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Abstract

We analyse the perturbative series expansion of the vacuum expectation value
of a Wilson loop in Chern-Simons gauge theory in the temporal gauge. From
the analysis emerges the notion of the kernel of a Vassiliev invariant. The

kernel of a Vassiliev invariant of order n is not a knot invariant, since it
depends on the regular knot projection chosen, but it di�ers from a Vas-
siliev invariant by terms that vanish on knots with n singular crossings. We

conjecture that Vassiliev invariants can be reconstructed from their kernels.

We present the general form of the kernel of a Vassiliev invariant and we

describe the reconstruction of the full primitive Vassiliev invariants at orders
two, three and four. At orders two and three we recover known combinatorial

expressions for these invariants. At order four we present new combinatorial

expressions for the two primitive Vassiliev invariants present at this order.
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1 Introduction

Topological quantum �eld theories have provided important connections be-

tween di�erent types of topological invariants. These connections are ob-

tained by exploiting the multiple approaches inherent in quantum �eld the-

ory. Chern-Simons gauge theory constitutes a very successful case in this

respect. Its analysis, from both the perturbative and the non-perturbative

points of view, has provided numerous important insights in the theory of

knot and link invariants. Non-perturbative methods [1, 2, 3, 4, 5, 6] have

established the connection of Chern-Simons gauge theory with polynomial in-

variants as the Jones polynomial [7] and its generalizations [8, 9, 10]. Pertur-

bative methods [11, 12, 13, 14, 15, 16, 17, 18] have provided representations

of Vassiliev invariants.
Gauge theories can be analysed by performing di�erent gauge �xings.

Vacuum expectation values of gauge-invariant operators are gauge-independent
and they can therefore be computed in di�erent gauges. Covariant gauges
are simple to treat and its analysis in the case of perturbative Chern-Simons

gauge theory has shown to lead to covariant combinatorial formulae for Vas-
siliev invariants [11, 12, 14, 15, 16]. These formulae involve multidimensional
space and path integrals which, in general, are rather involved to carry out

explicit computations of Vassiliev invariants. Non-covariant gauges seem to
lead to simpler formulae. However, the subtleties inherent in non-covariant

gauges [19] plague their analysis with di�culties. The two non-covariant
gauges that have been more widely studied are the light-cone gauge and the
temporal gauge [20, 21, 22]. Both belong to the general category of axial

gauges. In the light-cone gauge the resulting expressions for the Vassiliev
invariants turn out to be the ones involving Kontsevich integrals [23]. These

integrals, although simpler than the ones appearing in covariant gauges, are

still too complicated to carry out explicit computations of Vassiliev invari-

ants. Simpler expressions in which no integrals are involved, i.e.combinatorial

ones, are desirable. The aim of this paper is to reach this goal by studying
the theory in the temporal gauge.

From the analysis in the light-cone gauge we have learned an important

lesson: a naive treatment of the perturbative series expansion in a non-
covariant gauge leads to non-invariant quantities. One needs to introduce

correction terms to render the perturbative series invariant. At present it
is not known what the `physical' reasons are for being forced to introduce a
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correction term, but it certainly must be inherent in the subtleties involved

in the use of non-covariant gauges. It is very likely that the understanding

of this problem in Chern-Simons gauge theory will shed some light on the

general solution to these problems.

In this paper we concentrate our attention on the analysis of the perturba-

tive series expansion of the vacuum expectation value of a Wilson loop in the

temporal gauge. Some aspects of this gauge have been studied in [13, 20]. In

our analysis we encounter all the problems, inherent in non-covariant gauges,

which were present in the light-cone gauge. A key ingredient in the analysis of

the perturbative series expansion is the gauge propagator. The computation

of the gauge propagator in non-covariant gauges is plagued with ambiguities,

which are solved by demanding some properties for the correlation functions

of the theory. These properties are usually based on physical grounds. In our
case we must demand invariance of the vacuum expectation values of Wilson
loops. As we encounter these ambiguities in our analysis we are forced to

work with a rather general propagator in which some of the terms are not
known explicitly. Fortunately, the complete explicit form of the propagator
is not needed to compute vacuum expectation values of Wilson loops. Con-

sistency, however, forces the introduction of a correction term similar to the
one needed in the light-cone gauge. Since in our analysis some hypotheses

are introduced to cope with the ambiguities, we must check that our �nal
expressions are indeed knot invariants. We will prove this to be the case for
the terms of the perturbative series expansion under consideration.

The propagator possesses two terms, one whose explicit form is known
and that depends on the signatures at the crossings, and one whose com-

plete explicit form is not known but is independent of the signatures at the
crossings. Taking into account only the �rst term, we construct what we
call the kernels of the Vassiliev invariants. These are quantities that are not

knot invariants but depend on the regular projection chosen. These kernels

have the property that they di�er from an invariant by terms that vanish on
singular knots with a high enough number of singular crossings. More pre-

cisely, if one considers an order-m kernel, it di�ers from an order-m Vassiliev
invariant by terms that vanish after performing the m subtractions needed

to get the invariant for a singular knot with m singular crossings.

The three main goals of this paper are:

� to provide the general formulae for the kernels of the Vassiliev invari-
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ants,

� to conjecture that the information contained in the kernels is su�cient

to reconstruct all the Vassiliev invariants at a given order,

� to sustain this conjecture by showing how the reconstruction procedure

is implemented at orders two, three and four.

Our results agree with the known combinatorial expression for Vassiliev in-

variants at orders two and three. The combinatorial formulae obtained for

the two primitive Vassiliev invariants of order four are new. At present we

lack an all-order reconstruction theorem but, as it will become clear from

our analysis, the reconstruction procedure can be generalized. The key in-

gredients of our analysis are the structure of Chern-Simons gauge theory and

the factorization theorem proved in [24]. Thus our approach is valid only for

Vassiliev invariants based on Lie algebras.

The paper is organized as follows. In sect. 2 we formulate the perturbative
series expansion of the vacuum expectation value of a Wilson loop in the
temporal gauge. In sect. 3 we present the kernels of Vassiliev invariants

and we analyse their properties. In sect. 4 we carry out the reconstruction
procedure at order two, three and four. In sect. 5 we prove that the quantities
obtained at order four are invariant under Reidemeister moves. Finally, in

sect. 6 we state our conclusions. An appendix contains tables where the
output of our combinatorial expressions for the primitive Vassiliev invariants

of orders two to four for prime knots up to nine crossings is compiled.
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2 Chern-Simons perturbation theory in the

temporal gauge

In this section we formulate Chern-Simons gauge theory in the temporal

gauge. Let us consider a semi-simple gauge group G and a G-connection on

a three-spaceM . The action of the theory is the integral of the Chern-Simons

form:

SCS(A) =
k

4�

Z
M
Tr
�
A ^ dA +

2

3
A ^ A ^ A

�
; (2.1)

where Tr denotes the trace over the fundamental representation of G, and

k is a real parameter. The exponential exp(iSCS) of this action is invariant

under the gauge transformation

A� ! h�1A�h + h�1@�h; (2.2)

where h is a map from M to G, when the parameter k is an integer. Of

special interest in Chern-Simons gauge theory are the Wilson loops. These
are gauge-invariant operators labelled by a loop C embedded in M and a

representation R of the gauge group G. They are de�ned by the holonomy
along the loop C of the gauge connection A:

WR(C;G) = Tr

�
PR exp g

I
A

�
; (2.3)

where PR denotes that the integral is path-ordered and that A must be con-
sidered in the representation R ofG. As shown in [1], the vacuum expectation
values of products of these operators lead to invariants associated to links

corresponding to sets of non-intersecting loops.
Gauge-invariant theories need to undergo a gauge-�xing procedure to

make their associated functional integrals well de�ned. Di�erent choices of

gauge �xing lead to di�erent representations of the same quantities. For

vacuum expectation values of products of Wilson lines one obtains di�erent

expressions for knot and link invariants. The aim of this paper is to study

the perturbative series expansion corresponding to these quantities when one
chooses the temporal gauge. In the temporal gauge the condition imposed

on the gauge connection A is

n�A� = 0; (2.4)
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where n is the vector n� = (1; 0; 0). This gauge is a particular case of a more

general class of non-covariant gauges called axial gauges in which just (2.4) is

imposed, n being a constant vector satisfying some condition. The light-cone

gauge studied in [17] is another particular case of this type of gauges. We

showed in [17] that in the light-cone gauge the perturbative series expansion

of the vacuum expectation value of a Wilson line leads to the Kontsevich

integral [23] representation for Vassiliev invariants.

