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Energy lost by a particle beam in a lossy coaxial liner with many holes
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Abstract

In the framework of Bethe's modi�ed theory we study the energy lost by a relativistic particle

beam travelling in a coaxial liner with many holes, including the e�ect of attenuation in the

coaxial region. The interference among the holes is the main source of losses and is a�ected by

the attenuation in the coaxial only on su�ciently long distances. We derive analytical formulae

for all the interesting quantities and a particular attention is given in clarifying the physical

meaning; numerical examples are considered using the LHC nominal parameters.

Administrative Secretariat

LHC Division

CERN

CH-1211 Geneva 23

Switzerland

Geneva, 3 July 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25242955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Several papers have been devoted to the interaction between a particle beam and

the pumping holes, usually described in terms of coupling impedance and loss factor. In

particular we are interested in the structure sketched in Fig. 1: the holes couple the vacuum

chamber (a circular wave-guide) to the external ante-chamber (a coaxial wave-guide).

The problem has been solved by means of the modi�ed Bethe's di�raction theory for

a single hole in [1] and for N holes in [2], if they are small with respect to the wavelength

�. Recently this theory has been further modi�ed to estimate analytically the e�ects of a

long narrow slot [3]. Some measurements were also performed on a LHC vacuum chamber

prototype [4] (i.e. coaxial chamber with many holes) to estimate the power lost by the

beam because of these holes and the results were explained with a simpli�ed model. The

original Bethe's di�raction theory [5] has been used to study the e�ect of a single hole [6]

in the beam pipe as well as many holes [7], for a pipe wall of in�nite thickness so that

there is no coupling with any external structure. Other techniques often used are the �eld

matching method [8] and a variational approach [9].

In this paper we review previous results in the case of many holes, but including

also the e�ect of �eld attenuation in the coaxial region. This case has not yet been studied

in the framework of the modi�ed Bethe theory and it is interesting in the project of future

machines such as LHC. A possible attenuation source is the ohmic loss in the walls of the
coaxial, but some other could be foreseen as well (as for instance proper attenuators). We

will focus mainly on the �rst case, but our theory can be easily extended to other ones.
The modi�ed Bethe's theory states that each hole is equivalent to magnetic and

electric dipoles whose moments are proportional through appropriate hole polarizabilities

to the �elds propagating both in the beam pipe and in the coaxial region.
We consider a single relativistic charge travelling along the z-axis and start by

studying the problem in a frequency range below all possible cut-o�s, i.e. including only
the TEM �eld propagating in the coaxial. Its amplitude depends on the dipole moments
(that are the source of that �eld); we can derive a linear inhomogeneous system whose

unknowns are the dipole moments and whose forcing term is the �eld of the charge. Once
the system has been solved, we can express the �eld in each point of the structure in terms

of the dipole moments; in particular we can compute the z-component of the electric �eld
on the axis and then the longitudinal coupling impedance [10]. The loss factor follows
easily: for example with a Gaussian bunch we can apply Eq. (39) in the case of N holes

obtaining Eq. (40). The results are in good agreement with MAFIA simulations [1, 2].
A further extension in frequency is possible including more modes, both in the

circular and in the coaxial waveguide, although this is not necessary for long bunches (as

in hadron machines), since the frequencies excited are usually below all possible cut-o�s.

This paper is organised as follows: we �rst study the ideal structure of a pipe with

thin wall (b1 = b2 = b), then we briey discuss the e�ect of wall thickness, how it can be

taken into account and we make some comparisons with existing estimates.

In Sec. 2 a formula for the coupling impedance valid for any spacing between the

holes and for any attenuation source in the coaxial is derived. Since it has been demon-

strated [2] that the loss factor is not considerably inuenced by the randomisation of the
position of the holes, we focus on equally spaced holes (one hole per cross section): the

goal is to give and discuss simpli�ed formulae useful for the following calculations. Sec. 3

applies those results to the loss factor: we arrive at an analytical formula both when there

are no losses in the coaxial and when we treat the ohmic ones. Still in the ideal case of

thin wall, we discuss in Sec. 4 the power lost per unit length in the coaxial region. We also
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recall how to account for many holes on a cross section. Sec. 5 speci�es how to modify

the previous results for holes in a thick wall. A comparison with [4] is done in Sec. 6, con-

�rming our results. Throughout the paper, all the examples are done using LHC nominal

parameters; in Sec. 7 we summarise the results most relevant for the project.

Figure 1: Relevant geometries

Caption Symbol Numerical Value

wave number k0 = !=c

attenuation constant1) �(!) = a
p
!

device length Ld 14 m � 27 km

number of holes N 870 � 1.7 106

number of holes per cross section Nb 1�8
bunch charge Q 16 nC

bunch length � 7.5 cm

bunch cut-o� fc 640 MHz

bunch spacing Sb 7.5 m

coaxial walls resistivity (stainless steel) � 7:1� 10�7 
m

inner pipe radius b1 1.9 cm

outer pipe radius b2 = b1 + T 2 cm

cold bore radius d 2.45 cm

wall thickness T 1 mm

hole spacing D 1.6 cm

hole width W 1.5 mm

hole length L 8 mm

radius of circular holes R =W=2 0.75 mm

Table 1: List of symbols used throughout the paper. Plots and examples refer to the LHC
numerical values reported in the third column, unless otherwise speci�ed.

1.1 Outline of the general theory

The general theory adopted in these calculations is described in [1, 2]; for con-

venience, we summarise its main features at frequencies below the beam pipe cut-o�
considering only scattered TEM-type �elds, in the case of N holes.

1) This behaviour of � with the frequency is only valid for non-anomalous ohmic losses; we report it in

this table only for reader's convenience.
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We will use cylindrical coordinates, with z being the longitudinal coordinate, r and

' the radial and the azimuthal ones. The subscript \0" on a �eld means that it is a source

�eld (charge �eld), while the �elds with subscript \s" are the scattered ones propagating

in coaxial region.

Bethe's di�raction theory [12] states that each hole is equivalent to an electric and

a magnetic dipole whose moments are given by

M'(zi) = �m [H0'(zi)�Hs'(zi)] ;

i = 1; : : : ; N

Pr(zi) = "�e [E0r(zi)� Esr(zi)] ;
(1)

where �m and �e are the polarizabilities of the hole and Hs', Esr is the scattered �eld

calculated at the centre of the hole with longitudinal coordinate zi. The primary �eld,

generated by an ultra-relativistic point charge q, travelling along the axis of a perfectly

conducting beam pipe of radius b, is (k0 = !=c)

H0'(zi) =
q

2�b
e�jk0zi ; E0r(zi) = Z0

q

2�b
e�jk0zi (2)

In [2], the TEM-type scattered �elds are supposed to have the same phase velocity
as the charge. We remove this hypothesis allowing for a complex propagation constant of

the form
kc = k0 � j�; (3)

where � is the attenuation constant. Both k0 and � are given functions of the frequency
! with dimensions of [m�1]. If the attenuation constant is a real quantity, the �eld will be
exponentially damped along the propagation direction (z-axis); the source of this atten-

uation �xes the !-dependence of �. On the other hand, a purely imaginary � takes into
account a slowing down of the TEM �elds in the external coaxial region; that could be,
for example, the e�ect of a long series of uniformly spaced holes acting as the periodic

perturbation of boundary conditions in any slow-wave device.
In general the scattered �elds can be expressed as a superposition of modes. The

coe�cients of the modal expansion are determined through the Lorentz reciprocity princi-
ple [12]; they are linear functions of the equivalent dipole moments of the apertures which
can be obtained solving a 2N � 2N linear system.

Once the equivalent dipole moments have been determined, we can calculate the
longitudinal coupling impedance, using the result [2]

Z(!) = j
!Z0

2�qb

NX
i=1

"
M'(zi)

c
+ Pr(zi)

#
ejk0zi (4)

The longitudinal coupling impedance is the Green function of the problem; the loss
factor depends on its real part, since [10]

k(�) =
1

�

Z 1
0

ZRE (!) e
�(! �

c
)
2

d!;

for a Gaussian bunch of length �.

