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Abstract

We discuss neutrino masses in the framework of a minimal extension of the minimal

supersymmetric standard model (MSSM) consisting of an additional single right-

handed neutrino superfield N with a heavy Majorana mass M , which induces a

single light see-saw mass mν3
leaving two neutrinos massless at tree-level. This trivial

extension to the MSSM may account for the atomospheric neutrino data via νµ → ντ

oscillations by assuming a near maximal mixing angle θ23 ∼ π/4 and taking ∆m2
23 ∼

m2
ν3

∼ 2.5 × 10−3 eV 2. In order to account for the solar neutrino data we appeal to

one-loop radiative corrections involving internal loops of SUSY particles, which we

show can naturally generate an additional light neutrino mass mν2
∼ 10−5 eV again

with near maximal mixing angle θ12 ∼ π/4. The resulting scheme corresponds to

so-called “bi-maximal” neutrino mixing involving “just-so” solar oscillations.
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Atmospheric neutrino data from Super-Kamiokande [1] and SOUDAN [2], when

combined with the recent CHOOZ data [3], are consistent with νµ → ντ oscillations

with near maximal mixing and ∆m2
23 ∼ 2.5 × 10−3 eV 2. 1 A critical appraisal

of current neutrino data can be found in [5, 6]. In practice a common standard

approach to neutrino masses is to introduce three right-handed neutrinos with a

heavy Majorana mass matrix. When the usual Dirac mass matrices of neutrinos

and charged leptons are taken into account, the see-saw mechanism then leads to

the physical light effective Majorana neutrino masses and mixing angles relevant for

experiment. There is a huge literature concerning this and other kinds of approach

to neutrino masses which is impossible to do justice to. In ref.[7] we merely list a

few recent papers, from which which the full recent literature may be reconstructed.

For older work on neutrino masses see for instance [8], where extensive references to

earlier work may be found.

In a recent paper [9] one of us followed a minimalistic approach and introduced

below the GUT scale only a single “right-handed neutrino” 2 N into the standard

model (or supersymmetric standard model) with a heavy Majorana mass 1
2
MN̄N c

where M < MGUT . With only a single right-handed neutrino the low energy neutrino

spectrum consists of a light neutrino ν3 ≈ s23νµ+c23ντ with mass mν3
, plus two mass-

less neutrinos consisting of the orthogonal combination ν0 ≈ c23νµ − s23ντ together

with νe which we have here assumed for simplicity has a zero Yukawa coupling λe to

N . 3 By contrast the Yukawa couplings λµ and λτ of νµ and ντ to N are non-zero

and determine the 23 mixing angle via t23 = λµ/λτ . Maximal mixing corresponds to

λµ = λτ , with λe = 0 and ∆m2
23 = m2

ν3
may be chosen to be in the correct range to

1The data are equally consistent if ντ is replaced by a light sterile neutrino, and indeed many
authors have considered adding an extra light singlet neutrino state [4], although we shall not do so
here.

2 Since CP conjugation converts a right-handed neutrino into a left handed anti-neutrino, it
should strictly be called a gauge singlet.

3We shall use notation such as s23 ≡ sin θ23, c23 ≡ cos θ23, t23 ≡ tan θ23, extensively throughout
this paper.
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account for the atmospheric neutrino data.

In order to account for the solar neutrino [10] data via the MSW effect [11] we

were forced to depart from minimality by introducing a small additional tau neutrino

mass coming from GUT scale physics mντ
∼ m2

t

MGUT
∼ few × 10−3eV [9]. The tau

neutrino mass is clearly of the correct order of magnitude to lift the degeneracy of the

two previously massless neutrinos by just the right amount in order explain the solar

neutrino data via the MSW effect [11] since ∆m2
12 ∼ m2

ντ
∼ 10−5 eV 2. In addition

we needed to allow λe 6= 0 in order to generate a small mixing angle θ12 ≈ θ13 (where

CHOOZ requires the small angle MSW solution for the higher end of the Super-

Kamiokande neutrino mass range.) In order to account for such a tau neutrino mass

perturbation we suggested that in addition to the single right-handed neutrino N

there are three “conventional” right-handed neutrinos with GUT scale masses which,

together with quark-lepton unification à la minimal SO(10), give rise to a hierarchy

of neutrino masses: mντ
: mνµ

: mνe
≈ m2

t : m2
c : m2

u (up to Clebsch relations, RG

running effects, and heavy Majorana textures). In this scenario the tau neutrino

mass dominates and gives the desired perturbation. The original single right-handed

neutrino N is then identified as belonging to an extra multiplet below the GUT scale.