Condition (2.4) is imposed in the functional integral, adding the following

gauge-�xing term to the action:

Sgf =
Z
M
d3xTr(dn�A� + bn�D�c+ �d2); (2.5)

where d is an auxiliary �eld, c and b are ghost �elds, and � is an arbitrary con-

stant. In de�ning perturbative series expansions, it is convenient to rescale

the �elds by A! gA, where g =
q

4�
k
, and to integrate out d. The quantum

action becomes:

S = �
1

2

Z
M
d3x

h
����

�
Aa
�@�A

a
� �

g

3
fabcA

a
�A

b
�A

c
�

�
�

1

�
(n�Aa

�)
2 + ban�Dab

� c
b
i
:

(2.6)
We will study the theory in the gauge � ! 0. In this case we can

impose the condition (2.4) for the terms in the action and it turns out that

all terms but the quadratic ones vanish. Thus, the corresponding Feynman
rules do not have vertices and all the information is contained in the form

of the propagator. This observation might not hold for some types of three-
manifoldsM since there can be zero modes that cannot be gauged away and
some interaction terms could remain. For the case of M = R3, the one on

which we concentrate our attention, this does not occur. However, they may
play an important role in other situations [13]. We are therefore left with the

quadratic part of (2.6). The ghost contribution is trivial and for the gauge

�elds one obtains the following propagator in momentum space:

���(p) =
�

(np)2
(p�p� �

i

�
(np)����n

�); (2.7)

which, in the limit �! 0, becomes:

���(p)! �i����
n�

np
: (2.8)
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This propagator presents a pole at np = 0 and a prescription to regulate it

is needed. This type of problems is standard in non-covariant gauges and

several prescriptions have been proposed to avoid the pole (see [19] for a

review on the subject). To construct the perturbative series expansion of the

vacuum expectation value of a Wilson loop, we need the Fourier transform

of (2.8) and therefore the problem related to the presence of the pole is

unavoidable. In the temporal gauge, the momentum-space integral that has

to be carried out has the form:

�(x0; x1; x2) =
Z
M

d3p

(2�)3
ei(p

0x0+p
1x1+p

2x2)

p0
: (2.9)

This integral is ill-de�ned due to the pole at p0 = 0. To make sense of it

a prescription has to be given to circumvent the pole. But, before studying

possible prescriptions, let us �rst analyse the dependence of �(x0; x1; x2) in
(2.9) on x0. The pole in p0 is avoided if, instead of (2.9), one analyses the
derivative of �(x0; x1; x2) with respect to x0. Considering �(x0; x1; x2) as a

distribution one obtains:

@�

@x0
= i�(x0)�(x1)�(x2): (2.10)

Integrating this expression with respect to x0, one �nds that any prescription
would lead to a result of the following form:

�(x0; x1; x2) =
i

2
sign(x0)�(x1)�(x2) + f(x1; x2); (2.11)

where f(x1; x2) is a prescription-dependent function. The important conse-

quence of the result (2.11) is that the dependence of �(x0; x1; x2) on x0 has

to be in the form sign(x0)�(x1)�(x2). This observation will be crucial in our
analysis. We will actually work with the rather general formula (2.11) for

�(x0; x1; x2). This form of the propagator will allow us to introduce the no-

tion of kernel of a Vassiliev invariant and to design a procedure to compute

combinatorial expressions for these invariants.

Although we will not use an explicit prescription to compute the propa-

gator (2.9) let us analyse one of them to check that indeed it has the form
(2.11). We will choose a Mandelstam-like prescription [19] to show that the
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propagator in the right-hand side of (2.8) has the form advocated in [20]. Let

us consider:

��(x0; x1; x2) =
Z
M

d3p

(2�)3
ei(p

0x0+p
1x1+p

2x2)

p0 � i�sign(p2)
: (2.12)

The integral in the left-hand side of (2.12) has poles at p0 = i�sign(p2). To

carry out the p0-integration, we close for x0 > 0 (for x0 < 0) the contour

integration in the upper (lower) half plane:

�� = i�(x0)�(x1)
Z
p2>0

dp2

2�
eip

2(x2+i�x0) � i�(�x0)�(x1)
Z
p2<0

dp2

2�
eip

2(x2+i�x0)

= �
�(x1)

2�

1

x2 + i�x0
: (2.13)

Using the relation:

1

x2 + i�x0
= P

� 1
x2

�
� i�sign(x0)�(x2); (2.14)

one �nally obtains:

�� =
i

2
sign(x0)�(x1)�(x2)�

1

2�
P
� 1
x2

�
�(x1); (2.15)

which has the general form (2.11). This propagator is the one used in the
analysis performed in [20]. Notice that the prescription that we have used
breaks the symmetry under rotations in the x1, x2 plane, which is present

in the temporal gauge. A more symmetric prescription in which this sym-
metry is kept would be preferable. Although such a prescription could be

constructed easily, we will not do it here. As stated above, we will not need
in our analysis an explicit form of the distribution f in (2.11).

Taking the expression (2.11) for �(x0; x1; x2) and (2.8) we can easily

obtain the form of all the components of the propagator:

hAa
0(x)A

b
�(x

0)i = 0;

hAa
m(x)A

b
n(x

0)i =
i

2
�ab"mnsign(x0 � x00)�(x1 � x01)�(x2 � x02)

+f(x1 � x01; x2 � x02); (2.16)

where m;n = 1; 2 and "mn is antisymmetric with "12 = 1. This propagator

contains the basic information of the theory and constitutes the essential
ingredient in the construction of the perturbative series expansion of the

vacuum expectation value of a Wilson loop.
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3 Kernels of Vassiliev invariants

Wilson loops are the gauge-invariant operators (2.3) whose vacuum expecta-

tion value leads to knot invariants. Our aim is to compute the normalized

vacuum expectation value:

hWR(C;G)i =
1

Zk

Z
[DA]WR(C;G) e

iSCS(A); (3.1)

where Zk is the partition function of the theory:

Zk =
Z
[DA] eiSCS(A): (3.2)

This quantity leads to knot invariants and possesses a perturbative series ex-
pansion in the coupling constant g. This series can be constructed diagram-

matically from the Feynman rules of the theory. One assigns an external
circle to the loop C carrying a representation R, and internal lines to the

propagator (2.16). These internal lines are attached to the external circle by
the vertex dictated by the form of the Wilson loop (2.3):

V
j �a
i (x) = g(T a

(R))
j
i

Z
dx�: (3.3)