The previous quantities are important for the LHC beam dynamics. On the other

hand, since the bunch will excite the TEM mode in the coaxial region, this will dissipate

some power on the walls of the coaxial (stainless steel) causing heating of the cold bore.

3



This is an essential parameter in the project of the machine; to estimate it, we introduce

the dissipated power per unit length P , expressed in terms of the loss factor as

P =
cQ2 k (�)

Sb Ld

;

where Q is the bunch charge, Sb the bunch separation, Ld the device length and k (�) is

the loss factor due to the N holes in the device.

2 Longitudinal coupling impedance

Each hole in the beam pipe is a source of electromagnetic �eld propagating in

the coaxial region and can be characterised by equivalent dipole moments (electric and

magnetic); Eq. (4) gives the longitudinal coupling impedance in terms of these moments.

Here we derive analytical results for the coupling impedance when an attenuation source

is present in the coaxial region; the numerical examples we give, are all done using LHC

nominal parameters and the attenuation source is the ohmic loss on the walls of the coaxial

region (see Fig. 1).

Having derived the coupling impedance for general spacing between the holes (Sec. 2.1),

we then specify our treatment to uniformly spaced holes (Sec. 2.2). In the latter case, we

give and comment a general formula focusing on the physical meaning of each term and
showing the importance of the interference e�ects due to the TEM mode propagating
in the coaxial structure; an approximate formula (valid in the nominal case of LHC) is

also derived and discussed. In Sec. 2.3 we make remarks on the e�ect of the TEM �eld
propagating in the same direction of the bunch, comparing with the complete case (i.e.

including also the �eld propagating in the opposite direction).

2.1 General derivation

2.1.1 From dipole moments ...

The dipole moments obey a linear system whose forcing term depends on the �eld

of the bunch over each hole. After having derived formally this system, we obtain a �rst
order solution: we �rst give an analytical expression for M' and Pr, then we check their

agreement with the already studied case of no attenuation in the coaxial; eventually we
try to clarify the physical meaning of each term of the dipole moments formula.

To �nd the expression for the dipole moments on each hole, we replace in their

de�nition (Eqs. (1)) the scattered �eld. A TEM �eld radiated by a hole centred in z = zi
can be written as

Esr (z; zi) = c0ie0re
�jkc(z�zi)� (z � zi) + d0ie0re

jkc(z�zi)� (�z + zi)

Hs' (z; zi) = c0ih0'e
�jkc(z�zi)� (z � zi)� d0ih0'e

jkc(z�zi)� (�z + zi) ; (5)

where kc is the propagation constant, �(z) the Heaviside function

�(z) =

(
1 for z > 0

0 for z < 0

and e0r; h0' are the normalised modal functions for the TEM mode

e0r =

s
Z0

2�

1q
ln (d=b)

1

r
; h0' =

1

Z0

e0r: (6)
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The coe�cients c0i and d0i depend on the source �eld and they are

c0i =
j!

2
[�h0'M'(zi) + e0rPr(zi)]

d0i = �
j!

2
[�h0'M'(zi)� e0rPr(zi)] ; (7)

according to Lorentz reciprocity principle (see for instance [2]). The scattered �eld Esr; Hs'

in a generic hole, centred in zi, appearing in Eq. (1) is the sum of the �eld scattered by

each hole, thus

Esr (zi) = e0r

24 i�1X
k=1

c0ke
�jkc(zi�zk) +

c0i + d0i

2
+

NX
k=i+1

d0ke
jkc(zi�zk)

35 ;
Hs' (zi) = h0'

24 i�1X
k=1

c0ke
�jkc(zi�zk) +

c0i + d0i

2
�

NX
k=i+1

d0ke
jkc(zi�zk)

35 ; (8)

it depends, through c0i and d0i, on the dipole moments themselves. Replacing Eq. (7) in

Eq. (8) one obtains

M'(zi) = �m

"
H0'(zi)� j

!

2
�h20'

NX
h=1

M'(zh)e
�jkcjzh�zij+

+j
!

2
h0'e0r

NX
h=1

Pr(zh)sgn(h� i)e�jkcjzh�zij
#

Pr (zi) = "�e

"
E0r(zi)� j

!

2
e20r

NX
h=1

Pr(zh)e
�jkcjzh�zij+

+j
!

2
�h0'e0r

NX
h=1

M'(zh)sgn(h� i)e�jkcjzh�zij
#
: (9)

Eqs. (9) are an inhomogeneous 2N � 2N linear system whose unknowns are the
dipole moments M' and Pr. Using the �rst order iterative solution discussed in [2], i.e.
substituting in the right-hand side of Eqs. (9) the approximate values (that is the zero

order solution)
M (0)

' (z) = �mH0'(z) and P (0)
r (z) = "�eE0r(z); (10)

we get (see Appendix A)

M'(zi) ' �mH0'(zi)

(
1� j

k0

4�b2 ln (d=b)

h
�m + (�e + �m)Fi e

��zi + (�m � �e)Bi

i)
;

Pr(zi) ' "�eEr(zi)

(
1� j

k0

4�b2 ln (d=b)

h
�e + (�e + �m)Fi e

��zi � (�m � �e)Bi

i)
;(11)

where

Fk =
k�1X
w=1

e�zw and Bk =
N�kX
w=1

e�(j2k0+�)(zw+k�zk):

We remind that each hole is identi�ed by the position of its centre (zk) with respect to

the �rst hole (z1 = 0). In spite of their apparent complexity, Eqs. (11) allow us to treat
directly any kind of spacing between the holes.
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In the limit of low attenuation (�(!) zk ! 0 8! and k = 1; : : : ; N), we �nd that

Fk ! k � 1 and Bk =
N�kX
w=1

e�j2k0(zw+k�zk); (12)

leading to the results already given in [2].

Before going on, we may clarify the physics behind Eqs. (11). Rewriting only the

equation for M' (zh) with no attenuation, yields

M'(zh) ' �mH0'(zh)

(
1� j

k0

4�b2 ln (d=b)

"
�m + (�e + �m) (h� 1)+

+ (�m � �e)
N�hX
w=1

e�j2k0(zw+h�zh)
#)

: (13)

In the square brackets we recognise three terms, with the following meaning:

term / �m: it is the e�ect of the hole on itself and it is present even with a single hole

(h = N = 1).

term / (�m + �e): it is the e�ect of the preceding holes; the h-th hole has h�1 preceding
holes which are interacting with it by means of a forward propagating TEM wave.
Since the charge �eld and the TEM wave are synchronous, there is no phase factor
in this term.

term / (�m � �e): this is the e�ect of the following holes interacting with the h-th hole
through the backward propagating TEM wave. Since charge �eld and the TEM

wave have the same phase velocity but they are going in opposite direction, the
phase factor turns out to be twice the phase shift due to propagation from the hole
in zw+h to the one in zh.

The distinction between \following" and \preceding" holes doesn't contradict the causality
principle since we are reasoning in the �ctitious Fourier space, that is considering sine
waves going from time t = +1 to t = �1 at frequency !. Moreover we notice that

the forward and the backward propagating waves have di�erent weights depending on
the values of the polarizabilities (�m; �e have opposite signs). For circular holes j�mj and
j�ej are di�erent by a factor 2, while for long slots they can be very similar (slot length
much larger than its width). Thus we expect that for rounded-end slots the contribution
of backward propagating waves is more relevant than for circular holes. We will use this

fact later. The same reasoning can be performed for Pr(zi); attenuation doesn't change
substantially those arguments.

2.1.2 ... to impedance.

We now use the previous results for the dipole moments to �nd the coupling

impedance as a function of the position of each hole. Eventually we briey discuss the
limit of very low and very high attenuation.

Using the expressions (11) in Eqs. (4), we obtain the following relations for the

imaginary part ZIM and the real part ZRE of the longitudinal coupling impedance the
following relations

ZIM(!) = Z0

!