In the present paper we wish to return to minimality by assuming there is only

a single right-handed neutrino N below the GUT scale with no additional right-

handed neutrinos at the GUT scale. More generally we shall assume no additional

operators arising from the GUT or string scale which give rise to neutrino masses. Our

starting point is then the tree-level spectrum described in the second paragraph above

involving one massive plus two massless neutrinos. Our basic observation is that in

general there is no symmetry which protects the masslessness of the two neutrinos,

so they are expected to acquire masses beyond the tree-level. To be definite we shall

show that masses for ν0 and νe can be generated from one-loop SUSY corrections and
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lead to a neutrino mass mν2
∼ 10−5 eV, corresponding to ν2 ≈ s12νe +c12ν0, while the

orthogonal combination ν1 ≈ c12νe−s12ν0 remains approximately massless. The value

of the 12 mixing angle is controlled by a ratio of soft flavour-violating parameters,

t12 = ∆13/∆23 which could be large, and ∆m2
12 ∼ m2

ν2
. In this case we arrive at

approximate “bi-maximal” flavour mixing in both the (νe − ν0) and (νµ − ντ ) sectors

[12]. This may be compared to bi-maximal mixing in the (νe − νµ) and (νµ − ντ )

sectors [13]. Both forms of bi-maximal mixing rely on the “just-so” [14, 15] vacuum

oscillation description of the solar neutrino data. For example a recent best-fit to solar

neutrino data in the vacuum oscillation region requires [6] ∆m2
12 ≃ 6.5 × 10−11 eV 2

and a mixing angle sin2 2θ12 ∼ 0.75 . Following [16], we assume that this is not in

conflict with the spectrum of electron neutrinos detected from SN1987A [17]. The

main point of this paper is to show that bi-maximal mixing can arise in a natural way

from a bare minimum of ingredients: the addition of a single right-handed neutrino

to the MSSM.

The MSSM plus one heavy right-handed neutrino N has a superpotential which

contains, in the addition to the usual terms such as µH1H2 plus the quark and charged

lepton Yukawa couplings, the following new terms involving the new N superfield,

Wnew = λαLαNH2 +
1

2
MNN (1)

where the subscript α = e, µ, τ indicates that we are in the charged lepton mass

eigenstate basis, e.g. Le = (νeL, e−L) where e− is the electron mass eigenstate and νe

is the associated neutrino weak eigenstate, and λe is a Yukawa coupling to the singlet

N in this basis. In this basis the soft terms involving sneutrinos are

Vsoft = m2
L̃αL̃∗

β

L̃αL̃∗
β + m2

ÑÑ∗
ÑÑ∗

+ (λαAαH2L̃αÑ + MBN ÑÑ + h.c.) (2)

The potential involving sneutrinos, including F-terms, D-terms and soft terms is, in

the usual notation where tan β = v2/v1 is the ratio of Higgs vacuum expectation

3



values,

V = (m2
L̃αL̃∗

β

+ λαλβv2
2 +

1

2
m2

Z cos 2βδαβ)ν̃αν̃∗
β + (M2 + m2

ÑÑ∗
)ÑÑ∗

+ [(v2Aαλα − λαµv2 cot β)ν̃αÑ + (λαv2M)ν̃iÑ
∗ + MBN ÑÑ + h.c.] (3)

We neglect m2
ÑÑ∗

with respect to M2 for the remainder of the paper.

The tree-level neutrino spectrum was discussed in ref.[9] and is summarised below.

The usual fermionic see-saw mechanism which is responsible for the light effective

Majorana mass mνανβ
νανβ can be represented by the diagram in Fig.1.

ν
α
L

NR

ν
β
L

x x x
m

α
D M m

β
D

Figure 1: A diagrammatic representation of the see-saw mechanism. M is the singlet
Majorana mass, and we have defined mα

D ≡ λαv2.