The perturbative series is constructed by expanding the Wilson loop op-
erator (2.3) and contracting the gauge �elds with the propagator (2.16). It
has the following general form [14]:

hWR(C;G)i = dimR
1X
i=0

diX
j=1

�ij(C) rij(R) x
i; (3.4)

where x = ig2=2 is the expansion parameter. The quantities �ij(C), or
geometrical factors, are combinations of path integrals along the loop C, and

the rij are traces of products of generators of the Lie algebra associated to

the gauge group G. The index i corresponds to the order in perturbation
theory, and j labels independent contributions at a given order, di being the

number of these at order i. In (3.4) dimR denotes the dimension of the
representation R. Notice the convention �01(C) = 1. For a given order in

perturbation theory, frijgfj=1:::dig represents a basis of independent group

factors.
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The quantities �ij(C) in (3.4) are Vassiliev invariants of order i [25]. Our

goal is to compute them in the temporal gauge. Their form in one of the

more studied covariant gauges, the Landau gauge, involves path and mul-

tidimensional space integrals. In the light-cone gauge its form is simpler,

but one is forced to multiply the resulting perturbative series expansion by

a factor to obtain true invariants. We will discover that there must be, in

the temporal gauge, also a multiplicative factor to render the terms of the

perturbative series expansion invariant. We will obtain some conditions that

this factor must satisfy and we will present an ansatz for it possessing the

same structure as the one present in the light-cone gauge. With this problem

around and the arbitrary distribution f present in the propagator (2.16), one

would not expect that it is possible to obtain concrete combinatorial expres-

sions for the Vassiliev invariants. However, it turns out that the structure
of the perturbative series expansion is so much constrainted that making a
natural hypotheses on the form of the multiplicative factor we are able to

achieve our goal.
The structure of the gauge propagator (2.16) indicates that in the tem-

poral gauge we must consider loops in three-space, which do not make the

argument of the delta functions vanish along a �nite segment. This fact re-
stricts us to knot con�gurations which possess a regular projection into the

plane x1; x2. This does not imply any loss of generality since any knot can
be continuously deformed to one of that type.

Given a regular projection K of a knot K onto the x1; x2 plane we will

construct �rst the perturbative series expansion of the vacuum expectation
value of the corresponding Wilson loop using only the �rst term of the prop-

agator (2.16). At order i the terms in the series involve i propagators and
so, in considering only the �rst term of (2.16), we are missing terms with all
powers of f(x1; x2) from 1 to i. The term with f i does not depend on x0 and

therefore it only contains information on the shadow of the knot projection

K on the plane x1; x2, i.e. it does not contain information on the signs of
the crossings. Terms with lower powers of f contain some information on

the crossings, but they vanish after considering the signed sums involved in
the invariants associated to singular knots. Vassiliev invariants for singular

knots are de�ned as an iterated sum of the di�erences when a singular point

is resolved by an overcrossing and an undercrossing. Terms with f j vanish for
singular knots with i� j+1 singularities. Thus what we are missing by con-

sidering at order i only the �rst term in the propagator (2.16) is something
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that vanishes on knots with i singularities. Of course, being an invariant of

�nite type, the whole term vanishes for knots with more than i singularities.

The main goal of this paper is to conjecture that the full invariant can be

reconstructed from the quantities that result from a consideration of only the

�rst term in (2.16). We will call those quantities kernels of Vassiliev invari-

ants. We will show explicitly the reconstruction from the kernels at orders

two, three and four.

In order to understand the role played by the �rst term of (2.16) in

the perturbative series expansion, let us analyse in detail the second-order

contribution. The quantity to be computed is of the form:

Z
v<w

dvdw _xm(v) _xn(w)"mnsign(x0(v)�x0(w))�(x1(v)�x1(w))�(x2(v)�x2(w)):

(3.5)
Two types of contributions can be encountered. There are other contributions
when v and w get close to each other. These contributions are related to

framing and they can be analysed as in [17], giving the standard framing
factor. Since they are simple to control, we will not consider them here.
There are contributions when x1(v) = x1(w) and x2(v) = x2(w), but v 6= w.

These situations correspond precisely to the crossings. Let us suppose that
the knot projection K has n crossings labelled by j, j = 1; : : : ; n. At a

crossing j the parameters v and w take values v = sj and w = tj, with
sj 6= tj. The delta functions present in (3.5) can be evaluated very easily.
Equation (3.5) becomes:

nX
j=1

Z
v<w

dvdw
_xm(v) _xn(w)"mn

j _xm(v) _xn(w)"mnj
sign(x0(v)� x0(w))�(v � sj)�(w � tj); (3.6)

which is precisely a sum of the crossing signs �j at the crossings j = 1; : : : ; n:

nX
j=1

�j: (3.7)

The structure of the computation of (3.5) clearly generalizes. Whenever

a term containing the �rst part of the propagator (2.16) appears in the per-

turbative series expansion, it can be traded by crossing signs. In general, one

obtains powers of crossing signs multiplying quantities which depend only on
the shadow of the regular projection. This proves that, as stated above, an
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Figure 1: Example of a knot projection.

order-i contribution with j powers of f (and therefore i�j powers of crossing

signs) vanishes for singular knots with i� j + 1 singularities.

The argument leading to (3.7) generalizes and allows us to write the

general form of the perturbative series expansion when only the �rst term

in (2.16) is taken into account. Let K be a knot whose regular projection
K presents n crossings with crossing signs �j, j = 1; : : : ; n. The resulting
perturbative series expansion turns out to be:

N (K) =
1X
k=0

 X
i1<���<ik

�i1 � � � �ikT (i1; : : : ; ik)

+
1

(2!)2

X
�2P2

j 6=i1;:::;ik�2
i1<���<ik�2

�2j�i1 � � � �ik�2T (j; �; i1; : : : ; ik�2)

+
1

(3!)2

X
�2P3

j 6=i1;:::;ik�3
i1<���<ik�3

�3j�i1 � � � �ik�3T (j; �; i1; : : : ; ik�3)

� � �

+
1

(m!)2

X
�2Pm

j 6=i1;:::;ik�m
i1<���<ik�m

�mj �i1 � � � �ik�mT (j; �; i1; : : : ; ik�m)

� � �
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Figure 2: Group factors.

+
1

(k!)2

X
�2Pk
j

�kjT (j; �)

!
(3.8)

Several comments are in order relative to this expression. The �rst term

comes from the contribution in which all the propagators are attached to dif-

ferent crossings. The second when two propagators are attached to the same

crossing and the rest to di�erent crossings, and so on. Since we are dealing
with an ordered integral, a correction must be included when there are more
than one propagator at a crossing. This correction accounts for the fact that

we do not have full integrations over the delta functions and corresponds
to the factor 1=(m!)2. In (3.8), Pm denotes the permutation group. When

several propagators coincide at a crossing one must include all the permu-
tations in which they can be arranged. The factors T (j; �; i1; : : : ; ik�m) are
group factors, and they are computed in the following way: given a set of

crossings i1; i2; : : : ; ii�m and a permutation � 2 Pm, the corresponding group
factor T (j; �; i1; : : : ; ik�m) is the result of taking a trace over the product of

group generators which is obtained after assigning a group generator to each
of the crossings i1; i2; : : : ; ii�m, and m generators to crossing j, and travelling
along the knot starting from a base point. The �rst time one encounters j a

product of m group generators is introdiced; the second time the product is

similar, but with the indices rearranged according to the permutation �.

