phase advance) is then acted upon by the beam

voltage (bold line) or beam (dashed) fundamental ~fundamental phase-loop. Actually, to be strictly correct,
the time-ordering depends on the relative band-widths of

2.3. 2" RF locked to beam fundamental the two loops.

Suppose thaty, replacesq, as the input to the phase 3. CONCLUSION

'dlsc'rlmmator of the SHC, as indicated by the'dashed IIrl]ehe mechanism for the instability when feedback is from
in Figure 4. Imagine, now, that the SHC looglizsed on the cavity has two ingredients:
h :

the beam .fundam'ental. This situation constitutes ¢ the large gain of the BTF when the bunch length
feedback with a slightly unusual topology. The beam .
approaches or exceeds the critical length,

'res'ponseBlz 'S inside the SHC loop and a'?o. partlaI'Iy.. the large phase-shifts that are contributed by the long
inside the phase-loop. As a consequence, it is the joint

i loop delays.
beam responsef}, = [Bn/(l_ BlZ)](pvl which under  the critical length is that for which the derivative of
the control of the phase-loop (assuming the SHC gain $ynchrotron frequency with respect to action is zero
large enough). At d.c. the response is exactly unityhe explanation for the stabilization when the feedback is
whether bunches are long or short, so d.c. errors are fimim the beam, is due to modification of the beam
amplified. At HF the response tends to zero. Further, theansfer function via either a phase-advance mechanism
resonances d,, andB,, occur at approximately the sameor/and a reduction of the gain.
frequencies, and exactly so for bunches longer than the
critical length. When one imagines the response of long REFERENCES
bunches, at the dipole and sextupole resonances, eithefldr E. ChapochnikovaBunched beam transfer matrices

both of two things can happen. (i) The transfer function i(';?é)i“g'e and double RF systenGERN SL/94-19
gain in the vicinity of the resonant frequenci#®J, will 2] A. Blas: Etude dynamique des boucles fondamentales
be much reduced; and/or (ii) the denominator of the ld'as_seg’_'ssergse/”élzn\?u églsécgeau dans le plan
transfer function behaves asphase advance network L}3] ongitudinal ote 96-23.

. ] ) S. Koscielniak et al:Diagnosis of longitudinal
The details depend on bunch length; but typically the” jnstability in the PS Booster occurring during dual

phase-advancing effect dominatesnat3 and the gain harmonic .. CERN/PS/RF/Note 97-23 (MD).
reduction atr=1. [4] S. Koscielniak et al: Explanatioof longitudinal
instability in the PS Booster occurring during dual
harmonic ...CERN/PS/RF/Note 98-12.
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