The see-saw mechanism represented by Fig.1 leads to the light effective Majorana

matrix in the νeL, νµL, ντL basis:

mνανβ
=







λ2
e λeλµ λeλτ

λeλµ λ2
µ λµλτ

λeλτ λµλτ λ2
τ







v2
2

M
(4)

with phase choices such that the Yukawa couplings are real. The matrix in Eq.4 has

two zero eigenvalues and one non-zero eigenvalue mν3
=
∑

α |λα|2v2
2/M corresponding

to the eigenvector ν3 = λανα/
√

∑

β |λβ|2. This can easily be understood from Eq.1

where it is clear that only the combination ν3 couples to N with a Yukawa coupling

λ3 =
√

λ2
β. In the λe = 0 limit νe is massless and the other two eigenvectors are

simply
(

ν0

ν3

)

=

(

c23 −s23

s23 c23

)(

νµ

ντ

)

(5)

where t23 = λµ/λτ and the ν0 is massless at tree-level. If we allow a small but non-zero

λe then we denote the massless states by primes. In this case the weak eigenstates
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are related to the mass eigenstates by [9]







νe

νµ

ντ







L

= U0







ν ′
e

ν ′
0

ν3







L

(6)

where

U0 =









1
(

c23
s23

)

θ1 θ1

− θ1

s23

c23 s23

0 −s23 c23









(7)

where θ1 ≈ λe/
√

λ2
µ + λ2

τ . The unitary matrix U0 is the tree-level neutrino mixing

matrix (the analogue of the CKM matrix). This follows since the charged weak

currents are given by:

W−
µ (ē, µ̄, τ̄)Lγµ







νe

νµ

ντ







L

+ h.c. (8)

where νeL, νµL, ντL are neutrino weak eigenstates which couple with unit strength to

e, µ, τ , respectively. Note that due to the massless degeneracy of ν0 and νe the choice

of basis is not unique.

The MSSM generalisation of the see-saw mechanism was recently discussed by

Grossman and Haber [18]. The SUSY analogue of the Majorana neutrino mass

mνανβ
ν̄α

cνβ is the “Majorana” sneutrino mass m2
ν̃αν̃β

ν̃αν̃β. Such masses, which per-

haps should more properly be referred to as lepton number violating masses, do not

appear directly in the potential in Eq.3, but can be generated by the scalar analogue

of the see-saw mechanism. One way [18] to understand the origin of a “Majorana”

sneutrino mass is to separate each sneutrino into real and imaginary components

ν̃ = 2−1/2(ν̃R + iν̃I) and Ñ = 2−1/2(ÑR + iÑI) then observe that a lepton number

conserving (“Dirac”) sneutrino mass is the same for real and imaginary parts of the

field:

m2
ν̃ν̃∗ ν̃ν̃∗ =

m2
ν̃ν̃∗

2
(ν̃2

R + ν̃2
I ) (9)

whereas a lepton number violating (“Majorana”) mass contributes with opposite sign
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to the mass of the real and imaginary components:

(m2
ν̃ ν̃ ν̃ν̃ + h.c.) = m2

ν̃ν̃(ν̃
2
R − ν̃2

I ) (10)

Grossman and Haber studied the 4 × 4 matrix for the one-family case and showed

that it separates into two independent 2 × 2 matrices corresponding to the CP even

and CP odd states. To calculate the sneutrino Majorana mass they find eigenvalues

of the 2 × 2 matrices and take mass differences. However one can equally well think

of the Majorana sneutrino masses diagramatically, as the scalar analogue of the dia-

grammatic representation of the usual fermionic see-saw mechanism discussed above,

as follows.

As in the fermionic see-saw mechanism the light effective Majorana sneutrino

masses come from integrating out a heavy state, in this case Ñ which has the lep-

ton number violating interactions. Thus the scalar see-saw diagrams involve an Ñ

propagator. To get a contribution to m2
ν̃αν̃β

ν̃αν̃β that is O(1/M), we need at least one

power of M on top to cancel the 1/M2 from the propagator. There are two possible

diagrams, illustrated in Figs. 2 and 3.

ν̃α

ÑR

ν̃βx x x
mα

−BM
mβ

Figure 2: A scalar see-saw diagram. We have defined mα ≡ λαv2M .

ν̃α

ÑR

ν̃βx x
mαM Vβ

Figure 3: Another scalar see-saw diagram. We have defined Vβ ≡ v2Aβλβ − λβµv2 cot β.
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We estimate the contribution from Fig.2 to be ≃ −Bλαλβv2
2/M , and from Fig.