4�2b2c

(
N (�m + �e)+

� !

4�b2 ln (d=b)c
(�m � �e)

2
N�1X
h=1

N�hX
w=1

e��(zw+h�zh) sin
�
2
!

c
(zw+h � zh)

�)
(14)
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and

ZRE(!) = Z0

!2

16�3b4 ln (d=b)c2

(
N
�
�2
m + �2

e

�
+ (�m + �e)

2
NX
h=1

Fhe
��z

h +

+ (�m � �e)
2
N�1X
h=1

N�hX
w=1

e��(zw+h�zh) cos
�
2
!

c
(zw+h � zh)

�)
: (15)

It is worth noting that ZIM has a dominant term independent of the position of the holes

and equal to N times the impedance of a single hole. The attenuation doesn't play an

important role in this case. Its e�ect is more remarkable on the real part ZRE since the

latter strongly depends on the spacing among the holes, as already shown in [2].

In the limit of low attenuation (�(!) zk ! 0 8! and k = 1; : : : ; N),

NX
h=1

Fhe
��z

h ! N

2
(N � 1) and

NX
h=1

Bh !
N�1X
h=1

N�hX
w=1

e�j2k0(zw+h�zh); (16)

those lead to the known expression for the coupling impedance when there are no losses

in the coaxial region [2].

On the contrary, if the losses are such that the �eld scattered by one hole doesn't
reach the others (namely �(!)!1) there is no e�ective interference between them and

we expect also the real part of the impedance to be N times the impedance of a single
hole; in this limit, indeed,

ZRE(!)! Z0

!2

16�3b4 ln (d=b)c2
N
�
�2
m + �2

e

�
: (17)

Thus, increasing the attenuation in the coaxial reduces the coupling impedance until this
last term becomes dominating.

2.2 Uniformly spaced holes

We now deal with uniformly spaced holes; after having derived the complete expres-
sion for the longitudinal coupling impedance, we will discuss some simpli�cations in order
to arrive to a more clear and easy-to-treat formula and then we conclude by introducing

approximations useful in the following analytical studies of loss factor and power loss per
unit length.

Denoting by D the (uniform) distance between two consecutive holes,

zh = (h� 1)D and zw+h � zh = wD;

we can rewrite Eq. (15) as

ZRE(!) = Z0

!2

16�3b4 ln (d=b)c2

h
N
�
�2
m + �2

e

�
+

+(�m + �e)
2
F (D;N; �) + (�m � �e)

2
B (D;N; �; !)

i
(18)

where

F (D;N; �) =
NX
h=1

h�1X
k=1

e�(zk�zh) =
NX
h=1

h�1X
k=1

e�(k�h)D (19)
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and

B (D;N; �; !) =
N�1X
h=1

(N � h)e��hD cos

�
2h
!

c
D

�
: (20)

It is again straightforward to give to those terms their physical meaning: the �rst one

(/ N (�2
m + �2

e)) is the contribution of non interacting holes, while the term weighted by

F (D;N; �) (B (D;N; �; !)) is due to the forward (backward) propagating TEM wave.

In the limit of low attenuation (�DN ! 0),

F (D;N; �)! N

2
(N � 1) and B (D;N; �; !)! 1

2

"
sin (N!D=c)

sin (!D=c)

#2
� N

2
;

the latter is obtained from the limit of Eq. (20) using the following Eq. (25). Thus inserting

those in Eq. (18), we �nd for the coupling impedance

ZRE(!) = Z0

!2

32�3b4 ln (d=b)c2

8<:N2 (�m + �e)
2
+ (�m � �e)

2

"
sin (N!D=c)

sin (!D=c)

#29=; ; (21)

as already reported in [2].
We now give explicit expressions for Eqs. (19-20) (Sec. 2.2.1 - 2.2.2) and then look

for an approximate coupling impedance (Sec. 2.2.3).

2.2.1 Simpli�cation of the term accounting for forward waves

Performing the sums that de�ne F (D;N; �), we get

F (D;N; �) =

�
e��DN � 1

�
e�D +N

�
e�D � 1

�
(e�D � 1)

2
: (22)

As we would expect, when �D!1, F (D;N; �)! 0, while in the limit of low attenuation
we �nd, coherently with Eq. (16),

F (D;N; �)! N

2
(N � 1) for �DN ! 0: (23)

If the spacing of the pumping holes is small compared to the inverse of the attenu-
ation constant (namely �D� 1), Eq. (22) yields

F (D;N; �) ' N

�D
+
e��DN � 1

(�D)2
; (24)

this is the case, for instance, of the LHC in which that relation holds for all the frequencies

in the bunch spectrum. Anyway we should notice that Eq. (23) is not exactly ful�lled since

N

�D
+
e��DN � 1

(�D)2
! N

2
for �D! 0;

nevertheless since we are usually dealing with a large number of holes (N � 1), the error
introduced using Eq. (24) is negligible.
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2.2.2 Simpli�cation of the term accounting for backward waves

B (D;N; �; k0) =
N�1X
h=1

(N � h)e��Dh cos (2hk0D); with k0 =
!

c
:

The direct numeric evaluation of this term is very time consuming, at least for the numbers

N of interest (for the 14 m long LHC dipole, N is around 900). We now present two

di�erent methods to set a more easy-to-treat expression giving complementary results.

Before going through the �rst derivation, we recall the following relations:

N�1X
h=1

(N � h) cos (2hx) =
1

2

"
sin2 (Nx)

sin2 x
�N

#
; (25)

N�1X
h=1

(N � h) sin (2hx) =
N sin (2x)� sin (2Nx)

4 sin2 x
: (26)

Expanding the exponential as a sum of complex sine and cosine leads to

B =
N�1X
h=1

(N � h) [cos (j�Dh) + j sin (j�Dh)] cos (2hk0D); (27)

or equivalently to

B =
1

2

N�1X
h=1

(N � h) cos
�
2h+D

�
+
1

2

N�1X
h=1

(N � h) cos
�
2h�D

�
+

+
j

2

N�1X
h=1

(N � h) sin
�
2h+D

�
� j

2

N�1X
h=1

(N � h) sin
�
2h�D

�
; (28)

where � = k0 � j�=2. Thus, inserting Eqs. (25{26), we get

B =
1

4

"
sin2 (N+D)

sin2 (+D)
�N

#
+
1

4

"
sin2 (N�D)

sin2 (�D)
�N

#
+

+
j

2

N sin (2+D)� sin (2N+D)

4 sin2 (+D)
� j

2

N sin (2�D)� sin (2N�D)

4 sin2 (�D)
: (29)

To better understand each term of this last equation, we can rewrite it as

B = �N
2
+ j

N

4

h
cot

�
+D

�
� cot

�
�D

�i
+

+
1

8

"
2 sin2 (N+D)� j sin (2N+D)

sin2 (+D)
+
2 sin2 (N�D) + j sin (2N�D)

sin2 (�D)

#
: (30)

Fig. 2 is a plot of B as a function of frequency, using the LHC nominal parameters

(see [17]); the attenuation constant � is chosen to depend on the square root of the

frequency (case of non anomalous ohmic losses in the coaxial region). The constant term

�N=2 in Eq. (30) gives the minimum value of the plateau; the second term is (roughly

speaking) responsible for the main peaks. They occur at frequencies such that

k0D = n� that is fn = n
c

2D
; (31)
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B
(D
;
N
;
�
;
f
)

5·109 1·1010 1.5·1010 2·1010

-245

-240

-235

-230

frequency (Hz)

B
(D
;
N
;
�
;
f
)

6·108 7·108 8·108 9·108 1·109

-242.5

-240

-237.5

-235

-232.5

-230

frequency (Hz)

a) b)

Figure 2: The coe�cient B(D;N; �; f) as a function of frequency (Hz) for N = 500 holes.