In order to clarify the content of (3.8) we will work out an example. Let

us consider the knot shown in �g. 1 and let us concentrate on the fourth
order term (k = 4) containing some permutation � 2 P2:

1

(2!)2

X
j 6=i1;i2
i1<i2

�2j�i1�i2T (j; �; i1; i2): (3.9)

Examples of the group factors entering this expression are:

T (1; �; 2; 3) = Tr(T b1T b2T a1T a2T �(b1)T �(b2)T a1T a2);
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T (1; �; 3; 5) = Tr(T b1T b2T a1T a2T �(b1)T �(b2)T a2T a1);

T (3; �; 1; 4) = Tr(T b1T b2T a1T a2T a1T �(b1)T �(b2)T a2); (3.10)

where we have used the labels speci�ed in �g. 1. Group factors can be

represented by chord diagrams. For example if one chooses � = (12) the

three chord diagrams corresponding to the group factors in (3.10) are the

ones pictured in �g. 2.

The terms of the series (3.8) are not knot invariants. Besides the knot

K, they clearly depend on the knot projection chosen. However, at order k

they are knot invariants modulo terms that vanish when an order-k signed

sum is considered. We will call the terms appearing in (3.8) at each order in

perturbation theory kernels of the Vassiliev invariants of order k. We conjec-

ture that these kernels contain enough information to allow reconstruction of
the full Vassiliev invariants at each order. In the next section we will present
the reconstruction procedure for all primitive Vassiliev invariants up to order

four.
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4 Reconstruction of Vassiliev invariants up to

order four

4.1 Outline of the calculation procedure

In this section we will obtain combinatorial formulae for the primitive Vas-

siliev invariants up to order four using the kernels (3.8) presented in the

previous section. In order to be able to reconstruct the invariant we need to

exploit as much as possible all the information contained in the perturbative

series expansion of a Wilson loop in Chern-Simons theory. The crucial ingre-

dient is, as we observed above, that all the dependence on the crossings comes

from the �rst term of the propagator (2.16). Contributions not involving that

part are crossing independent, i.e. they would not distinguish between over-
or undercrossings, and consequently neither between the diagram of a knot

projection K and its standard ascending diagram �(K). Recall that the as-
cending diagram of a knot projection is de�ned as the diagram obtained by

switching, when travelling along the knot from the base point, all the un-
dercrossings to overcrossings. There is a straightforward consequence of this
fact that will help us in symplifying our calculations. Under the action of an

inversion of space, a Vassiliev invariant of even order does not vary, while one
of odd order change sign. This means that all the signature contributions

should be of even order in the former and odd order in the later. As we
claim that all these contributions come from the �rst term of the propagator
(2.16), it follows that integrals with an odd number of powers of the function

f in (2.16) will not contribute to the invariant.
Many of the ingredients entering the reconstruction procedure of the full

invariants rely on the use of the factorization theorem in Chern-Simons theory

proved in [24]. According to this theorem, once a canonical basis is chosen

for the group factors, any non-primitive Vassiliev invariant of a given order

can be written in terms of invariants of lower orders. Using this theorem
we will obtain a series of relations involving unknown integrals, which will
allow their solution to be such that a combinatorial formula for the Vassiliev

invariants will be obtained.

As stated above, we will have to deal also with a Kontsevich-type global

factor. We will assume that this factor can be written as the invariant of
the unknot raised to some exponent that depends on some features of the
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knot projection under consideration. This will modify the perturbative series

at every even order. We will obtain a series of consistency relations for the

exponent, which admit simple solutions.

As crucial as the calculation itself is �nding a convenient way to deal

with the integrals appearing in the perturbative series expansion. On the

one hand, we would like to write them as explicitly as possible so that, when

we know how they behave, relations appearing at a given order can be used

in higher orders; on the other hand, we would like to describe them in a

compact way so that the notation does not become too clumsy. We will

introduce a notation that we think satis�es these two conditions.

We will basically denote an integral made out of the f -dependent part

of the propagator (2.16) by a capital D and a subindex which will actually

be the Feynman diagram it comes from. Our calculations, though, require
a more subtle labelling. Given a Feynman diagram, each chord in it usually
represents the propagator of the theory. Our propagator (2.16) contains two

pieces: the explicit one, which leads to the signatures of the crossings, and
the f -dependent one. A Feynman integral will be a sum over all the possible
ways of identifying the chords with each of them. So for a given Feynman

diagram we will end up with di�erent types of D integrals, depending on
how many f -terms they contain. When all the propagators in the Feynman

integral are of this kind, we will simply denote it by D, where the subindex
represents the corresponding Feynman diagram (the void circle stands for
any diagram). If only one chord stands for the signature-dependent part, its

evaluation will simply result in a crossing sign, �i, plus a restriction of the
original integration domain. We will say that the chord standing for this

factor is attached to the i-th crossing, meaning that the ordered integration
domain of the other chords of the D integral is now limited by the position
of that crossing. We will write down the resulting integral as:

�iD
i
 ; (4.1)

with the superindex of D denoting that one of the chords in the diagram

is attached to the i-th crossing. This time D is in fact a sum over all the

possible choices of placing the signature-dependent part of the propagator
(2.16) in the i-th crossing (and of course a sum over the permutations of the

given diagram is understood everywhere). Some examples are shown in �g.

3. There the integrals are represented directly by their Feynman diagrams,
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Figure 4: Possible con�gurations of two crossings.

with a dashed line standing for a signature-dependent term of the propagator,
attached to a crossing i, and a continuous line representing the f -dependent
term.

A more involved case arises when the integrand contains two signature-
dependent terms of the propagator (2.16). In this case we will distinguish

three subcases:

- when both are attached to the same crossing the integral will then be
written as:

1

4
�2iD

ii
 ; (4.2)

- when the crossings are di�erent and, while travelling along the knot

path, their labels follow the pattern in �g. 4(a); then the integral will be

denoted as:
�i�jD

ij;a
 ; (4.3)
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- and when they are as in �gure 4(b):

�i�jD
ij;b
 : (4.4)

We will denote by Ca the set of all pairs of crossings like those in 4(a), and
by Cb the pairs like in �g. 4(b). Examples of these cases are drawn in �g. 5.

As we are dealing with invariants up to order four, we do not need to handle
the case where three or more signature-dependent terms of the propagator
(but not all) are �xed to crossings. When the contribution does not contain

f -dependent terms, the Feynman integral may be read from the kernels (3.8).
We will denote by E the sum of terms in (3.8) corresponding to the diagram
speci�ed in its subindex, encoded in that formula in the form of the group

factor T .
In order to organize the perturbative series expansion, we have to make

a choice of basis for the group factors entering the Feynman diagrams. Once
this is done, the coe�cients of the basis elements will be built out of a sum

of Feynman integrals, with the aproppriate factors. We will denote these

sums by SE
 when the terms involve only the signature-dependent part of

the propagator, and by SD
 when they involve the f -dependent part. Indexes

in the capitalD will have the same meaning as above. This time, the diagram

will stand for the independent group factor as obtained following the group
Feynman rules given below, in �g. 7.