3 to be ≃ (Aβ − µ cotβ)λαλβv2
2/M . The total contribution to the light effective

Majorana (= lepton number violating) sneutrino mass is then

m2
ν̃αν̃β

≃ (Aβ − µ cotβ − B)mνανβ
(11)

which consists of a product of SUSY masses times the tree-level Majorana neutrino

mass. This result agrees with the result in ref.[18].

Having generated a sneutrino Majorana mass it is straightforward to see that such

a mass will lead to one-loop radiative corrections to neutrino Majorana masses [18]

via the self-energy diagram in Fig. 4.

ν
α
L ν

β
L

x
ν̃α ν̃β

m
2

ν̃α ν̃β

Z̃

Figure 4: One-loop diagram generating a Majorana neutrino mass. The lepton number
violation comes from the effective sneutrino “Majorana” (lepton number violating) mass
m2

ν̃αν̃β
arising from Figs.2,3 which we have condensed into a single “x” here.

The diagram involves an internal loop of neutralinos and sneutrinos, with the

lepton number violating Majorana sneutrino mass at the heart of the diagram. This

diagram applies to an arbitrary basis. In particular it applies to the basis in which

the tree-level Majorana neutrino masses are diagonal, which is the most convenient

basis for calculating loop corrections to neutrino masses. In this basis the Majorana

sneutrino masses are also diagonal (assuming that Aαλα is aligned with λα), as is

clear from Eq.11, and consist of two zero Majorana mass sneutrinos 4 plus a non-zero

4The usual lepton number conserving sneutrino masses are of course non-zero.
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Majorana mass given by Eq.11 in this basis:

m2
ν̃3ν̃3

≈ (A3 − µ cotβ − B)mν3
(12)

where A3 is the trilinear soft parameter associated with the Yukawa coupling eigen-

value λ3 (ignoring flavour violation.) According to Grossman and Haber [18] the

one-loop correction to the tree-level neutrino mass is given by:

δmν3
≈ g2

32π2 cos2 θW

m2
ν̃3ν̃3

m̄

∑

j

f(yj)|ZjZ|2 ≡ ǫmν3
(13)

where the yj = m̄2/m2
χ̃0

j
, χ̃0

j is the j-th neutralino, the function f(yj) ∼ 0.25 − 0.57

and m̄2 is an average sneutrino mass (see Eq.14, 15, and 16.) We have defined a

quantity ǫ whose value is typically ǫ ∼ 10−3, assuming that all soft SUSY breaking

parameters and µ (including those associated with the right-handed neutrino N) are

of a similar order of magnitude. Grossman and Haber actually consider the case that

B ≫ 1 TeV but we shall assume here that B ∼1 TeV. Thus we conclude that the

correction to the tree-level neutrino mass is of order 0.1% and so is utterly negligible.

Since δmν3
∝ mν3

one might be tempted to conclude that the two neutrino states

which are massless at tree-level remain massless at one-loop. However this conclusion

would be incorrect due to the effects of flavour violation which we have so far ignored.

There are two possible origins of flavour violation that can be relevant for neutrino

masses:

(i) Soft lepton number conserving sneutrino masses which are flavour-violating;

(ii) Trilinear parameters Aβ which are misaligned with the Yukawa couplings λβ.

In the present paper we shall focus on case (i) only since we shall see later that the

mechanism responsible for generating small non-zero neutrino masses has two possible

sources: (i) or (i)+(ii). There is no significant source of small neutrino masses coming

from (ii) alone, and so for simplicity we shall ignore the effect of (ii) in making our

estimates.
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We shall need to be able to move from one basis to another and be able to deal with

flavour-violating effects in any given basis. The tool for doing this which we shall use

is the “mass-insertion approximation”. According to the mass insertion approach in

changing basis we must rotate the superfield as a whole, so that the gauge couplings do

not violate flavour. This means that in the fermion mass eigenstate basis the sfermions

have off-diagonal masses, and flavour-violation is dealt with by sfermion propagator

mass insertions. To begin with we shall develop the mass-insertion approximation in

the charged lepton mass eigenstate basis, then change basis to the tree-level neutrino

mass eigenstate basis where we shall actually perform our estimates.

