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Abstract

We study the finite temperature electroweak phase transition in an external hyper-
charge U(1) magnetic field HY , using lattice Monte Carlo simulations. For sufficiently
small fields, HY /T 2 <∼ 0.3, the magnetic field makes the first order transition stronger,
but it still turns into a crossover for Higgs masses mH <∼ 80 GeV. For larger fields, we ob-
serve a mixed phase analogous to a type I superconductor, where a single macroscopic
tube of the symmetric phase, parallel to HY , penetrates through the broken phase.
For the magnetic fields and Higgs masses studied, we did not see indications of the
expected Ambjørn-Olesen phase, which should be similar to a type II superconductor.
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1 Introduction

Assume that there exist non-vanishing magnetic fields in the Early Universe. Their fate
then depends strongly on their scale. Long-range magnetic fields (with a scale larger
than a few astronomical units today) are frozen in the primordial plasma because
of its high conductivity and may survive till the present time. Magnetic fields on
smaller scales dissipate by the time of recombination and seem to leave no observational
trace. Thus, direct astronomical observations may put constraints on the existence of
magnetic fields on cosmological distances, but cannot provide any bounds on the short-
range fields. The boundary between the short-range fields (which decay by the time
t) and the long-range fields (which still exist at time t) is given by the critical size

l0 ∼
√

t/σ ∼ (1/T )
√

MPl/T , where σ ∼ T is the plasma conductivity, MPl is the
Planck mass, and T is the temperature of the Universe.

There were several attempts to explain the origin of the galactic magnetic fields
through the creation of so-called “seed” primordial fields which may originally be weak
but are amplified later through the galactic dynamo mechanism. To get a non-negligible
field-strength on the galaxy scale the mechanism of magnetic field generation should
be related to the inflationary stage of the Universe expansion. Generically, a whole
spectrum of seed fields is produced, with an amplitude which decreases with the length-
scale. Thus, it may well be that the Early Universe at temperatures higher than the
electroweak scale is filled with a stochastic (hyper)magnetic field, whose contribution
to the total energy density is not necessarily small at scales <∼ l0 (for a review and
references see, e.g., [1]).

Potentially, strong magnetic fields may influence different processes in the Early
Universe. Our primary interest here is in the electroweak phase transition, the nature
of which is essential for electroweak baryogenesis. In spite of the expected stochastic
and space-dependent character of the magnetic field, a constant homogeneous field
approximation should be very good for this problem. Indeed, the scale of surviving
magnetic fields l0 ∼ 108/T at T ∼ 100 GeV is much greater than the typical correlation
lengths.

Without any external magnetic field, the electroweak phase transition in the
SU(2)×U(1) Minimal Standard Model is of the first order for small Higgs masses [2].
The transition weakens with increasing mH so that the first order line has a second
order endpoint [3] of Ising type at mH,c ≈ 72 GeV [4]. Beyond that there is only a
crossover. The two phases of the system, the symmetric and the broken (or Higgs)
phase, are thus analytically connected.

If there is an external magnetic field, one expects the transition to be significantly
stronger [5]. This is simply because the hypercharge field B contains a component of
the vector field Z, and Z acts in a way similar to the magnetic field in a superconductor:
it vanishes in the broken Higgs phase. Consequently, the broken phase has an extra
contribution in the free energy, and a system which would normally be considered to
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be deep in the broken phase can now be in coexistence with the symmetric phase, just
like superconductivity can be destroyed by an external field. Numerically, one obtains
in the tree approximation that for a magnetic field HY /T 2

c ∼ 0.5, the electroweak
phase transition would be of the first order and strong enough for baryogenesis up to
mH ∼ 160 GeV [5]. A more precise 1-loop computation [6] (see also [7]) weakens the
transition slightly: for HY /T 2

c ∼ 0.3, one seems to be able to go up to mH ∼ 100 GeV,
while for larger fields, an instability may take place.

However, finite temperature perturbation theory cannot to be trusted in the regime
of large experimentally allowed Higgs masses, mH > 80 GeV. Indeed, as mentioned,
the first order electroweak phase transition turns into a crossover for mH <∼ 80 GeV [3,
8, 9, 4] in the absence of a magnetic field, in contrast to the perturbative prediction.
Thus the effects of external magnetic fields should also be studied non-perturbatively,
and this is our objective here. We do observe significant non-perturbative effects.

It is instructive to compare the present situation more precisely with a superconduc-
tor (i.e., a U(1) gauge+Higgs theory) in an external magnetic field. This system has a
very rich and well studied structure. There are two possible responses to an imposed
external flux:

• type I, small mH : the flux passes through a single domain;

• type II, large mH : the flux passes through a lattice of correlation length size
vortices. In some cases, the vortex lattice can transform into a vortex liquid.

The fundamental difference between the two types is that for type II, the interface
tension between bulk symmetric and broken phases is negative so that it is energetically
favourable to split a single domain into a collection of small subdomains, vortices.