The attenuation constant � depends on the square root of the frequency (see Eq. (45));

all the parameters are chosen as in the case of LHC (see Table 1). (b) is a zoom of the

\plateau" between the peaks and shows the presence of a ripple. Since � is increasing

with frequency (� / p!), the attenuation is more e�cient at higher frequencies and thus

the ripple becomes smaller. For lower N , the amplitude of the ripple increases.

their width depends on the attenuation constant and their height is proportional to N2.
Due to the small value ofD those frequencies are well above the relevant part of the bunch

spectrum; infact if we assume a longitudinal Gaussian beam with r.m.s. bunch length �,
its frequency spectrum is still Gaussian with a r.m.s. frequency of fc = c=2�� (at top
energy, � = 7:5 cm implies fc = 640MHz); fc is sometimes called cut-o� frequency of the

bunch. The planned partial randomisation of the position of the holes widens those peaks
and reduces their heights even if it doesn't a�ect the loss factor (see [2]). Moreover we
just have to mention that at those frequencies other modes are propagating both in the

coaxial region and in the beam pipe and they are no longer synchronous with the beam.
Due to imperfections in the coaxial region (the holes themselves or anything perturbing

our ideal geometry), they can exchange energy with the TEM mode we are treating and
therefore this scenario could be too pessimistic. Anyway, a detailed study in this sense has
not been done, at least for many holes; for a single hole a numerical study based on �eld

matching method has been performed (see [8]) and the results agree with what reported
here. As shown in Fig. 2, there is a ripple superimposed onto the plateau; as it can be

seen from the third term in Eq. (30), its frequency is

Nk0D = � that is f =
c

2DN
: (32)

Strictly speaking, the third term in Eq. (30) gives also a minor contribution to the values
of the peaks. Increasing the amount of attenuation the peaks widen and their height
decreases, while the frequency of the ripple and the minimum value of the plateau remain

unchanged; a deeper study of Eq. (30) can help in giving a quantitative evaluation of this

e�ects.
It is worth remarking that B (i.e. the e�ect of backward propagating waves) has a

component not depending on the frequency (nor on the attenuation). So even if the major

peaks are surely out of the bunch spectrum, the backward propagating wave has indeed

an e�ect at low frequency.

An automatic evaluation of B, based on Eq. (30) is still very time consuming, so

10



we propose to simplify it by rewriting the cosine in B as the real part of a complex

exponential so that

B = Re

"
N�1X
h=1

(N � h)e��Dh�j2hk0D
#
= Re

"
N�1X
h=1

(N � h)e��Dh

#
with � = � + j2k0:

(33)

It is easy to see that

N�1X
h=1

(N � h)qh =
q
�
N �Nq + qN � 1

�
(1� q)

2
; (34)

using this relation with q = e��D and taking the real part we obtain the exact value for

B. We have used it in drawing Fig. 2 and we will use it in all the following numerical

calculations.

Far away from the resonances and for large numbers N , we can approximate B

simply with the constant value of Eq. (30); we will exploit this later, since the peak at low

frequency has no big e�ect on the overall impedance because the contribution due to B is

weighted by the frequency squared. What is lost in this approximation is the contribution
of the ripple, but the latter becomes more and more negligible with increasing number of
holes.

2.2.3 An approximate expression for the coupling impedance

We already discussed useful approximations for F (D;N; �) and B(D;N; �); our

aim is now to put them together in a simpli�ed expression for the coupling impedance.
This will be important later for the analytical estimate of the loss factor.

Recalling that

F (D;N; �) ' N

�D
+
e��DN � 1

(�D)2
for �D� 1;

B(D;N; �; !) ' �N
2

far from the peaks

and inserting in Eq. (18) yields

ZRE(!) ' Z0

!2 (�m + �e)
2

16�3b4 ln (d=b)c2

"
N

2
+

N

�D
+
e��DN � 1

(�D)2

#
: (35)

Fig. 3 compares, in a practical case, the \exact" coupling impedance (Eq. (18)) to its

approximation (Eq. (35)); it grows as !2 except near frequencies satisfying the resonance
condition (31), i.e. near are the peaks due to interference of backward propagating TEM

waves in the coaxial. We see that Eq. (35) follows very well the exact one, at least far from

resonances. In the low frequency range, we see the presence of a ripple with frequency
given by (32); it is not considered in our approximation. Increasing N , the ripple becomes

more and more negligible (with respect to other terms); moreover, using Eq. (35) leads to

a remarkable simpli�cation in the following computation allowing us to provide analytical

results for the loss factor, as we will see in Sec. 3 where we show that the discrepancy

presented in Fig. 3.b has no important e�ect.
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Figure 3: Comparison between the exact expression for the coupling impedance (solid

line) and the approximated one (dashed line), for 1500 rounded-end holes (that is a �
24 m long device). In a) they can be hardly distinguished far from the peaks, while the

di�erence is clear in the zoom at low frequencies b). All numerical values are taken from

LHC parameters (see Table 1) and we have included the corrections due to the wall

thickness (see Sec. 5)

2.3 Considering only the forward propagating TEM wave

Most of the literature includes only the forward propagating TEM wave in the coax-

ial region; the reason being that one can expect from it the major contribution to losses
since it is travelling synchronous with the beam. Anyway this assumption is somehow

arbitrary, since it is well known from the theory of directional microwave couplers (see
for instance [19]) that the back-scattered wave plays its role and is usually exploited to
synthetize the frequency behaviour of the directivity of the coupler. In this subsection we

will compare this approach to our previous one, discussing the di�erences in our practical
case (LHC).

Going back to the equivalent hole dipoles (Eq. (11)), neglecting the backward wave

they become in this case:

M'(zi) ' �mH0'(zi)

(
1� j

k0

4�b2 ln (d=b)

h
�m + (�e + �m)Fi e

��zi
i)

;

Pr(zi) ' "�eEr(zi)

(
1� j

k0

4�b2 ln (d=b)

h
�e + (�e + �m)Fi e

��zi
i)

: (36)

Thus, the coupling impedance is

Z(!) = jZ0

!

4�2b2c
N (�m + �e)+

+Z0

!2

16�3b4 ln (d=b)c2

"
N
�
�2
m + �2

e

�
+ (�m + �e)

2
NX
h=1

Fhe
��z

h

#
(37)

and rewriting the real part for uniformly spaced holes, we get:

ZRE(!) = Z0

!2

16�3b4 ln (d=b)c2

h
N
�
�2
m + �2

e

�
+ (�m + �e)

2
F (D;N; �)

i
; (38)

using the previous notations. The meaning of the two terms is clear: the non interacting
holes (�rst one) and the interference e�ect due to forward propagating wave (second one).
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Fig. 4 compares graphically this last equation with the exact one (Eq. (18)), in the

LHC case. We remind that the resonant peaks (see Fig. 4.a) and the ripple (see Fig. 4.b)

are due to the backward wave and so they are lost if we consider only the forward wave.

The di�erence between the dashed and solid lines in of Fig. 4 and 3 is thus due to the

constant term (/ N=2) coming from B(D;N; �; !).

In conclusion we see that, at least for a LHC-like geometry, the main di�erences

between considering and not considering the backward waves are at frequencies well above

the cut-o� of the bunch spectrum. Nevertheless also at low frequency (inside the bunch

spectrum) there is a di�erence, even though not a substantial one.

It is worth noting that the relative inuence of the back - forward waves depends

on the hole shape, since the two terms are weighted with di�erent functions of the po-

larizabilities. For instance, with circular holes the di�erence seen in Fig. 4.a (that is for

rounded-end holes) is far less evident.
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Figure 4: Comparison between the exact expression for the coupling impedance (solid line)
and the one obtained considering only the forward propagating waves (dashed line), for

1500 rounded-end holes. b) is a detail at low frequencies. All numerical values are taken
from LHC parameters (see Table 1) and we have included the corrections due to e�ects

of the wall thickness (see Sec. 5)

3 Loss Factor

The loss factor is the energy lost by the bunch normalised to its charge squared;

it depends on the coupling impedance and, for a Gaussian bunch of length �, it can be

written

k(�) =
1

�

Z 1
0

ZRE (!) e
�(! �=c)2d!; (39)

as we anticipated in Sec. 1.1.
First we present an approximation for bunch length bigger than the spacing among

the holes and when the losses in the coaxial are negligible. Then we study the loss factor

when there are ohmic losses giving analytical formulae and discussing the approximations
involved.