In the charged lepton mass eigenstate basis for simplicity we assume that the

lepton number conserving sneutrino masses are approximately proportional to the

unit matrix:

M2
L̃αL̃∗

β

= m2
L̃αL̃∗

β

+ λαλβv
2
2 +

1

2
m2

Z cos 2βδαβ = m̄2(δαβ + ∆αβ) (14)

where the ∆αβ are small. Note that ∆ is dimensionless. The inverse propagator in

this basis is given by

p2 − m̄2(δαβ + ∆αβ) = (p2 − m̄2)

(

δαβ − m̄2∆αβ

p2 − m̄2

)

(15)

so to linear order in ∆, the propagator becomes

δαβ

p2 − m̄2
+

1

p2 − m̄2
m̄2∆αβ

1

p2 − m̄2
(16)

where m̄ is some average sneutrino (lepton number conserving) mass.

Now we need to relate the lepton number conserving sneutrino mass matrix in the

charged lepton mass eigenstate basis to that in the tree-level neutrino mass eigenstate

basis. Since in the mass insertion approach we rotate each component of the super-

fields equally, the rotation on the sneutrinos is the same as that for the neutrinos and

is given by the unitary matrix U0 in Eq.7. Thus the relation between the sneutrinos

9



in the two bases is the scalar version of Eq.6







ν̃e

ν̃µ

ν̃τ





 = U0







ν̃ ′
e

ν̃ ′
0

ν̃3





 (17)

(Of course the rotation acts on complete SU(2)L doublets even though we only exhibit

it for the neutrinos and sneutrinos.) The relation between the soft masses in the two

bases is then given by:

(ν̃∗
e , ν̃

∗
µ, ν̃

∗
τ )M

2
L̃αL̃∗

β







ν̃e

ν̃µ

ν̃τ





 = (ν̃ ′
∗

e, ν̃
′
∗

0, ν̃
∗
3)M

′2
L̃iL̃∗

j







ν̃ ′
e

ν̃ ′
0

ν̃3





 (18)

where the soft masses are related by

M ′2
L̃iL̃∗

j
= U †

0M
2
L̃αL̃∗

β

U0 (19)

Thus the soft masses in the tree-level neutrino mass eigenstate basis can be written

as

M ′2
L̃iL̃∗

j
= m̄2(δij − ∆′

ij) (20)

where the ∆’s are related by

∆′
ij = U †

0∆αβU0 (21)

We now proceed to discuss the loop contributions to the neutrino masses which

are zero at tree-level, again working in the basis νi = (ν ′
e, ν

′
0, ν3) in which the tree-level

neutrino masses are diagonal. As discussed such corrections rely on flavour-violating

effects, and non-zero masses develop at one loop via the neutralino exchange diagram

with flavour-violating mass insertions along the sneutrino propagator. In the basis

in which we are working the only non-zero Majorana sneutrino mass is mν̃3ν̃3
, and

so the diagram must always have this single Majorana mass insertion at its centre.

The flavour-violating mass insertions therefore must connect the neutrino of interest

to ν̃3, and so the mass insertions which are relevant are of the form ∆′
i3. See Fig.5.
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ν
i
L ν

j
L

x

•∆′

i3 • ∆′

3j

ν̃i ν̃j

m
2

ν̃3ν̃3

ν̃3

Z̃

Figure 5: One-loop diagram generating a Majorana neutrino mass that is not aligned
with the tree level mass. The lepton number violation comes from the effective sneutrino
“Majorana” (lepton number violating) mass m2

ν̃3ν̃3
, and the misalignment from off diagonal

slepton masses ∆′
k3, treated here in the mass insertion approximation. This diagram is in

the tree level neutrino mass eigenstate basis.

The one-loop corrected neutrino mass matrix, to lowest non-zero order in the ∆′
i3s,

is given by:

m(1)
νiνj

=







∆′2
13 ∆′

13∆
′
23 ∆′

13

∆′
32∆

′
31 ∆′2

23 ∆′
23

∆′
31 ∆′

32 1





 ǫmν3
+







0 0 0
0 0 0
0 0 mν3





 (22)

The upper 2× 2 block of the matrix clearly requires two mass insertions and so may

be thought to be negligible compared to the other elements of the matrix. However

on the contrary this block actually gives the dominant contribution to the neutrinos

which are massless at tree-level. The reason is that the contributions to these masses

from the third row and column of the matrix are suppressed by a sort of see-saw

mechanism. Thus if one only includes ∆ to linear order, then the neutrinos which

are massless at tree-level will get see-saw masses ∼ ∆2ǫ2mν3
, which are to small to be

interesting (suppressed by two powers of ǫ). Therefore to excellent approximation we

may just consider the upper 2× 2 block of the matrix involving two mass insertions.