The physics of (hypercharge) magnetic fields in SU(2)×U(1) theories has essential
new features compared with superconductivity. First, the flux can now penetrate also
the broken phase. Second, the broken phase massless gauge field Q couples now to W±

through a three-vertex, due to the non-Abelian structure of the theory. One may thus
expect qualitatively new phenomena. In fact, Ambjørn and Olesen [10] have shown
that for mH = mZ the classical energy functional is minimized by a configuration
containing a W±-condensate with a periodic vortex-like structure. The question now
is what happens in the full quantum theory.

The plan of the paper is the following. In Sec. 2 we formulate the problem in
continuum, and in Sec. 3 we review briefly the perturbative estimates. In Sec. 4 we
describe how the system can be put on the lattice. The numerical results are in Sec. 5
and the conclusions in Sec. 6.
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2 Magnetic fields in the continuum

The theory we consider is the effective 3d theory describing the finite temperature
electroweak phase transition in the Standard Model and in a part of the parameter
space of the MSSM. The Lagrangian is

L3d =
1

4
F a

ijF
a
ij +

1

4
BijBij + (Diφ)†Diφ + m2

3φ
†φ + λ3(φ

†φ)2, (1)

where Di = ∂i + ig3Ai + ig′3Bi/2 and Bij = ∂iBj − ∂jBi. The dynamics of the theory
depends on the three dimensionless parameters x, y and z, defined as

x ≡ λ3

g2
3

, y ≡ m2
3(g

2
3)

g4
3

, z ≡ g′23
g2
3

. (2)

These parameters can be expressed in terms of the underlying physical 4d parameters
and the temperature; explicit derivations have been carried out in [11, 12]. In the fol-
lowing, we fix z = 0.3, corresponding to sin2 θW = 0.23. The values x ≈ 0.10...0.13 we
have concentrated on, correspond to Higgs masses mH ≈ 72...82 GeV in the Standard
Model. Moreover, H3d

Y = H4d
Y /
√

T up to O(g′2) corrections which may be extracted
from ref. [11] and are not important numerically. We neglect higher dimensional op-
erators and assume that the parameters of the theory are such that this is legitimate
(the relevant requirements in the absence of a magnetic field are discussed in [11]).

The external magnetic field does contribute to higher dimensional operators6 and
thus the super-renormalizable 3d Lagrangian in Eq. (1) is not valid for arbitrarily strong
magnetic fields. For instance, the 1-loop non-zero Matsubara mode contribution to the
scalar mass operator in an external field is of the form λ3g

′2
3 H2

Y φ†φ/(πT )4, and would
give an O(1) contribution to y in Eq. (2) for HY ∼ (πT )2. Hence, one should add
the condition HY � (πT )2 to the list of requirements for the validity of dimensional
reduction.

We introduce the hypercharge magnetic field with an explicitly gauge-invariant
method, which can thus be easily implemented on the lattice7. We consider our system
in a box with periodic boundary conditions for all gauge-invariant operators. Then,
the operator of the flux of the magnetic field through a surface perpendicular to the
x3-axis,

g′3ΦB =
∫

dx1dx2g
′
3B12(x) = g′3

∮
dsiBi(x), (3)

commutes with the Hamiltonian and is exactly conserved (the flux has been multiplied
by g′3 to make it dimensionless also in 3d units). Thus, the equilibrium thermodynamics
of the system can be described by the density matrix

ρ = Z−1 exp(−H/T )δ(ΦB − Φcl
B) (4)

6We take here into account also HY when counting the dimension of an operator.
7To fix a given electromagnetic field in the broken phase, just tune the hypercharge field with the

method described here so that the desired value is obtained.
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in the microcanonical formulation, where the value of the magnetic flux is fixed by Φcl
B.

In the canonical formulation, the density matrix is given by

ρ = Z−1 exp[−(H − µBΦB)/T ], (5)

where µB is the “chemical potential” for the magnetic flux. In more conventional no-
tation, µB corresponds to an external field strength HY , times the extent of the system
in the x3-direction, and ΦB to a magnetisation density, times the area. The statistical
sums in the two formulations are related, as usual, by the Legendre transformation.

It is seen from Eq. (3) that in the microcanonical formulation which we use in
practice, a magnetic field can be imposed with suitable boundary conditions for Bi(x).
Although Bi(x) is not itself a physical (gauge-invariant) quantity, the flux thus induced
is. We stress that the local value of the (hyper)magnetic field cannot be fixed as it is
not an integral of motion so that the dynamics of the system may prefer to distribute
the flux of the magnetic field in an inhomogeneous way.