3.1 Loss factor without attenuation

The integral in the loss factor can be performed analytically in this case, as reported

in [2]. We now remind that formula and present some useful simpli�cations valid if the
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length of the bunch is longer than the distance between the holes and for a large number

of them.

The coupling impedance with no losses in the coaxial region is reported in Eq. (21);

rewriting it with the help of Eq. (25) and performing the integration (39) yields

k(�) =
Z0

p
�c

128�4b4 ln (d=b)�3

h
N2 (�m + �e)

2
+N (�m � �e)

2 � 2 (�m � �e)
2
S
i
; (40)

where

S =
N�1X
h=1

(N � h)e�(hD=�)2

"
2

�
D

�
h

�2
� 1

#
: (41)

As shown in Appendix B, for large N Eq. (41) can be approximated by

S ' 1

2

"
N �

�
�

D

�2#
if

D

�
< 1 (42)

since many terms of the sum are negligible; the loss factor (40) becomes

k(�) ' Z0

p
�c

128�4b4 ln (d=b)�3

"
N2 (�m + �e)

2
+

�
�

D

�2
(�m � �e)

2

#
: (43)

The dependence on N2 takes into account interference e�ects between the holes and it is
physically sound. Moreover, if

1

N2

�
�

D

�2 (�m � �e)
2

(�m + �e)
2
� 1;

the loss factor is proportional to N2, although it is not N2 times the loss factor of a single
hole (that is proportional to (�2

m + �2
e)). In formulae

k(�) ' Z0

p
�c

128�4b4 ln (d=b)�3
N2 (�m + �e)

2
if N � A

�

D
A =

(�m � �e)

(�m + �e)
: (44)

In the case of circular holes in a thin wall, for example, A = 3.
The result of Eq. (44) shows the importance of the interference e�ects between the

holes due to the presence of the TEM �eld in the coaxial region. These e�ects are not
always considered in the literature and they cause the total loss factor to depend on N2;
for example [9] proposes, for the same geometry, to estimate the total energy lost by the

bunch by taking N times the loss factor for a single hole.

3.2 Attenuation due to ohmic losses

We have studied the impedance for an attenuation source in the coaxial region such

that the �eld propagating there remains essentially TEM shaped; this is for instance the
case of distributed dielectric losses.

In �rst approximation, also the e�ect of lossy walls can be treated in this way by
using the following attenuation constant [4]

�(!) = a
p
! with a =

1

2Z0 ln (d=b)

�
�b

b
+

�d

d

�r
�

2
(45)
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where �b (�d) is the resistivity of the cylindrical surface of radius b (d). Although it is only

an approximation, this approach is widely used in the estimation of losses in high power

RF transmission lines [15].

Using Eq. (45) in Eq. (18) yields the real part of the coupling impedance for this

particular source of losses and then performing the integral of Eq. (39), we get the loss

factor. Unfortunately this can not be done analytically and we use now the approximations

for the coupling impedance discussed earlier, namely the one including only the forward

propagating TEM wave of Eq. (38) and the one including everything but the peaks of the

impedance, see Eq. (35).

First of all, to check their validity, we focus on the function under the integral, that

is ZRE times the bunch current in absolute squared value (i.e. the Gaussian of Eq. (39)

modulo some constant), that is the spectrum in frequency of the power lost by the bunch.
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Figure 5: Function under the integral of the loss factor using the exact expression for
the coupling impedance (solid line) and considering only the forward propagating waves

(dashed line), for 1500 rounded-end holes. b) is a detail at low frequencies. All numerical
values are taken from LHC parameters (see Table 1) and we are including the corrections

due to e�ects of the wall thickness (see Sec. 5)

Fig. 5 shows the function under the integral, when we include only the e�ect of

forward propagating waves, namely using Eq (38) for the coupling impedance; Fig. 5.b
shows the detail at low frequency, where the ripple is again due to interference e�ects

associated to backward scattered waves. Thus there is a di�erence between the exact and

the approximated one, but it is not dramatic and it leads to an overestimated value of

the loss factor.

On the other hand, Fig. 6 compares the exact value of the spectrum of the power

lost by the beam with the one we got by using Eq. (35). The di�erence can not be seen in

a wide frequency range (Fig. 6.a), but is clear at low frequencies even if it is very small.

The previous curves correspond to a �xed number of holes (N = 1500 that is a

section 24 m long); decreasing the number of holes increases the magnitude of the ripple
(as seen in Sec. 2.2.2) and our approximate formulae lose in accuracy, even though the

result remains acceptable, as we will show.

Thus, both approximations are not far from reality, although they do not take into

account the sharp peaks of the impedance; infact those peaks are outside the relevant

spectrum of the bunch.
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Figure 6: Function under the integral of the loss factor using the exact expression for the

coupling impedance (solid line) and the approximation valid far from the frequencies of its

peaks (dashed line), for 1500 rounded-end holes. In a) they can be hardly distinguished,

while the di�erence is clear in the detail at low frequencies b). All numerical values are

taken from LHC parameters (see Table 1) and we are including the corrections due to

e�ects of the wall thickness (see Sec. 5)

We now use the two approximate formulae for the coupling impedance, Eqs. (35)
and (38), to derive analytically the loss factor and we compare it with numerical results
using the exact impedance.

Since

I1 =
Z 1
0

!2e�(!�=c)
2

d! =

p
�

4

�
c

�

�3
; I2 =

Z 1
0

!3=2e�(!�=c)
2

d! =
1

2
�

�
5

4

� �
c

�

�5=2
;
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Z 1
0
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e�aDN

p
! � 1
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where pFq is the generalised hypergeometric series [11], we get

k(�) =
Z0 (�m + �e)

2

16�4b4 ln (d=b)c2

"p
�

8

�
c

�

�3
N +

1

2
�

�
5

4

�
c5=2

aD�5=2
N +

I3

a2D2

#
: (46)

In the limit of large N the third term in the square brackets becomes negligible with

respect to the other two, as it is clear from the de�nition of I3.

The behaviour of the loss factor as a function of the length of perforated screen Ld

is shown in Fig. 7. When Ld (or N) is small, the holes interfere as if no attenuation was

present in the coaxial region and the loss factor grows quadratically (Fig. 7.a). As the
length increases, not all the holes interact with each other since the attenuation damps

the �eld; if two holes are too far away their contribution to the losses is simply the sum
of the contributions of the two non interacting holes. Thus, for large lengths the loss
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factor grows linearly, as seen in Fig. 7.b. The dashed line is the loss factor accounting

only for forward propagating waves in the coaxial, while the solid one includes also the

back-scattered waves; the dots are numerical values of the loss factor integral including

the exact impedance of Eq. (18). The agreement of the results is good: at the length of

15 m the error between the solid line and the numerical result is of 0.3% while for the

dashed it is 17%. Going to small lengths, our approximations loses in accuracy since the
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Figure 7: Loss factor as a function of the length of the beam screen. The dots are ob-
tained numerically using the exact coupling impedance, while the lines are the analytical

approximations including only forward waves (dashed) and the impedance without the
peaks. All numerical values are taken from LHC parameters (see Table 1) and we are
including the corrections due to e�ects of the wall thickness (see Sec. 5)

term B of Eq. (18) can not be approximated simply by a constant, as already said. Thus

we expect a bigger error for small length, as we see in Fig. 8.

4 Power lost per unit length

The excited TEM �eld dissipates power on the walls of the coaxial region, causing
heating of the cold bore; thus, providing an estimate of such power is essential in the

project of the LHC.
We �rst discuss the connection between the power per unit length and the loss

factor, then we provide an analytical formula, using previous results for k(�). To better
understand and to achieve handy formulae, we focus on the two limiting behaviours
(namely for very small and in�nite lengths) and de�ne a boundary between these two.