Additional notation is needed to write explicit combinatorial formulae for
the invariants. These involve the so-called crossing numbers [26], which build

up the signature contributions in every E integral. We will use the notation

introduced in [26] for some of these functions, as well as new ones. The key
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Figure 6: Diagrammatic expression for crossing numbers.

ingredient of that notation (see [26] or [27] for a more detailed explanation)

is the following de�nition of the signature function:

Let � : S1 �! R2 be the projection, into the x1; x2 plane of a knot

diagram K. Let si 2 S1, i 2 I, be the pre-images of the n crossings in K,
with I = f1; : : : ; 2ng the index set of the labellings of the crossings. Then,
following [26], we de�ne:

�(i; j) =

(
�(�(si)) if �(si) = �(sj) and i 6= j

0 otherwise
(4.5)

This function is such that whenever two labellings happen to label the

same crossing, it gives its signature, and if they do not, it returns zero.
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With the help of this function one de�nes quantities involving powers of the

signatures. The following is a list of all the de�nitions of these quantities

required in our computations (notice that our notation for the order-two

functions is slightly di�erent from that in [26]). The sums are taken over all

possible ways of choosing the labellings in the index set I within the given

ordering. In �g. 6 we present a diagrammatic notation for these de�nitions.

There, the solid lines stand for the signature function, and the dashed ones

for its square. The diagram tells us in a straightforward way the ordering

that the labels must follow when we travel along the knot, and thus which

collection of crossings would contribute to a given crossing number. Only

one representative is chosen from those entering each sum. The others can

be obtained very simply from the representative performing a rotation of the

diagram while keeping the labels �xed. The list of functions that will be
needed below is the following:

�1(K) =
X
j1>j2

�(j1; j2) (4.6)

�A2 (K) =
X

j1>j2>j3>j4

�(j1; j3)�(j2; j4)

�B2 (K) =
X

j1>j2>j3>j4

[�(j1; j3)
2�(j2; j4) + �(j1; j3)�(j2; j4)

2]

�C2 (K) =
X

j1>j2>j3>j4

�(j1; j3)
2�(j2; j4)

2

�A3 (K) =
X

j1>���>j6

�(j1; j4)�(j2; j5)�(j3; j6)

�B3 (K) =
X

j1>���>j6

[�(j1; j3)�(j2; j5)�(j4; j6) + �(j1; j4)�(j2; j6)�(j3; j5)

+ �(j1; j5)�(j2; j4)�(j3; j6)]

�C3 (K) =
X

j1>���>j6

[�(j1; j4)
2�(j2; j5)�(j3; j6) + �(j1; j4)�(j2; j5)

2�(j3; j6)

+ �(j1; j4)�(j2; j5)�(j3; j6)
2]

�D3 (K) =
X

j1>���>j6

[�(j1; j3)
2�(j2; j5)�(j4; j6) + �(j1; j3)�(j2; j5)�(j4; j6)

2

+ �(j1; j4)�(j2; j6)
2�(j3; j5) + �(j1; j4)�(j2; j6)�(j3; j5)

2

+ �(j1; j5)
2�(j2; j4)�(j3; j6) + �(j1; j5)�(j2; j4)

2�(j3; j6)]

�E3 (K) =
X

j1>���>j6

[�(j1; j3)�(j2; j5)
2�(j4; j6) + �(j1; j4)

2�(j2; j6)�(j3; j5)
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+ �(j1; j5)�(j2; j4)�(j3; j6)
2]

�A4 (K) =
X

j1>���>j8

�(j1; j5)�(j2; j6)�(j3; j7)�(j4; j8)

�B4 (K) =
X

j1>���>j8

[�(j1; j5)�(j2; j7)�(j3; j6)�(j4; j8)

+ �(j1; j6)�(j2; j5)�(j3; j7)�(j4; j8) + �(j1; j4)�(j2; j6)�(j3; j7)�(j5; j8)

+ �(j1; j5)�(j2; j6)�(j3; j8)�(j4; j7)]

�C4 (K) =
X

j1>���>j8

[�(j1; j6)�(j2; j5)�(j3; j8)�(j4; j7)

+ �(j1; j4)�(j2; j7)�(j3; j6)�(j5; j8)]

�D4 (K) =
X

j1>���>j8

[�(j1; j7)�(j2; j6)�(j3; j5)�(j4; j8)

+ �(j1; j5)�(j2; j4)�(j3; j7)�(j6; j8) + �(j1; j3)�(j2; j6)�(j4; j8)�(j5; j7)

+ �(j1; j5)�(j2; j8)�(j3; j7)�(j4; j6)]

�E4 (K) =
X

j1>���>j8

[�(j1; j6)�(j2; j7)�(j3; j5)�(j4; j8)

+ �(j1; j6)�(j2; j4)�(j3; j7)�(j5; j8) + �(j1; j3)�(j2; j6)�(j4; j7)�(j5; j8)

+ �(j1; j5)�(j2; j8)�(j3; j6)�(j4; j7) + �(j1; j7)�(j2; j5)�(j3; j6)�(j4; j8)

+ �(j1; j4)�(j2; j5)�(j3; j7)�(j6; j8) + �(j1; j4)�(j2; j6)�(j3; j8)�(j5; j7)

+ �(j1; j5)�(j2; j7)�(j3; j8)�(j4; j6)]

�F4 (K) =
X

j1>���>j8

[�(j1; j4)�(j2; j8)�(j3; j6)�(j5; j7)

+ �(j1; j7)�(j2; j5)�(j3; j8)�(j4; j6) + �(j1; j4)�(j2; j7)�(j3; j5)�(j6; j8)

+ �(j1; j6)�(j2; j4)�(j3; j8)�(j5; j7) + �(j1; j3)�(j2; j7)�(j4; j6)�(j5; j8)

+ �(j1; j6)�(j2; j8)�(j3; j5)�(j4; j7) + �(j1; j7)�(j2; j4)�(j3; j6)�(j5; j8)

+ �(j1; j3)�(j2; j5)�(j4; j7)�(j6; j8)]
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4.2 Vassiliev invariants of order two and three

In this subsection we will present the reconstruction procedure to obtain

a combinatorial expression for each of the primitive Vassiliev invariants at

orders two and three. We will obtain the same combinatorial expressions as

the ones computed in [26, 27], working in a covariant gauge.

As we argued above we will assume that the perturbative series expan-

sion emerging in the temporal gauge must be accompanied by a global factor

which involves the topological invariant for the unknot to some power. The

topological invariant vacuum expectation value of the Wilson line correspond-

ing to the knot K has the form

hW (K;G)i = hW (K; G)itemp � hW (U;G)ib(K); (4.7)

where, as before, K denotes the regular projection into the x1; x2 plane cho-
sen, and b(K) is an unknown function. As in the case of the light-cone, gauge
we will assume that this function depends only on the shadow corresponding

to the projection K of the knot K. In other words, the quantity b(K) is
insensitive to crossing changes in K.

We will denote the perturbative series expansion of W (K;G) by:

1

d
hW (K;G)i = 1 +

1X
i=1

vi(K)xi; (4.8)

where vi(K) stands for the combination of Vassiliev invariants appearing at

order i, while that of W (K; G)temp denoted by:

1

d
hW (K; G)itemp = 1 +

1X
i=1

v̂i(K)x
i: (4.9)

The quantities v̂i(K) do not need to be topological invariants. Actually, as

explicitly shown in its labelling, they depend on the projection K of the knot
K. In (4.8) and (4.9), d = dim R, the dimension of the representation carried

by the Wilson loop.
As explained in detail in [14], and summarized in eq. (3.4), to obtain uni-

versal Vassiliev invariants (just depending on the knot class, and not on the

chosen gauge group) we �rst express the contribution from a given diagram
in the perturbative series as a sum of products of two factors, geometrical

and group factors; then we choose a basis for the independent group factors.
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Figure 9: Expansion of chord diagrams in the canonical basis: orders two
and three.