To discuss the physical effects of a non-vanishing flux, we shall use the following
dimensionless combination:

b ≡ g′3
g4
3

B3d
Y ≈ g′

g4

B4d
Y

T 2
≈ 2.0

B4d
Y

T 2
, (6)

where g′3B
3d
Y ≡ g′3ΦB/(area) is the magnetic flux density. For its Legendre transform,

H3d
Y =

∂f(B3d
Y )

∂B3d
Y

, (7)

where f(B3d
Y ) is the free energy density obtained with the density matrix in Eq. (4),

we use the corresponding notation

h ≡ g′3
g4
3

H3d
Y . (8)

The effects of b 6= 0, h 6= 0 can be studied in perturbation theory. There are two types
of effects: First, a magnetic field gives an extra contribution to the free energy of the
broken phase relative to the symmetric phase, thus changing the location of the critical
curve. Second, a magnetic field affects the stability of homogeneous phases and can
even lead to the emergence of completely new, inhomogeneous phases.

3 The phase structure in perturbation theory

Homogeneous phases. Let us first consider the case of a fixed b, and assume that the
ground states of the system are homogeneous. Then there is an extra free energy
density related to the magnetic field. In the symmetric phase, the non-Abelian field

4



A3

B

Z

Q

θW

Binput
Y

A3,induced

Qactual

Figure 1: An illustration of how the electromagnetic field Q in the broken phase is
related to the external hypermagnetic field BY : Qactual = Binput

Y cos−1 θW . A3,induced is
such that the projection to the Z-direction vanishes.

Aa
i does not have an expectation value, and the free-energy density related to gauge

fields is just B2
Y /2. In the broken phase, it is the electromagnetic field Q which can

have an expectation value, and according to Fig. 1, its contribution is B2
Y /(2 cos2 θW ).

Hence, the phase equilibrium condition for the effective potential V (φ, y) is

V (0, yc) +
1

2
(B3d

Y )2 = V (v, yc) +
1

2
(B3d

Y )2 cos−2 θW , (9)

where v is the location of the broken minimum. It follows that for b > 0, there is at
tree-level a first order transition between homogeneous phases along the critical curve

yc = −b
√

2x, with the broken phase vacuum expectation value v2/g2
3 = b

√
2/x.

Mixed phases. However, as is usual, one has to consider also mixed phases in addition
to homogeneous phases when working with the microcanonical ensemble8. A mixed
phase consists of macroscopic domains of the symmetric and broken phases, and the
magnetic flux can be distributed unevenly between them. Mixed phases do not appear
in the canonical formulation, which thus leads to a simpler phase diagram. Let us,
therefore, see what happens if the canonical variable h is fixed instead of b.

Note first that according to Eq. (7),

H3d
Y = B3d

Y (symmetric phase), H3d
Y = B3d

Y cos−2 θW (broken phase). (10)

Making the Legendre transformations, the condition in Eq. (9) is replaced by

V (0, yc)− 1

2
(H3d

Y )2 = V (v, yc)− 1

2
(H3d

Y )2 cos2 θW . (11)

This leads to yc = −h
√

2x/(1 + z). One can now go back to the microcanonical
ensemble, to find out that for fixed b, the canonical transition corresponds to a band

8We thank M. Tsypin for pointing out to us the importance of this consideration.
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y

x

0.1 (1+z)/8

yb = –4hx/(1+z)

ys = –h/2

yc = –h  2x/(1+z)

y
x(1+z)/8

yb = -4bx

ys = -b/2

ymin = -b  2x (1+z)

ymax = -b  2x /(1+z)

Figure 2: The tree-level phase structure in an external field. The dimensionless vari-
ables appearing are defined in Eqs. (2), (6), (8). Left: For a fixed field strength h,
there is a first order transition along y = yc and an instability within the shaded re-
gion. Right: For a fixed flux density b, the first order transition corresponds to a band
y = ymin...ymax of a mixed phase.

with a finite width, y = ymin...ymax, where

ymin = −b
√

2x cos−1 θW , ymax = −b
√

2x cos θW , (12)

and cos θW = (1 + z)−1/2. Thus, the single transition line obtained from Eq. (9) splits,
in fact, into two transitions between which the ground state is the mixed phase. The
same result can, of course, also be obtained directly in the microcanonical formulation,
by minimizing the bulk free energy of a system with certain volume fractions of the
symmetric and broken phases, and an uneven distribution of the flux.

Finally, it should be noted that a mixed phase can only appear in a large total
volume V , when the free energy cost of the additional surfaces is less than the free
energy gain obtained by going from a homogeneous phase to a mixed phase. For
instance, at the point y = −b

√
2x, derived from Eq. (9) and lying close to the middle

of the interval in Eq. (12), surfaces can only appear if

1

2
b2 tan2(θW /2)(V g6

3) > Aσ, (13)

where A is the area of the surfaces, σ is their surface tension, and tan2(θW /2) ≈ 1/15.
For small fields, say b<∼ 0.3, and strong transitions, say σ/g4

3
>∼ 0.3, this requirement
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is satisfied if the system has a linear extension V/A > 100g−2
3 . This distance scale is

much larger than the typical correlation lengths of the system and thus quite difficult to
achieve in practical lattice simulations. However, it should be remembered that even
in the mixed phase, the transition takes locally always place between homogeneous
phases, and these are easier to simulate.