Eventually we treat the case of more than one hole per cross section.

The energy lost by the bunch in a section of length Ld = ND is the loss factor
times Q2, where Q is the charge of the bunch. If the inner part of the beam screen is a

perfect conductor, all the energy lost by the bunch is transferred to the propagating �eld
(energy conservation law). Dividing that energy by the time the bunch takes to cover the

length Ld (i.e. Ld=c for relativistic bunches) yields the power owing in the coaxial. The

ratio between this and again the length Ld is de�ned as the power per unit length and
takes into account the e�ect of a single bunch travelling in the inner pipe. If we assume

that the total power is the sum of the power due to each of the nb bunches in a length
Ld, we get the expression of the power per unit length given in Sec. 1.1:

P = nb
cQ2 k (�)

L2
=
cQ2 k (�)

Sb L
; (47)
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Figure 8: Loss factor as a function of the length of the beam screen. The dots are ob-

tained numerically using the exact coupling impedance, while the lines are the analytical

approximations including only forward waves (dashed) and the impedance without the

peaks (solid). All numerical values are taken from LHC parameters (see Table 1) and we

are including the corrections due to e�ects of the wall thickness (see Sec. 5)

where Sb is the bunch spacing (Sb = Ld=nb).
In Sec. 3.1 we derived and discussed an analytical expression for k(�) that was

found to be a very good approximation of the real one; inserting it in Eq. (47) yields

P =
(�m + �e)

2

16 �4 b4 ln (d=b)SbD

"p
�

8

Z0Q
2 c2

�3
+

1

2
�

�
5

4

�
Z0Q

2 c3=2

aD �5=2
+

1

N

Z0Q
2 I3

a2D2 c

#
: (48)

A typical behaviour of P with the device length L (L = ND) is drawn in Fig. 9, for the

nominal LHC case. The distance between the holes D and their number N are such that
the surface covered by the holes is the 4.4% of the total surface of the pipe.

As shown in Fig. 9, there are two simple limiting behaviours of P : it saturates for

very long devices, while it grows linearly when the length Ld is small.
In the limit of large Ld, Eq. (48) becomes constant:

P1 = lim
N!1

P =
(�m + �e)

2

16 �4 b4 ln (d=b)SbD

"p
�

8

Z0Q
2 c2

�3
+

1

2
�

�
5

4

�
Z0Q

2 c3=2

aD �5=2

#
: (49)

The physical reason is that over a certain length, the number of holes interacting with

each other is �xed by the attenuation of the �eld: increasing the number of holes (i.e. Ld)

doesn't change the losses per unit length. In this range the loss factor goes linearly with

Ld, see Fig. 7.b.
On the contrary, the attenuation doesn't dump the �eld e�ciently in short lengths;

the loss factor for such lengths grows parabolically, see Fig. 7.a. We can study this limit

as if there were no attenuation and using Eq. (44) for the loss factor yields

Plin =

p
�

128 �4
Z0Q

2 c2

�3
(�m + �e)

2

b4DSb ln (d=b)
N: (50)

It grows linearly with N (or Ld) because of the interference e�ect among all the holes:

each hole interacts with all the others. This is actually an approximation of Eq. (48) for

short Ld, but it gives a simple formula physically sound.
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Figure 9: Power per unit length (W/m) as a function of the length of the beam screen (m).

The thick line is the exact value, while the solid thin line accounts for the case without

losses; the dashed one is the limit value, reached at very long length. All numerical values

are taken from LHC parameters (see Table 1) and we are including the corrections due

to e�ects of the wall thickness (see Sec. 5); the number and the distance between the
rounded-end slots are chosen such that the surface covered by the holes is 4.4% of the
surface of the pipe.

It is useful to de�ne a boundary between this two behaviours, namely the linear

and the saturated one: below that we can consider the power per unit length to grow
linearly with Ld, while above we can assume it constant and equal to its saturation value
P1. Therefore, we de�ne L� as the length such that the linear approximation Plin crosses

the limit value P1, that is

L� = D +
4p
�
�

�
5

4

� p
�

a
p
c
= D +

4p
�
�

�
5

4

�
1

� (!c)
; (51)

where !c = 2�fc and fc is the cut-o� frequency of the Gaussian spectrum of the bunch.
Approximately we can say that after L�, the power per unit length reaches its saturation
value.

L� depends on the the attenuation �, on the bunch length and on the spacing among
the holes. The dependence on D is not relevant for our practical case (LHC) because the
second term is orders of magnitude bigger; that dependence simply states that for very

strong attenuation (i.e. � ! 1) the saturation value is reached at lengths equal to the
spacing among the holes. This is not surprising, because (see Sec. 2.1.2) in this case the

holes do not interact; consequently the coupling impedance (and thus the loss factor) is
linear in Ld (or in N) and the power lost per unit length is constant. The other term is

proportional to the inverse of the attenuation constant computed at the cut-o� frequency

fc; it is not exactly 1=� (!c) (as we could expect) since the loss factor (and P ) is an
average on all the frequencies. For the nominal values of the LHC (see Table 1) L� is

about 80 m.

Up to now we have assumed a single line of holes drilled with constant spacing equal

to D. If there are more than one hole for a given longitudinal position, we have to multiply

our formulae by the number of holes per cross section Nb squared. Infact holes in the same
section always interfere constructively, since both the charge �eld and the TEM one are
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constant in the azimuthal coordinate and thus they are excited with the same phase.

Anyway in the example shown in Fig. 9, where the constraint is the pumping surface,

increasing the number of pumping holes per cross section Nb implies an increase of the

distance between the holes D. Now, the dominant term of Eq. (49) for P1, is proportional
to Nb=D squared and thus its value doesn't change if we increase the number of holes per

cross section. The same reasoning holds for Eq. (50), since if we rewrite it in terms of the

length Ld (N = L=D), Plin depends again on Nb=D squared.

5 The e�ect of wall thickness

Up to now, we have neglected the e�ect of the �nite thickness of the wall: it changes

the problem geometry and introduces an attenuation for the �elds in the holes.

About the change of the problem geometry, we should notice that, because of the

thickness of the wall, the radius of the pipe \seen" by the beam is di�erent from the

radius of the inner tube of the coaxial structure. Calling b1 and b2, respectively the inner

and the outer radius of the beam pipe (see Fig. 1), one can show that the factor b4 in the

denominator of the expressions of impedance and loss factor has to be replaced by the

product b21b
2
2. A similar argument holds for the ln(d=b) that becomes ln (d=b2).

The most important correction is on the polarizabilities since the �elds are expo-

nentially attenuated going through the holes. We can imagine that the outer magnetic
(electric) polarizability scales as the magnetic (electric) �eld going into a cylindrical waveg-

uide of the same cross-section of the hole. Because the hole is supposed to be very small
with respect to � (since we are dealing with static polarizabilities), all the modes of these
equivalent wave-guides are below cut-o� and their attenuation is exponential with the

thickness. If the latter is su�ciently large with respect to a typical dimension of the hole,
only the contribution of the less attenuated mode (i.e. the fundamental one of the wave
guide corresponding to the hole) will a�ect the scaling of thin wall polarizabilities. Al-

though only approximate, this approach, presented and discussed in [16], has been adopted
in [2] and also in [9].

For circular holes of radius R these modi�ed polarizabilities are [2]

~�m = CM �m e�2:405T=R with CM = 0:84 and �m =
4

3
R3;

~�e = CE �e e
�1:841T=R with CE = 0:83 and �e = �

2

3
R3; (52)

where T = b2� b1 is the wall thickness and the numerical values for CE and CM are taken

from [16]. The exponential factor is clearly related to the attenuation of �elds due to the
thickness. Performing the overlapping integral between the source �eld and the modes of

the cylindrical wave-guide equivalent to the hole yields the appropriate values for CE and

CM ; due to the normalisation of wave guide modes they must be always less than 1.
The pumping holes foreseen for the beam screen of LHC are rounded-end shaped.