In the basis νi = (ν ′
e, ν

′
0) this is of the form

m(1)
νiνj

=

(

∆′2
13 ∆′

13∆
′
23

∆′
32∆

′
31 ∆′2

23

)

ǫmν3
(23)

which has one zero eigenvalue mν1
= 0 and one non-zero eigenvalue

mν2
= (∆′2

13 + ∆′2
23)ǫmν3

(24)
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The corresponding eigenvectors are related to the tree-level massless eigenstates ν ′
e, ν

′
0

by
(

ν1

ν2

)

=

(

c12 −s12

s12 c12

)(

ν ′
e

ν ′
0

)

(25)

where the mixing angle is given by

t12 = ∆′
13/∆′

23 (26)

Thus the SUSY radiative corrections induce a further two-state remixing of ν ′
e, ν

′
0.

The final one-loop corrected neutrino mixing matrix is obtained from Eqns. 6,7,25,






νe

νµ

ντ







L

= U ′







ν1

ν2

ν3







L

(27)

where

U ′ =







c12 − s12

t23
θ1 s12 + c12

t23
θ1 θ1

−s12c23 − c12
s23

θ1 c12c23 − s12

s23

θ1 s23

s12s23 −c12s23 c23





 (28)

In order to obtain “just so” vacuum oscillations we must be able to achieve two

things:

(i) We need the mass mν2
to be of order 10−5 eV. For ǫ ≃ 10−3 and mν3

≃ 5×10−2

eV, we need ∆′2
13 + ∆′2

23 ≃ .2.

(ii) We need a large mixing angle θ12 ∼ π/4 which corresponds to t12 = ∆′
13/∆′

23 ∼

1.

Using Eq.21 we can relate ∆′
ij to the ∆αβ quantities in the charged lepton mass

eigenstate basis where the phenomenological bounds from lepton flavour violating

processes appear. For example there is an extremely strong model independent limit

from µ → eγ on ∆eµ < 7.7× 10−3 [19] (for 100 GeV sleptons). Since the limit on this

quantity is so much stronger than on the other entries, we may assume it is zero. If

we also set θ1 = 0 then we find

∆′
13 = ∆′

31 = c23∆eτ

∆′
23 = ∆′

32 = s23c23∆µµ + (2c2
23 − 1)∆µτ − s23c23∆ττ (29)
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Assuming maximal mixing in the 23 sector, the condition for maximal mixing in the

12 sector is then

∆τe ≃
1√
2
(∆µµ − ∆ττ) (30)

Assuming maximal mixing in the 12 and 23 sectors (c12 = s12 = c23 = s23 = 1/
√

2),

we find ∆′2
13 + ∆′2

23 = ∆2
τe. To get mν2

∼ mν3
ǫ∆2 ∼ 10−5 eV, we need ∆eτ ∼ .4. The

experimental bound on ∆eτ is 29, so there is phenomenologically nothing wrong with

such a large ∆. It is also (just) small enough for the mass insertion approximation

to be applicable, and since here we only interested in the order of magnitude of the

effects our approximations are adequate. In any case the ∆s may be reduced slightly

if ǫ is somewhat larger than we have estimated.

The mechanism described here is in fact basis independent. A compact notation

which illustrates this is briefly developed in the Appendix.