The consideration above was at the tree-level. To estimate the magnitude of quantum
corrections, one may compute how HY affects the W±, Z0 loop contributions in the
broken phase free energy. At 1-loop level, the answer is

V 1−loop
W±,Z0 (v, yc) = − 1

12π
(4m3

W + 2m3
Z)− e3Q

2π
(
√

m2
W + e3Q−

√
m2

W − e3Q)

+
1

4π3/2

∫ ∞

0

dt

t3/2
e−m2

W t

(
1

t
− e3Q

sinh e3Qt

)
, (14)

where mW = 1
2
gv, mZ = mW

√
1 + z, and e3Q = g′3BY . Eq. (14) can be reliably

converted to a 1-loop change in yc if the correction is smaller than the leading magnetic
energy term following from Eq. (11): this requires that h >∼ 0.15 and that x not be too

small, 1/(2π
√

h) � (8x)3/4. Then,

y1-loop
c (x, h) = −h

√
2x

1 + z
+

√
h

4π(8x(1 + z))
1
4

[
2

3
+

(1 + z)
3
2

3
(15)

+(
8x

1 + z
)

1
2

(√
1 + (

8x

1 + z
)

1
2 −

√
1− (

8x

1 + z
)

1
2

)
− 2x

3(1 + z)

(
1− 7

10

x

1 + z
+O(x2)

)]
.

Qualitatively, the effect of 1-loop corrections is that the regime x > (1 + z)/8 becomes
unstable (has an imaginary part), and that the value of yc is somewhat less negative
than at tree-level.

The stability of the homogeneous phases. According to the standard Landau-level
analysis, the effective mass squared of the Higgs field in the symmetric phase is modified
by the term +(g′3/2)B3d

Y in the presence of a magnetic field, while the vector mass
squared remains zero. In the broken phase, in contrast, the neutral Higgs mass squared
remains unmodified, while the W±-bosons get a term −e3Q = −g′3B

3d
Y . This term is

characteristic of non-Abelian gauge theories. For a stable phase, the mass squared
must be positive. Thus we get that the symmetric phase is stable at

y > ys = −h/2, (16)

while the broken phase is stable at

y < yb = −4hx/(1 + z). (17)

For ys > yb, which can happen when x > (1 + z)/8, neither phase is stable. Therefore,
in this region of the parameter space the ground state of the system must be inhomo-
geneous. In a superconductor, an external magnetic field cannot penetrate the broken

7



Higgs phase, and the flux goes either through a macroscopic tube of the symmetric
phase (type I superconductors) or through a vortex lattice (type II superconductors).
In the present case, the magnetic field can penetrate the broken phase. Nevertheless,
a behaviour similar to a type I or type II superconductor can emerge. As we have
seen, a type I mixed phase behaviour appears on the first order line shown in Fig. 2,
for x < (1 + z)/8. The relevant ground state in the regime x > (1 + z)/8, ys > yb has
been studied by Ambjørn and Olesen (AO) [10]. It contains a W±-condensate, with
a periodic vortex-like structure, similar to a type II superconductor. The emerging
tree-level phase structure is illustrated in Fig. 2.

Our main aim below is to analyse numerically if this phase structure is stable against
quantum fluctuations.

4 Magnetic fields on the lattice

The theory in Eq. (1) can be discretized in the standard way (see, e.g., [2]). The lattice
action is

S = βG

∑
x

∑
i<j

[1− 1

2
Tr Pij ] +

1

2

βG

z

∑
x

∑
i<j

α2
ij

− βH

∑
x

∑
i

1

2
Tr Φ†(x)Ui(x)Φ(x + i)e−iαi(x)σ3

+ β2

∑
x

1

2
Tr Φ†(x)Φ(x) + β4

∑
x

[
1

2
Tr Φ†(x)Φ(x)]2, (18)

where αi = a(g′3/2)Bi, αij(x) = αi(x) + αj(x + i)− αi(x + j)− αj(x) is the discretized
field strength tensor, and Φ = (iτ 2φ∗, φ). The dimensionless lattice field is φ†φlatt =
φ†φcont/g

2
3, and the couplings are

βG =
4

ag2
3

, βH =
8

βG
, β2 =

24

βG
+

64

β3
G

m2

g4
3

, β4 =
64

β3
G

x, (19)

where m2 can be read from Eq. (33) in [13], with γ =∞. In this paper, we use only one
value of βG, βG = 8, since we monitor mainly shifts in quantities whose discretization
errors are already known from simulations without a magnetic field.