Their \thin wall" polarizabilities are [14]

�m =
�

16
W 2L

"
1 + 0:3577

W

L
� 0:0356

�
W

L

�2#
;

�e = �
�

16
W 2L

"
1� 0:5663

W

L
+ 0:1398

�
W

L

�2#
; (53)

where W is the width and L is the length of the holes. In case of �nite thickness of the
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wall they can be corrected as in [3], that is

~�m = CM �m e��T with � = � �

W
;

~�e = CE �e e
�T with  = ��

s
1

L2
+

1

W 2
; (54)

where the value proposed (using numerical results) for CM = CE is 0.61. We should

notice that  and � are the attenuation constants of rectangular wave-guide modes, not

of \rounded-end" ones (that can not be expressed analytically). The error introduced

using the \rectangular" constants is negligible. Moreover, the ratio between the thickness

of the wall and the dimensions of the holes in LHC allows us to use Eqs. (54) that clearly

take into account only the e�ects of one TE and one TM mode of a rectangular waveguide.

In a following section (Sec. 7), where are presented numerical estimates for LHC

with rounded-end slots, we will take the maximum possible value for CM and CE, that is

1, as stated before.

6 Discussion

We now compare our results to a previous paper [4] which reports on some mea-

surements done on a 2 m long model of the LHC vacuum chamber and tries to interpret
them with the help of a simpli�ed model. In Sec. 6.1 we consider the case of negligible
attenuation (i.e. small Ld), while in Sec. 6.2 we discuss P1.

In [4] they study essentially the build up of the forward TEM wave, that is the main
source of losses since it is synchronous with the beam. They derived a simple equation
for the amplitude of the �eld in the coaxial with the holes described again by means of

polarizabilities. Only circular holes were treated and the expression of the polarizabilities
are essentially the same ones given in Eq. (52), including the dependence on the wall

thickness. They focus on the transmission coe�cient (i.e. the ratio between the maximum
absolute value of the �eld in the coaxial and the �eld in the beam pipe) in the two limiting
cases: ignoring the attenuation (suitable for length much smaller than L�) and for in�nite

length. The �rst case is also compared to measurements showing the theoretical values
are about a factor two below the measured ones. The e�ects of non interacting holes
and of the backward propagating waves were ignored. These two contributes are anyway

marginal, at least for the LHC: the �rst one is important only when the attenuation is
very high (�!1), while the backward waves give remarkable contributions only at very

high frequencies, at least for the LHC.

6.1 Forward transmission coe�cient

The forward transmission coe�cient is given by

G(!) =

����Esr

E0

���� (55)

where Esr(z) is the electric �eld radiated by all the holes in the coaxial region and the

source �eld E0 is that one of a relativistic charge given in Eq. (2).
Esr(z) is the superposition of the �eld radiated by each hole. To measure the overall

transmission coe�cient we will consider the �eld at the end of the rows of holes and Eq. (5)

becomes

Esr (z) =
NX
h=1

Er (z; zh) = e�jk0z
NX
h=1

c0ie0re
jk0zi; (56)
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since z > zh 8 h (h = 1; : : : ; N); the coe�cients c0i are given by Eq. (7). We recall that

we are considering �elds in the frequency domain. Inserting Eqs. (6) and (7) into Eq. (56)

yields

Esr (z) = j
Z0 !

4�b2 ln (d=b)
e�jk0z

NX
i=1

"
M'(zi)

c
+ Pr(zi)

#
ejk0zi (57)

and eventually we get, from Eq. (4),

Esr (z) =
q Z(!)

2 b ln (d=b)
e
�j !

c
z
: (58)

The forward transmission coe�cient is then

G(!) =
�

ln (d=b)

jZ(!)j
Z0

: (59)

Since the absolute value of the coupling impedance is dominated by its imaginary part

(given in Eq. (14)), the coe�cient G(!) becomes

G(!) ' N
!

4 � b1 b2 ln (d=b2) c
j~�m + ~�ej ; (60)

where we have already included the e�ect of the wall thickness using b1; b2 and the po-
larizabilities for \thick" wall ~�m and ~�e, as previously discussed (Sec. 5). This result is

identical to the analytical expression derived in [4], since when there is no attenuation,
the e�ect of the forward propagating wave (the only considered in [4]) dominates.

6.2 Power lost per unit length: the asymptotic value

The saturation value of the power lost per unit length derived in [4] and expressed
in our notation is

bP1 =
1

2
�

�
5

4

�
N2
b

Z0Q
2 c3=2 (~�m + ~�e)

2

16 �4 b21 b
2
2 ln (d=b2)Sb aD

2 �5=2
; (61)

It is actually the second term of Eq. (49) that is the one accounting for the e�ect of the

forward propagating TEM �eld, having included the changes discussed in Sec. 5 because
of the thick wall and considering Nb holes per cross section.

It is worth noting that in the complete expression the term accounting for the e�ect
of non interacting holes and the one due to the backward wave have di�erent signs and

almost cancel each other giving the �rst term in the square brackets of Eq. (49). This

explains why Eq. (61) gives almost exactly the value of the plateau in Fig. 9.

7 LHC case

All the numerical examples given before are done with LHC nominal parameters,

in particular assuming rounded-end slots and the attenuation due to ohmic losses in the

walls of the coaxial region (see Table 1 for numerical values).
The maximum power loss per unit length in the nominal case is 1.1 mW/m and

L� is 81.5 m, as we see in Fig. 9. Probably the pure coaxial structure will be limited
only to sections shorter than L� since all the devices such as pumps, kickers, ... will be

installed outside the beam screen, resulting in di�erent geometries for the \coaxial" region.

Therefore the linear approximation Plin could be the most useful in practical cases.
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In the original proposal circular holes were foreseen; P has the same behaviour (L�

doesn't change), but its value is scaled by

( ~�m + ~�e)
2

circ

( ~�m + ~�e)
2

round

N2
circ

N2
round

' 13; (62)

if we assume the radius of the holes R = W=2, the nominal values for L; W; andT and if

we put CM = CE = 1 for rounded-end holes. Nround (Ncirc) are the number of rounded-end

(circular) holes covering 4.4% of the beam screen surface. The value estimated in this way

agrees with the previous estimate [13].

In Table 2 we report some values for two di�erent (and relevant) device lengths:

the �rst is the dipole length (14 m) while the second is Ld � L� (i.e. the limiting value

P1). The critical parameters, on which the �nal result depends, are the thickness of the

screen and the width of the slots W as well as their shapes: small changes on them imply

large changes on the �nal value of P .

It is worth noting that the speci�c power given by Eq. (47) is dissipated in the

coaxial because of the ohmic losses in the walls. It will be dissipated partly on the inner

wall and partly on the outer one. The cold bore heating depends only on the power

dissipated in the outer wall; assuming the same conductivity for both walls, we should
then scale the previous result by the geometric factor b2=(b2 + d) ' 45%, as stated in [4].

Rounded-end slots Circular holes

@ Dipole P1 @ Dipole P1
W = 1:5mm, L = 8:0mm, T = 1:0mm 0.19 1.1 2.49 14.5

WWW = 2:0mm, L = 8:0mm, T = 1:0mm 1.65 9.5 13.2 76.9
WWW = 3:0mm, L = 8:0mm, T = 1:0mm 22.3 129.6 85.6 497.1

W = 1:5mm, L = 8:0mm, TTT = 0:5mm 1.22 7.0 21.4 124.3

Table 2: Power lost per unit length (mW/m) in the LHC case for di�erent length and
di�erent hole shapes. The bolded letters stress the changed value in each row with respect

to the �rst row (nominal values).

8 Conclusions

Analytical formulae are given for coupling impedance, loss factor and power lost
per unit length for many holes in a coaxial liner and in presence of attenuation in the

coaxial region. These results con�rm and generalise previous ones; they are also helpful to
understand the most relevant physical parameters in the design of the LHC beam screen.