The coe�cients of the basis elements will turn out to be Vassiliev invariants.
In order to obtain the primitive invariants, and also the relations holding for

the non-primitive ones, there is a preferred family of bases called canonical
[24]. Our choice of basis will be the same as in [14], but here we will refer
to it using diagrams. In �g. 7 we have drawn the Feynman rules needed

to build up a group factor out of its diagram. Our choice of canonical basis
is depicted in �g. 8. Notice that we are including diagrams with isolated
chords or collapsible propagators. The reason for this is that their inclusion

provides useful information when working in the non-trivial vertical framing.

Instead of factorizing them out as in [14], we will keep them in our analysis.

This implies that the number of elements in the basis at a given order will
increase with respect to ref. [14]. The expressions of all the chord diagrams

in terms of the elements of the canonical basis have been collected in �gs. 9

and 10.
The perturbative series expansions entering (4.7) get some modi�cations
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relative to their form in (3.4). We will write them in the form:

1

d
hW (K;G)i = 1 +

1X
i=1

diX
j=1

�ij(K)rij(G)x
i +

1X
i=1

~diX
j=1

ij(K)~rij(G)x
i;

1

d
hW (K; G)itemp = 1 +

1X
i=1

diX
j=1

�̂ij(K)rij(G)x
i +

1X
i=1

~diX
j=1

̂ij(K)~rij(G)x
i:

(4.10)

Notice that we have split the perturbative series into two sums. In the �rst

sum the group factors, and their corresponding coe�cients, are exactly those

appearing in (3.4), while in the second sum they are all the non-primitive

elements coming from diagrams with collapsible propagators. The quantities

rij(G) and ~rij(G) denote the respective group factors, while di and ~di are the
dimension of their basis at order i. As for the geometrical factors, �ij(K) and
ij(K) denote the Vassiliev invariants, primitive or not, we are looking for,

while �̂ij(K) and ̂ij(K) are just the geometrical coe�cients in the canonical
basis of the perturbative Chern-Simons theory in the temporal gauge.

Our strategy is the following. First we will analyse the behaviour of the

unknown integrals entering �̂ij(K) and ̂ij(K); then we will build the whole
invariant, taking into account the corresponding global term as dictated by

(4.7). Since, as shown in [24], the perturbative series expansion of the vacuum
expectation value of the Wilson loop exponentiates in terms of the primitive
basis elements, we have the following simple relation among primitives:

�ij(K) = �̂ij(K) + b(K)�ij(U): (4.11)

Let us begin with the analysis of v̂i(K) in (4.9). At �rst order we have no

correction term (recall we are using the vertical framing), and the temporal

gauge series provides the full regular invariant:

v1(K) = v̂1(K) =
�
E k+ D k

�
� �
��

: (4.12)

From the expression (3.8) for the kernels we easily �nd, extracting the k = 1
contribution:

E k=
nX
i=1

�i; (4.13)
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where n is the number of crossings in K. This corresponds to the linking

number in the vertical framing, which is known to be the correct answer for

v1(K). Thus we must have

D k= 0; (4.14)

which agrees with our general arguments, showing that contributions with

an odd number of f -dependent terms vanish.

At order two, the series expansion of (4.9) can be expressed as:

v̂2(K) =
�
E k+ D k

�
� �
��

+
�
E k+ D k

�
� �
��

: (4.15)

Notice that we have not included terms of the form
nP
i=1

�iD
i
, since they have

an odd number of f -dependent terms, and should not contribute. In terms

of the group factors of the chosen canonical basis, the last expression takes
the form:

v̂2(K) = ̂21(K)� �
��

+ �̂21(K)� �
��

=
�
E k+ E k+ D k+ D k

�
� �
��

+
�
E k+ D k

�
� �
��

: (4.16)

We can easily compute from the expression (3.8) for the kernels, the two
signature-dependent terms entering this expression. One �nds:

E k =
1

4
n(K) +

X
j1>j2>j3>j4

(�(j1; j2)�(j3; j4) + �(j1; j4)�(j2; j3));

E k =
1

4
n(K) +

X
j1>j2>j3>j4

�(j1; j3)�(j2; j4); (4.17)

where n(K) is the total number of crossings of the knot projection K. These
give the following contribution to the sum entering the �rst group factor in

(4.15):

S
Ek� E k+ E k=

1

2

� nX
i=1

�i

�2
: (4.18)

According to the factorization theorem [24] this is the whole non-primitive
regular invariant of order two, 21 = 1

2
(
P
�i)

2. Thus, we conclude that the
order-two D integrals must satisfy:

S
Dk� D k+ D k= 0: (4.19)
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The second equation in (4.17) gives us the crossing-dependent part of

the primitive element �̂21(K), which can alternatively be written, using the

crossing numbers in (4.6), as:

E k=
1

4
n (K) + �A2 (K): (4.20)

Adding the corresponding global factor term from (4.11) we end with the

following expression for the primitive invariant at order two:

�21(K) =
1

4
n (K) + �A2 (K) + D k(K) + b(K) �21(U); (4.21)

where �21(U) stands for the value of this invariant for the unknot. The

function b(K) is the unknown exponent in the global factor in (4.7). Using

the fact that D and b(K) are equal in K and �(K), and that the latter is
equivalent under ambient isotopy to the unknot, we �nd:

D k(K) = �21(U) [1� b(K)]� �A2 (�(K))�
1

4
n (K): (4.22)

The �nal expression for the invariant is:

�21(K) = �21(U) + �A2 (K)� �A2 (�(K)); (4.23)

which agrees with the formulae given in [26] and [28]. Notice that its de-

pendence on b(K) has disappeared, so up to this order we do not get any
condition on this function. It might be identically zero. It is important to
remark that the derivation of (4.23) that we have presented is much simpler

than the one in the covariant gauge obtained in [26]. This simplicity is rooted
in the special features of the temporal gauge that permit to have the com-
pact expression (3.8) for the kernels, which are the essential building blocks

of the combinatorial expressions for Vassiliev invariants. These features will
become more prominent in the third-order analysis to which we now turn.

At order three, the expression of the perturbative series of (4.9) takes the

form:

v̂3(K) = ̂31(K)� �
��

+ ̂32(K)� �
��

+ �̂31(K)� �
��

=

�
S

Ek+
X
i

�i S
Dik

�
� �
��

+

�
S

Ek+
X
i

�i S
Di

k
�
� �
��

+

�
S

Ek+
X
i

�i S
Dik

�
� �
��

; (4.24)
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where we have made the choice of canonical basis shown in �g. 8. In order

to write down the sums SE
 and SD

 in terms of their Feynman integrals, one

has to take into account the change of basis described in �g. 9. Given a

basis element, its sum will be built up with all the chord diagrams whose

expansion in the canonical basis contains that element, each multiplied by

the corresponding coe�cient.

At this order there are three independent group factors, but only one is

primitive. The factorization theorem provides a su�ciently large number of

relations between theD integrals, so that we will be able to solve for the prim-

itive invariant. The Feynman integrals proportional to �0 or �2 times some D

integral are not written in (4.24) since, as we argued before, they do not con-

tribute. Recall that the integrals Di are built out of two f -dependent terms

of the propagator (2.16). The third factor, which is a signature-dependent
one, leads to the sign �i and a restriction in the integration domain. Thus, we
may expect them to be related to the order-two independent integral D k.
As we show below, this is indeed the case. With the help of the factorization
theorem we will �nd relations for the non-primitive diagrams. Our task is to
use these relations to �nd expressions for the unknown integrals in the prim-

itive factor �̂31 in terms of the order-two integrals evaluated in the whole
knot or in some closed piece of it.