On a lattice with the extent N1N2N3, the flux of Eq. (3) to the x3-direction is imposed
by modifying the periodic boundary conditions of the variables αi as follows (for each
fixed n3 in αi(n1, n2, n3), not written explicitly):

g′3ΦB = 2
{ N1∑

n1=1

[
α1(n1, 0)− α1(n1, N2)

]
+

N2∑
n2=1

[
α2(N1, n2)− α2(0, n2)

]}
. (20)

With strictly periodic boundaries for αi, the net flux is thus zero.
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In principle, any flux ΦB can be simulated. However, the action is not periodic
unless the quantities in the square brackets in Eq. (20) are integer multiples of 2π. The
violation of these conditions will result in boundary defects (boundary currents), and
the lattice translational invariance will be lost. This requirement quantizes the total
flux: g′3ΦB/2 = 2πn, with n an integer.

The most economical way of implementing the boundary conditions is to make only
one (x, y)-plane link aperiodic. Thus, the boundary condition in Eq. (20) becomes

α1(n1, 0)− α1(n1, N2) = 2nπδn1,1 , (21)

otherwise αi periodic. Despite its appearance, this condition does not give any spe-
cial physical status to the n1 = 1 -plane, or the x-direction, since the ‘twist’ can be
transformed to an arbitrary location without modifying the action.

It is essential that in Eq. (18) the hypercharge field αi has a non-compact action.
For a compact action the variables αi are only defined modulo 2π, and the boundary
conditions above reduce to purely periodic ones. In this case the flux can spontaneously
fluctuate in units of 2π from configuration to configuration, and the mean flux will
average to zero.

In terms of the flux density parameter B3d
Y appearing in Eq. (6), the quantization

condition is a2N1N2(g
′
3/2)B3d

Y = 2πn, and the dimensionless variable b characterizing
the average magnetic flux density is then

b =
g′3B

3d
Y

g4
3

=
(βG

4

)2 4πn

N1N2
. (22)

As to the observables measured, let us mention that in addition to the usual volume
averages of gauge-invariant operators, it is useful to study gauge-invariant operators
summed over the x3-direction, and only a small sub-block of the (x1, x2)-plane:

(φ†φ)blocked =
N3∑

n3=1

∑
(n1,n2)∈block

φ†φ(n1, n2, n3). (23)

The distribution of such observables is sensitive to possible inhomogeneous spatial
structures.

5 Results

We have performed Monte Carlo simulations with x in the range 0.1 ≤ x ≤ 0.2 and
a magnetic field in the range 0 ≤ b ≤ 24π/64, with volumes up to 643 (Table 1).
The total number of runs (combinations of volumes and couplings (x, y, b)) is 548. As
mentioned in connection with Eq. (13), it should be kept in mind, though, that the
true infinite volume limit is impossible to achieve in some regions of the parameter
space.
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x b/(π/64) volumes
0.10 0, 4, 8, 12 163, 223, 283, 323

0.11 24 323

0.12 0, 8, 16, 24 163, 323

0.121 16 483

0.125 24 163, 323, 483

0.13 0, 8, 16, 24 163, 323

0.14 24 323

0.15 0, 8, 16, 24 163

0.16 24 323, 643

0.20 0, 8, 16 163, 323

Table 1: The simulation points at fixed x. In each case, several values of y (up to 20)
were used. Extensive additional simulations were performed close to the endpoints of
the first order transition lines for b/(π/64) = 1,2,3,4,6,12,16,24 (see Fig. 4). All the
simulations reported here are with βG = 8. For the volumes 223 and 283 the closest
approximation to the b indicated, satisfying the quantization rule in Eq. (22), was used.

Small fields. For b = 0, the line of first order phase transitions at small x has an
endpoint, in the universality class of the Ising model [4]. According to the discussion
in Sec. 3, for b 6= 0 the transition line should split into two lines with a mixed phase
in between. However, we find that for small b the mixed phase remains absent for all
practical lattice sizes (see Eq. (13)). Indeed, we observe that the b = 0 qualitative
behaviour remains there for small b, even though the endpoint moves to larger x.
Moreover, for any given x < xc (the endpoint location at b = 0), the transition becomes
more strongly of the first order for increasing b. This is shown in Fig. 3 for x = 0.1.