Finally we briefly discuss the contribution of the second source of flavour vi-

olation, coming from the trilinear parameters, to the masses of ν ′
e, ν

′
0. The basic

effect comes from the fact that in the charged lepton mass eigenstate basis the tri-

linear parameters associated with the Yukawa couplings λe, λµ, λτ may be unequal

Ae 6= Aµ 6= Aτ . This would imply that in the basis in which the Yukawa couplings

are diagonal apart from the trilinear mass A3 associated with the coupling v2A3λ3ν̃3Ñ

there will be further (small) trilinear parameters a1, a2 associated with the couplings

v2a1ν̃
′
eÑ , v2a2ν̃

′
0Ñ . These couplings generate small off-diagonal sneutrino Majorana

masses via the mechanism in Fig.3. However the Yukawa couplings λ1, λ2 are zero

in this basis so sneutrino masses are only generated in the third row and column of

the sneutrino Majorana matrix. If the same were true for the corresponding neutrino

masses it would lead to negligible contributions to the masses of ν ′
e, ν

′
0 due to the

see-saw type suppression discussed above. However if we focus on the relevant upper

2× 2 block of the neutrino Majorana mass matrix we can see that there is a one-loop
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diagram similar to Fig.5 but now involving both an off-diagonal sneutrino Majorana

mass m2
ν̃ıν̃3

and a mass insertion ∆′
3j . This will lead to additional contributions to the

2 × 2 neutrino matrix which for simplicity we have not included in our estimates.

To summarise, we have shown that both the atmospheric and solar neutrino data

may be accounted for by a remarkably simple model: the MSSM with the addition

of a single right-handed neutrino N . In the λe = 0 limit when θ1 = 0 the physics

of atmospheric and solar neutrinos can be described very simply. From the point of

view of atmospheric oscillations the mass splitting between the two lightest neutrinos

is too small to be important and the physics is described by the two state mixing of

Eq.5, maintaining the νµ ↔ ντ tree-level prediction. From the point of view of solar

oscillations since λe = 0 the electron neutrino contains no component of ν3 and so

the physics is described by two state mixing in Eq.25 (dropping the primes) induced

by the radiative corrections. The neutrino mixing matrix in Eq.28 becomes:

U =







c12 s12 0
−s12c23 c12c23 s23

s12s23 −c12s23 c23





 (31)

When θ12 = θ23 = π/4 it corresponds to bi-maximal mixing in the (νe − ν0) and

(νµ − ντ ) sectors [12]. More generally at tree-level the spectrum is controlled by the

4 parameters λe, λµ, λτ , M where we choose λe ≪ λµ ≈ λτ to obtain θ23 ≈ π/4, and

the eigenvalue mν3
= λ2

αv2
2/M ∼ 5×10−2 eV to obtain ∆m2

23 = m2
ν3

∼ 2.5×10−3 eV 2

as suggested by the recent atmospheric data. The effect of radiative corrections is

model dependent since it depends on the SUSY masses, and crucially on the soft

flavour-violating parameters. To illustrate the mechanism we have made some simple

estimates based on flavour violation due to the soft scalar masses only. We have seen

that it is quite reasonable to obtain ∆m2
12 ∼ 10−10 eV 2 and a large mixing angle θ12

from such effects. Thus the origin of the tiny neutrino mass mν2
∼ 10−5 eV required

for “just so” neutrino oscillations may simply be due to the SUSY corrections arising

from the atmospheric neutrino mass in the single right-handed neutrino model.
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Appendix

In equation (22), we wrote the neutrino mass matrix as an expansion in ǫ (the

loop parameter) and the ∆s. To linear order in ∆ and ǫ, the mass matrix is a seesaw,

with ν3 playing the role of the heavy neutrino. The massless-at-tree-level neutrinos ν0

and νe acquire seesaw masses of order ∆2ǫ2mν3
, which we neglect because ǫ ∼ 10−3.

This means that we only need to consider the O(∆2ǫ) submatrix involving νe and ν0.

This is of the form

[mloop
ν ]ij =

ǫ

M
(∆ikmDkmDl∆lj) (32)

in an arbitrary basis. Note that (ν3)i ∝ mDi; ie the direction of the massive-at-tree-

level neutrino is in the direction of the Dirac mass, so I can write

mDkmDl = |mD|2[ν3ν
T
3 ]kl (33)

The 2 × 2 matrix we are interested in is therefore

ǫmν3

[

(νe · ∆ · ν3)
2 (νe · ∆ · ν3)(ν3 · ∆ · ν0)

(νe · ∆ · ν3)(ν3 · ∆ · ν0) (ν0 · ∆ · ν3)
2

]

(34)

in (νe, ν0) basis. But we know ν3, νe and ν0 in the charged lepton mass eigenstate

basis, from equation (5), so we can evaluate the matrix elements in the charged lepton

mass eigenstate basis where we know the experimental bounds on the ∆s. This gives

us the previously discussed results.
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