Similarly to the case of lower order, the computation of the signature
contributions is easily obtained from the kernels (3.8). For the case k = 3 in
(3.8) and the �rst group factor in (4.24) one �nds:

S
Ek � E k+ E k��HH + E k+ E k��HH

=
1

3
(
X
i

�i)
3 = 31(K); (4.25)

where we have used the factorization theorem [24]. The other term associated

to the group factor under consideration must therefore vanish:

S
Dik� D

i k+ D
i k��HH + D

i k+ D
i k
��HH = 0 8 i: (4.26)

We thus end with a non-trivial relation for the D integrals of order three:

they sum up to zero. Notice that it is the same kind of relation that we found
in (4.19) at order two.
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To the second group factor in (4.24) is associated the other non-primitive

factor ̂32(K):

̂32(K) =

�
S

Ek+
X
i

�i S
Di

k
�
; (4.27)

whose relation with the corresponding regular invariant, following (4.7), is:

32(K) = ̂32(K) + b(K)�21(U)
X
i

�i: (4.28)

Due to the Chern-Simons factorization theorem [24], the invariant must ful�l

the relation:

32(K) = �21(K)
X
i

�i: (4.29)

These last two equations trivially imply that the following relation must hold:

̂32(K) + b(K)�21(U)
X
i

�i = �21(K)
X
i

�i: (4.30)

This equation will provide important relations to solve the unknown quan-

tities in (4.27). The strategy to obtain them is the following. First we extract
the signature-dependent part of (4.27), using the kernels (3.8); then one sub-
stitutes (4.21) and (4.28) into (4.30). The signature contributions in (4.27)

turn out to be, using the de�nition of the signature function given in (4.5)
and the crossing numbers (4.6):

S
Ek � E k��HH + 2 E k+ 3 E k��HH (4.31)

=
� X
j1>���>j6

�(j1; j2)�(j3; j5)�(j4; j6) + c. p.
�
+ 2�B3 + 3�A3 ;

where c. p. stands for the �ve inequivalent cyclic permutations of the indices.

The right-hand side of (4.31) factorizes as :

S
Ek= E k

X
i

�i (4.32)

where E k is given in (4.17). Substituting this result into (4.30), we �nd
a relation which involves three of the four Di integrals present at this order:

S
Dik� D

i k��HH + 2 D
i k+ 3 D

i k
��HH = D k: (4.33)
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Figure 11: Splitting of D integrals.

Notice that the left-hand side of (4.33) depends on the crossing i, while the
right-hand side does not, i.e. the precise combination of D integrals in the
left, whose domain of integration in principle depends on the crossing i, is in

fact equal to an order-two D integral evaluated in the whole knot.
Equations (4.26) and (4.33) can also be proved without making use of

the factorization theorem. It is worthwhile to describe how this is so, since
it provides some insight that will be useful later. The left-hand side of both
equations is a sum over Feynman integrals, with one propagator �xed at a

crossing and the other two running over the two regions in which that crossing
divides the path of the knot in a way consistent with the corresponding
diagram. To better understand the argument, let us �rst think that we

want to compute the integral D k, or D k, splitting the knot path
into two regions from a selected crossing i, so one runs over the parametric

interval (si�; si+), and the other over (si+; si�). The integration region can be

decomposed in a sum of partial contributions as depicted in �g. 11, where the
dashed line represents the crossing i. The linearity of the integral guarantees

that the sum of all these partial contributions leads to the full D k, or
D k. The order-two integrals Di appearing in (4.26) can be organized in

a similar way, leading to:

D
i k+ D

i k��HH + D
i k+ D

i k
��HH = D k+ D k; (4.34)

so (4.26) is a consequence of (4.19). For (4.33) the splitting procedure is a bit

more elaborated. The D integrals entering in its left-hand side can be read
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from �g. 11: given some Di
, all the diagrams in �g. 11 whose three chords

build the Feynman diagram in the subscript (no matter whether they are

dashed or not) contribute to it. We can see that some cancellations occur

between them. For instance, when the �rst three integrals in the second

column of �g. 11 (the �rst two entering D
i k��HH and the third D

i k) are
summed up, they factorize to the �rst integral times the second in the last

equality of �g. 11. This factorization can be written as:

D k(Ki+)� D k(Ki�;Ki+); (4.35)

where the notation used is the following: Ki+ and Ki� are the two components

obtained from the original knot when the i crossing is removed; D k(Ki+)

stands for the integral of the f -dependent part of the propagator over the

component Ki+, while D k(Ki�;Ki+) represents the integral of the f -part
of the propagator with one of its end-points running over Ki� and the other

over Ki+. Recall that the diagram in the subscript denotes the way that
the propagators are attached to the knot. The �rst factor in (4.35) is zero
because of (4.14), as it is the evaluation of an odd number of f -dependent

parts of the propagator (2.16) over the knot Ki+. Similar arguments hold for
the �rst three integrals in the fourth column of �g. 11, which again sum up

to zero. Also, the sum of the second and third integrals in the third column
of �g. 11 factorize to:

1

2

 
D k(Ki�;Ki+)

!2

: (4.36)

But this integral can be seen to be zero by using the decomposition of the
�rst-order integral in the last equality of �g. 11, and (4.14). One can now

see that the remaining integrals in (4.33) build the decomposition of D k
shown in �g. 11, so (4.33) is proved.

The splitting argument will again lead to a relation for the unknown

integrals entering the primitive diagram of eq. (4.24). These are:

S
Dik� D

i k+ 2 D
i k
��HH : (4.37)

All the integrals entering (4.37) can again be read from �g. 11: just
add up those diagrams whose chords build the subscripts in (4.37) with the
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aproppriate factors. A factorization of the type explained in (4.36) occurs,

and the remaining terms build up the decomposition of D k, except for the
�rst and last terms in the second equality of �g. 11, leading to the following

result:

S
Dik= D k(K)� D k(Ki+)� D k(Ki�): (4.38)

Thus, we have achieved our goal: we have expressed the unknown integrals

in the primitive factor at order three in terms of an known integrals of order

two. Given a crossing i, the D integrals of order three in the left-hand side

of (4.38) (made out of two f -dependent parts of propagator (2.16)) can be

expressed as a combination of the order-two integral D k, evaluated in K

and in the two components Ki+ and Ki� in which the original knot projection

is divided when the i crossing is removed. Notice that now both sides of (4.38)

depend on the crossing i.
Equation (4.38) can also be obtained by using the factorization theorem

and the relations (4.26) and (4.33). Taking into account that

S
Dik� S

Dik= D
i k��HH + D

i k+ D
i k
��HH = � D

i k; (4.39)

where, in the last equality, we have made use of (4.26), and using (4.33) and
(4.37), one easily �nds:

S
Dik= D k+ D

i k: (4.40)

The last term of this equation can be written as:

D
i k(K) = D k(Ki+) + D k(Ki�)

+ D k(Ki+)� D k(Ki�): (4.41)

Taking into account that the third and fourth terms of this equation vanishes
because of (4.14) and that, using (4.19), the �rst two can be substituted by
the corresponding order-two D-terms, one �nds that (4.38) holds.