We have determined the finite volume endpoint location with a method similar to
that used in [4]: for each b, we locate the point (xc, yc) where the order parameter
probability histogram P (φ†φ) has two peaks of equal height, and the peaks are approx-
imately 2.2 times higher than the histogram height between the peaks, a characteristic
value for the magnetization distribution of the 3d Ising model at the critical point9.
As an example, the b = 0 histogram shown in Fig. 3 almost fulfills this criterion for
(xc, yc). (The main deviation comes from the fact that in Fig. 3 the values of yc have

9It may be noted that in ref. [4] great care was taken in order to find a good approximation for the
‘magnetization’ and ‘energy’-like observables M and E, which map onto the Ising-model M and E at
the critical point. The M and E-directions were found from a 6-dimensional space of lattice operators
(one of which was φ†φ). The endpoint was located in terms of P (M), not P (φ†φ). However, it was also
seen that the probability distribution in the 6-dimensional space spanned by the original operators is
so strongly stretched along the M -direction that it almost looks like a straight line (Fig. 2 in ref. [4]).
Thus, the projections of this distribution along the M and φ†φ -directions give distributions which
have practically the same form, and both can be used to locate the critical point. The M and E-like
operators were necessary for the analysis of critical exponents in ref. [4].
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Figure 3: The probability distribution of φ†φ at x = 0.1 and y = yc, measured with four
different flux densities and the volumes 163 and 323. The transition becomes stronger
(the separation of the peaks increases and the probability between the peaks decreases)
and yc decreases with increasing b. Simulations with b ≥ 4π/64 are multicanonical. For
the cubic geometry employed, the “mixed” configurations where the volume average of
φ†φ is between the two peaks, prefer to have phase interfaces parallel with the magnetic
field. For much larger volumes, a single peak corresponding to the mixed phase would
appear in between the two peaks seen here, see Fig. 7.

been determined by the more common equal weight criterion. However, the equal
height method is better suited for searching for the endpoint location.)

The actual process of locating the critical point consists of two stages: First, a few
short simulations are performed near the estimated critical point, giving a series of
improved estimates. Then, a long simulation is performed using the best estimate for
the critical point. Finally, the resulting probability histogram P (φ†φ) is reweighted
with respect to x and y until the critical point condition mentioned above is fulfilled,
which yields the final value of (xc, yc). For details of this procedure we refer to [4].

The results, together with the critical lines, are shown in Fig. 4. The main obser-
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Figure 4: The 0.10 < x < 0.13 part of the phase diagrams for constant b, 0 ≤ b ≤
24π/64, and finite volumes. The continuous lines show first order phase transitions
(for clarity, not shown for n < 4), and the open and filled circles the endpoint/triple
point locations. At large fields (n ≥ 16) a ‘type I’ mixed phase appears between the
symmetric and broken phases. The transitions have been located on the points shown
with the crosses. All the transitions become weaker when x increases. The behaviour
at large x is not known (dashed lines), but we expect the region opening at the triple
point to be closed. When the lattice size is increased, the triple points appear at smaller
x and b.

vation is that xc increases quite slowly with b, and does not reach values larger than
∼ 0.125 for b<∼ 1. We have used mostly βG = 8, volume = 323 lattices for this analysis.
Strictly speaking, the situation is slightly more complicated in the infinite volume limit
because of the appearance of the mixed phase. Nevertheless, the finite volume results
are indicative of the shift of the transition line and (xc, yc) as functions of b. Indeed,
the location of the endpoint does not change significantly when the volume is increased
from 323 to 643 at b = 4π/64; see Fig. 4.

Searching for the Ambjørn–Olesen phase. According to the tree-level structure
in Fig. 2, there should be an inhomogeneous Ambjørn–Olesen (AO) phase at large
Higgs masses, x > (1 + z)/8. In this phase φ†φ has a non-zero expectation value with
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Figure 5: The crossover region at x = 0.2 for b ≤ 16π/64. Left: The φ†φ susceptibility.
While the susceptibility has a clear peak at the crossover, it does not diverge when
the volume is increased. Right: The inverse correlation lengths. In contrast with
perturbation theory, there is always a non-vanishing mass, and thus no 2nd order
phase transition. The photon mass vanishes everywhere.

a periodic spatial structure in analogy with vortices in type II superconductors, and
there is a W±-condensate.

Indeed, we do observe the AO phase in classical configurations (which are solutions
of the lattice equations of motion): if we take a lattice configuration at x > (1 + z)/8,
y ∼ −b

√
2x (see Eq. (12)), and ‘cool’ it so that it minimizes the lattice action in

Eq. (18), a periodic φ and W structure emerges. However, the ‘quantum’ configurations
(which contribute to the lattice partition function) contain a lot of fluctuations, and
it is far from straightforward to observe whether there is an underlying structure in
them.

The cooling mentioned proceeds very much like the standard lattice Monte Carlo
update, but instead of a new thermally distributed value, the field variables are chosen
so that the local action is minimized. In one cooling sweep the action is minimized
at each lattice point and for all of the lattice fields. The UV noise vanishes after only
a few cooling sweeps, but cooling down to the classical configuration can take several
thousands of update sweeps.