Interference e�ects between the holes (not always considered in the literature) are
mainly responsible for the beam energy loss. The attenuation in the coaxial region (at

least the ohmic one in LHC) reduces them, but only over long distances (we �nd ' 80 m

for the LHC).
The coupling impedance for equally spaced holes is parabolic in frequency with

superimposed interference peaks that are sharp and high. Those are nevertheless out of

the bunch spectrum in the LHC and are also reduced by the foreseen randomisation: they

don't seem to be dangerous for beam stability.

The power per unit length dissipated in the cold bore (� 1.1 mW/m for nominal
parameters) is not a�ected by the randomisation of the position of the holes. It depends
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strongly on the shape and dimensions of the holes. In particular the critical parameters

are the width of the hole W and the wall thickness T : increasing the �rst or decreasing

the second has to be done carefully to avoid too much power owing in the coaxial region

and heating the cold bore. The fraction of this power dissipated in the beam screen is

less important since it has to be added to other sources of heating, for instance the

incoherent synchrotron radiation (estimated [13] around 206 mW/m), that impose more

serious limits. Moreover many devices will be installed outside the beam pipe; they will

interrupt the ideal coaxial geometry to lengths shorter than L� where the losses are linear

with the device length and are remarkably smaller (0.19 mW/m for a dipole length).
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Appendix A

We now outline briey the most important steps leading from Eq. (9) to Eq. (11);

we take as an example the magnetic dipole moment M', but also for Pr the procedure is

essentially the same.
Substituting Eq. (10) in the RHS of Eqs. (9), we get the �rst order solution M (1)

' ,
discussed in Sec. 2.1.1:

M (1)
' (zh) = �m

"
H0'e

�jk0zh � j
!

2
�h20'

NX
k=1

�mH0'e
�jk0zke�jkcjzh�zkj+

+j
!

2
h0'e0r

NX
k=1

sgn(k � h)"�eE0re
�jk0zke�jkcjzh�zkj

#
: (63)

Since

E0r = Z0H0' = Z0

q

2�b
�h20'H0' =

�

Z0

H0'

2�b2 ln (d=b)

"h0'e0rE0r = "Z0

H0'

2�b2 ln (d=b)
;

�

Z0

= "Z0 =
1

c

it yields

M (1)
' (zh) = �mH0'

"
e�jk0zh � j

k0

4�b2 ln (d=b)
�m

NX
k=1

e�jk0zk�jkcjzh�zkj+

+j
k0

4�b2 ln (d=b)
�e

NX
k=1

sgn(k � h)e�jk0zk�jkcjzh�zkj
#
: (64)

After some algebraic manipulation, recalling that kc = k0 � j� and that sgn(k � h) = 0

if k = h we �nd

M (1)
' (zh) = �mH0'

h
e�jk0zh � �mT1 � �mT2 � �eT3 + �eT4

i
(65)

where

T1 = j
k0

4�b2 ln (d=b)
e�jk0zh

hX
k=1

e�(zk�zh);
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T2 = T4 = j
k0

4�b2 ln (d=b)

NX
k=h+1

e�j2k0zke��(zk�zh)ejk0zh = j
k0

4�b2 ln (d=b)
e�jk0zh

N�hX
w=1

e�(j2k0+�)(zw+h�zh);

T3 = j
k0

4�b2 ln (d=b)
e�jk0zh

h�1X
k=1

e�(zk�zh) = T1 � j
k0

4�b2 ln (d=b)
e�jk0zh :

Thus simply ordering the terms, one gets

M (1)
' (zh) = �mH0'e

�jk0zh
(
1� j

k0

4�b2 ln (d=b)

h
�m + (�m + �e)Fhe

��z
h + (�m � �e)Bh

i)
;

where

Fk =
k�1X
w=1

e�zw and Bk =
N�kX
w=1

e�(j2k0+�)(zw+k�zk) =
N�kX
w=1

e
�j(2k0+�)

wX
t=1

Dk+t

;

with Dk = zk � zk�1 being the distance between two consecutive holes (k = 1; : : : ; N).

The identity

zw+h � zh =
t=1X
w

Dh+t

is useful to take into account the case of randomly spaced holes, where Dk = �D+ �k with
�k a random variable.

Appendix B

The relation (42) was �rst obtained numerically from (41), having chosen practical

values for the dimensionless parameter � = D=�. Here we report an (more elegant)
analytical study based on [18] to prove that

S =
N�1X
h=1

(N � h)e�(hD=�)2

"
2

�
D

�
h

�2
� 1

#
=

1

2

"
N �

�
�

D

�2#

We can rewrite (41) as

S = 2�2NS2 �NS0 � 2�2S3 + S1 where Sk =
N�1X
h=1

hke��
2h2 (66)

and we try to express Sk in terms of proper integrals of

fk(x; �) = xke��
2x2 k = 0; : : : ; 3: (67)

First of all, let's notice that

@fk

@h
(h; �) = kfk�1(h; �)� 2�2fk+1(h; �): (68)

The relation between the sum Sk and the integral of fk is shown in Fig. 10, for an arbitrary

function. The dashed area represents the generic term of the sum, provided that �h = 1;

its di�erence with the integral is the area of the region ABC. In �rst approximation, we

can consider that region as a triangle of base �h and height

jf(h)� f(h� 1)j =
�����@f@h

������h
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and its area is shown in the �gure. This has to be added or subtracted depending on

which lower limit of the integral is chosen; in formulae:

N�1X
h=1

hke��
2h2 =

Z N�1

0

fk(x; �)dx+
1

2

N�1X
h=1

@fk

@h
(h; �)

=
Z N�1

1
fk(x; �)dx�

1

2

N�1X
h=1

@fk

@h
(h; �) : (69)

Performing the integration from 0, we have to compare the rectangle of height f(h) and

width �h (dashed area) with the integral from f(h � 1) to f(h); on the contrary, that

rectangle will be compared with the integral from f(h) to f(h+1) if the integration itself

starts from 1. Obviously, Fig. 10 deals with the �rst case. De�ning

h = 0 hh - 1h = 1 h = 2

( ) hhf ∆

( )0f

( )1f

( )2f

A

B C

2

2

1
h

h

f ∆
∂
∂

Figure 10: Relation between the sum and the integral. The di�erence between the dashed
area and the integral can be approximated by a triangle, for su�ciently smooth functions.

Ik =
Z N�1

0

fk(x)dx =
Z N�1

0

xke��
2x2dx

and using Eq. (68) in the �rst one of Eqs. (69) yields

Sk = Ik +
k

2
Sk�1 � �2Sk+1: (70)

The preference of the �rst one of Eqs. (69) is arbitrary; choosing the second one, we would

obtain a relation similar to Eq. (70) with a di�erent de�nition of Ik and opposite signs of
the last two terms. The integrals Ik are easily solved in closed form:

I0 =

p
�

2�
Erf [(N � 1)�] I1 =

1� e�(N�1)
2�2

2�2

I2 =

p
�

2�
Erf [(N � 1)�]� N � 1

2�2
e�(N�1)

2�2 I3 =
1

2�4
� 1 + (N � 1)2�2

2�4
e�(N�1)

2�2 :(71)
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The recursive relation (70) can be used to compute exactly each Sk from the knowledge

of Ik; the number of meaningful terms to be taken into account depends on the value of �.

Taking

S0 ' I0 � �2I1; S1 ' I1; S2 ' I2; S3 ' I3 (72)

and substituting in Eq. (66), eventually we get:

S =
1

2

�
N � 1

�2

�
+

�
1

2�2
� 3

2
N + 1

�
e�(N�1)

2�2 ; (73)

in the limit of large N the last expression gives Eq. (42). The assumption behind Eq. (72)

is somehow arbitrary and it is justi�ed a posteriori comparing Eq. (42) with the exact

value (Eq. (41)); however the rigorous derivation from Eq. (70) is not worthwhile since

the number of terms to be taken into account depends on how much � is smaller than 1.
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