Using the standard global thermodynamic quantities on the lattice, on the other
hand, we do not observe any transition to a phase with qualitatively new properties at
x = 0.2. The behaviour of the φ†φ susceptibility χφ†φ = V 〈(φ†φ− 〈φ†φ〉)2〉 is shown in
Fig. 5(left), and the behaviour does not change qualitatively from that at b = 0.
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It is also possible to directly try to measure the W+W−-condensate on the lattice.
For example, the (lattice) operator W+

1 W−
2 −W+

2 W−
1 is gauge invariant and, in the

absence of an external magnetic field, has a vanishing expectation value. However,
when there is an external field in the x3-direction, this operator acquires a non-zero
expectation value, even deep in the symmetric and broken phases where there is no
W+W−-condensate. While we do observe a clear increase of the condensate operator
in the crossover region, a similar increase is also seen near the first order transition.
Thus, we cannot assign this increase to the appearance of a W+W−-condensate.

A clear signature of the AO phase is its periodic spatial structure in the (x1, x2)-
plane (or, if the strict periodicity is destroyed by fluctuations, there should at least
be an enhancement of the characteristic wavelengths of the lattice fields). We have
attempted to directly observe this on the lattice at x = 0.2, b ≤ 16π/64 with various
methods:

• A moderate amount of cooling is a very efficient method of getting rid of the
lattice UV noise. However, in this case the interpretation of the results is far
from clear: if we cool the configuration too much, it will be driven towards the
solution of the classical equations of motion and finally reveal the structure of
the AO phase. To deem the ‘correct’ amount of cooling is ambiguous, at best. It
is much more objective to measure the properties of configurations without any
cooling.

• The Fourier power spectrum of φ†φ in the (x1, x2)-plane should reveal the pres-
ence of periodic spatial structures. However, in our measurements the spectrum
remains qualitatively the same for both b = 0 and b 6= 0.

• Since the AO field structure is of classical nature, it should persist on the lattice
for several update cycles, whereas the quantum noise rapidly averages to zero.
This can be utilized by averaging the fields over a various number of consecutive
configurations (and over the x3-direction). However, this analysis does not reveal
any non-trivial structure.

• All polarizations of the photon, in all directions, remain massless.

We thus have to conclude that small magnetic fields do not result in an inhomogeneous
phase at around x = 0.2. A possible explanation is that, in contrast to tree-level
perturbation theory, the non-perturbative inverse correlation lengths are always non-
vanishing in this regime, as shown in Fig. 5(right). Thus there may be some minimum
value of b which is needed for the instability and the inhomogeneous phase to appear.

Large fields. For large values of the magnetic field we do observe a mixed phase.
This phase consists of a domain of the symmetric phase surrounded by the broken
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Figure 6: A Higgs field configuration on a 483 lattice for x = 0.125, y = −0.36, just
above the transition to the broken homogeneous phase. A thermodynamically stable
cylinder of the symmetric phase is surrounded by the broken phase. In order to reduce
noise in the plot, we have cooled the configuration with 10 local cooling sweeps, and
averaged the fields over the x3-direction.

phase. A moderately cooled Higgs field configuration10 is shown in Fig. 6, for x = 0.125,
y = −0.36, and b = 24π/64. Inside the symmetric phase domain, the hypermagnetic
field is somewhat (∼ 25%) larger than elsewhere. For the Higgs field, the behaviour is
similar to that in a type I superconductor, and we shall thus use the name “type I” for
this mixed phase.

For each lattice size and (large enough) b, the type I phase appears only in some
specific interval of x: if x is too small, the first order nature of the symmetric ↔ broken
transition is too strong for the mixed phase to appear in the volumes we can simulate
in practice. This is due to the tension (free energy density) of the interface between the
symmetric and broken domains in the mixed phase. At a triple point (x, y)triple, the
symmetric, broken and mixed phases are equally likely to appear. This is illustrated
in the top part of Fig. 7. The transitions separating the three phases are of the first
order. When x is further increased, separate symmetric ↔ type I and type I ↔ broken
transitions appear. This is shown in the bottom part of Fig. 7.

The resulting phase diagrams are shown in Fig. 4. When x > xtriple, a band of

10In this case the existence of the mixed phase is clear even without cooling (see below); the cooling
makes the figure only much easier to read.
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Figure 7: The appearance of the ‘type I’ mixed phase at b = 24π/64. Top: The φ†φ
histogram measured at the triple point, where the symmetric phase (left peak), broken
phase (right peak) and the mixed phase (center) coexist. Strong first order transitions
separate the phases at this finite volume. A dashed line shows the distribution of the
blocked φ†φ in the mixed phase, measured over 1/16th of the total area (see Eq. (23)).
Here the center peak is absent, in accord with the mixed broken/symmetric spatial
structure of the mixed phase. Bottom: The global φ†φ histograms at x = 0.125,
V = 483. Separate first order transitions occur at y ≈ −0.346 and y ≈ −0.3626; for
intermediate values of y the mixed phase is stable.

the type I phase appears, separated by lines of first order transitions. For each fixed
(x, y), the type I mixed phase contains a definite volume fraction of the symmetric
phase (by a volume fraction we mean the weight of the corresponding peak in the local
’blocked’ distribution, see Fig. 7). At the upper (lower) critical yc(x), the symmetric
phase occupies the largest (smallest) volume fraction. At the triple point these limits
are equal. For a finite total volume, it is not possible to have a mixed phase with
arbitrary volume fractions.
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When the volume is increased, the interface tension becomes less significant in com-
parison with the bulk free energies. Thus, when the volume goes to infinity, xtriple → 0,
and the mixed phase band becomes slightly wider (since now it is possible to have
arbitrary volume fractions). However, the simulations near the triple point are very
difficult, and we have not attempted to study the volume dependence of xtriple in detail.

The first order transitions separating the homogeneous phases from the mixed phase
become weaker when x increases. At x ≈ 0.2 we have not observed transitions any
more, and symmetric and broken phases appear to be analytically connected. However,
since the type I phase breaks translational invariance (in the sense that after the removal
of a zero mode, the observables measured depend on the location), it has to be separated
from the symmetric and broken phases by some kind of phase transitions. Thus, the
type I regions in Fig. 4 should form isolated domains, or they could also transform into
an AO phase at some x.

Finally, a couple of technical issues about the phase structure on the lattice:
First, the locations of the transitions between the type I and the homogeneous phases

are very sensitive to finite size effects. The volume should be large enough in order
for the phase interfaces in the mixed phase to have a negligible effect. This is very
difficult to achieve in practice. In Fig. 4 the transitions have been located with a 483

lattice; using a larger volume would widen the type I region, and move the triple point
to smaller x.

Second, on a periodic toroidal lattice there are also two other transitions besides the
ones shown in Figs. 4, 7: these correspond to transitions where a cylindrical domain
(Fig. 6) becomes a slab spanning the lattice in (x1, x3) or (x2, x3)-directions. These
transitions are not physical, since they are caused by the boundary conditions.

6 Conclusions

We have found that for Higgs mass mH >∼ 80 GeV, even magnetic fields up to HY /T 2 ∼
0.3 (b ∼ 0.6) do not suffice to make the transition be of the first order: there is only a
crossover. This is in contrast to the perturbative estimates in [5, 6]. Moreover, we do
not observe any sign of the exotic phase with broken translational invariance proposed
by Ambjørn and Olesen for these magnetic fields: all the gauge-invariant operators and
correlation lengths we have studied behave qualitatively as without a magnetic field,
even though the solution of the classical equations of motion has a vortex structure
with a W±-condensate. We conclude that fluctuations are strong enough to remove
the non-trivial structure for the parameter values studied.

On the other hand, for the finite volumes studied, we do observe the emergence of a
new phase when the magnetic field is increased above HY /T 2 ∼ 0.3. This phase is not
of the type proposed by Ambjørn and Olesen, though, but it is a mixed phase, with
a Higgs field distribution similar to a type I superconductor. It would be interesting
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to determine whether this phase turns into the Ambjørn-Olesen phase at larger Higgs
masses. We expect that the phases with broken translational invariance (i.e., type I
and AO), appear in a closed region of the parameter space, terminating at some xc.
The fact that the transition terminates also at a non-vanishing magnetic field, is a
non-perturbative phenomenon and does not appear in the tree-level phase diagram in
Fig. 2. A more precise study of these questions is in progress.

The implications of a magnetically stabilized mixed phase structure on different
scenarios of electroweak baryogenesis have, to our knowledge, not been studied before,
but there might be some effects. A precise investigation of these issues is beyond the
scope of the present paper.
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[9] M. Gürtler, E.-M. Ilgenfritz and A. Schiller, Phys. Rev. D 56 (1997) 3888 [hep-
lat/9704013].

[10] J. Ambjørn and P. Olesen, Nucl. Phys. B 315 (1989) 606; Phys. Lett. B 218 (1989)
67; Nucl. Phys. B 330 (1990) 193; Int. J. Mod. Phys. A 5 (1990) 4525.

[11] K. Kajantie, M. Laine, K. Rummukainen and M. Shaposhnikov, Nucl. Phys. B
458 (1996) 90 [hep-ph/9508379]; Phys. Lett. B 423 (1998) 137 [hep-ph/9710538].

[12] M. Laine, Nucl. Phys. B 481 (1996) 43 [hep-ph/9605283]; J.M. Cline and K. Kai-
nulainen, Nucl. Phys. B 482 (1996) 73 [hep-ph/9605235]; Nucl. Phys. B 510 (1997)
88 [hep-ph/9705201]; M. Losada, Phys. Rev. D 56 (1997) 2893 [hep-ph/9605266];
G.R. Farrar and M. Losada, Phys. Lett. B 406 (1997) 60 [hep-ph/9612346].

[13] M. Laine and A. Rajantie, Nucl. Phys. B 513 (1998) 471 [hep-lat/9705003].

19