From the procedure that we have developed to obtain (4.38), we learn

that the factorization theorem provides enough relations to express all the

unknown parts of the primitive invariants in terms of the lower-order integral
D k. Alternatively to the use of the factorization theorem, we also possess

a splitting procedure which leads to the same results and that sheds some

light on the origin of the relations involved.
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In order to write down the order-three primitive invariant explicitly, we

need to compute in detail the signature contributions. These are easily ob-

tained by using the general formula for the kernels in (3.8). The resulting

contribution can be written in a compact form, using the crossing functions

(4.6):

S
Ek � E k+ 2 E k��HH

=
1

9
�1(K) +

3

4
�B2 (K) + �B3 (K) + 2�A3 (K): (4.42)

Using (4.22), (4.38), (4.42), and the following two relations,

�B2 (K) =
X
i

�i n(Ki+;Ki�); (4.43)

n(Ki+;Ki�) + 1 = n(K)� n(Ki+)� n(Ki�); (4.44)

where n(Ki+;Ki�) stands for the number of crossings between the two com-

ponents Ki+ and Ki�, we end with the formula (recall that, according to
(4.7), there is no contribution from the global factor at odd orders):

�31(K) =
h1
9
�

1

4
� �21(U)

i
�1(K) +

1

2
�B2 (K) + �B3 (K) + 2�A3 (K)

�
X
i

�i
h
�A2 (�(K))� �A2 (�(Ki+))� �A2 (�(Ki�))

i

� �21(U)
X
i

�i [b(K)� b(Ki+)� b(Ki�)]: (4.45)

Contrary to the order-two result (4.23) we now �nd an expression depending

explicitly on the unknown function b. Invariance of �31(K) provides a relation

for the terms involving b in (4.45), which, in turn, leads to a b-independent

expression. The simplest way to achieve this is to consider a knot K with
two projections which di�er by a Reidemeister move of type I. It is easy to

�nd that the value of �1 varies in one unit while all the other terms, except

the last one involving the function b in (4.45), remain invariant (this will be
shown in full detail in the next section). Thus, the contribution from the last

term in (4.45) must cancel the one from the �rst term. This implies that the
unknown function b must satisfy:

b(K)� b(Ki+)� b(Ki�) = x; (4.46)
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where x is a constant such that:

1

9
�

1

4
� �21(U)� �21(U) x = 0: (4.47)

Throughout this paper we will use the following normalization for the unknot:

�21(U) = �
1

6
; (4.48)

which implies:

x = �
1

6
: (4.49)

Taking into account (4.46) and (4.49), expression (4.45) for the order-

three primitive Vassiliev invariant turns out to be:

�31(K) =
1

2
�B2 (K) + �B3 (K) + 2�A3 (K)

�
X
i

�i
h
�A2 (�(K))� �A2 (�(Ki+))� �A2 (�(Ki�))

i
: (4.50)

This combinatorial formula is the same as the one obtained in [27], using
Chern-Simons gauge theory in a covariant gauge and in [28] using other meth-
ods. As compared to the calculation in the covariant gauge, our computation

is much simpler. It is very unlikely that with the covariant-gauge methods
utilized in [27] one could obtain combinatorial expressions for higher-order
invariants. It turns out that our procedure goes beyond and can be imple-

mented at higher order. We will show in the next section how this is achieved

at order four, obtaining combinatorial formulae for the two primitive Vas-

siliev invariants present at that order.

4.3 Vassiliev invariants of order four

In this section we will apply our reconstruction procedure to compute

the two combinatorial expressions for the two primitive invariants at order

four. Using our diagrammatic notation for the group factors and the choice

of basis shown in �g. 8, the perturbative series expansion in the temporal
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gauge at this order takes the form:

v̂4(K) = ̂41(K)� �
��

+ ̂42(K)� �
��

+ ̂43(K)� �
��

+ �̂41(K)� �
��

+ �̂42(K)� �
��

+ �̂43(K)� �
��

; (4.51)

which, after writing down the geometrical contributions more explicitly, mak-

ing use of the notation introduced above to separate the D integrals from

the E integrals, becomes:

v̂4(K) =

�
S

Ek+
1

4

X
i

�2i S
Diik+

X
i>j

�i�j S
Dijk+ S

Dk
�
� �
��

+

�
S

E

k+
1

4

X
i

�2i S
Dii

k+
X
i>j

�i�j S
Dij

k+ S
D

k
�
� �
��

+

�
S

E

k+
1

4

X
i

�2i S
Dii

k+
X
i>j

�i�j S
Dij

k+ S
D

k
�
� �
��

+

�
S

E

k+
1

4

X
i

�2i S
Dii

k+
X
i>j

�i�j S
Dij

k+ S
D

k
�
� �
��

+

�
S

Ek+
1

4

X
i

�2i S
Diik+

X
i>j

�i�j S
Dijk+ S

Dk
�
� �
��

+

�
S

E
k+

1

4

X
i

�2i S
Dii
k+

X
i>j

�i�j S
Dij
k+ S

D
k
�
� �
��

: (4.52)

Notice that in this expression we have not included the Feynman integrals

proportional to � and �3, as they do not contribute. Also it is worthwhile to
point out that Dii

 denotes an integral where two chords for the signature-

dependent part of (2.16) are attached to the same crossing i, while D
ij


corresponds to one in which the two chords are attached to two di�erent

crossings. In the latter, there are in fact two di�erent sums: one for i; j 2 Ca,

and another for i; j 2 Cb, where Ca and Cb are the sets which entered in (4.3)

and (4.4). All these integrals are built out of products of two f -terms, while
the ones of D contain four f -terms.

At order four there are six independent group factors, but only two are

primitive. The factorization theorem will allow us to obtain ways of relating
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all the D-integrals in terms of the second-order one D k. This will lead to

an expression for the ones associated to the primitive group factors, S
Dijk

and S
Dij
k, similar to that obtained at third order in (4.38).

As in previous orders, one easily �nds, with the aid of the kernels (3.8) and

of the factorization theorem, that the sum over all the signature contributions

coming from the propagator (2.16), which are contained in S
Ek, builds up

the whole regular invariant:

S
Ek � E k+ E k��HH + E k�� + E k��HH + E k��PP

��PP
+ E k

+ E k+ E k��HH + E k+ E k��HH + E k��HH
=

1

4
(
X
i

�i)
4
= 41(K): (4.53)

This implies that the rest of the coe�cients associated to that group factor
vanish:

S
Dijk � D

ij k+ D
ij k��HH + D

ij k
�� + D

ij k
��HH + D

ij k��PP
��PP

+ D
ij k+ D

ij k+ D
ij k��HH + D

ij k+ D
ij k
��HH

+ D
ij k
��HH = 0 8i; j ;

S
Dk � D k+ D k��HH + D k�� + D k��HH + D k��PP

��PP
+ D k

+ D k+ D k��HH + D k+ D k��HH + D k��HH = 0: (4.54)

The next non-primitive factor, ̂42(K), has the form:

̂42(K) = S
E

k+
1

4

X
i

�2i S
Dii

k+
X
i>j

�i�j S
Dij

k+ S
D

k; (4.55)

and, as follows from (4.7), its relation with the corresponding invariant is:

42(K) = ̂42(K) +
1

2
b(K)�21(U) (

X
i

�i)
2
: (4.56)

From the factorization theorem, it follows that this invariant factorizes as:

42(K) =
1

2
(
X
i

�i)
2
�21(K): (4.57)
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Following the procedure used at order three, i.e. computing the signature-

dependent part of ̂42(K) with the aid of the kernels in (3.8), and comparing

these last two equations, we �nd that the signature contributions match,

S
E

k=
1

2
(
X
i

�i)
2 E k; (4.58)

so the D integrals have to ful�l the following relations:

S
Dii

k � D
ii k��HH + 2 D

ii k
�� + 3 D

ii k
��HH + 2 D

ii k��PP
��PP

+ 3 D
ii k

+ 3 D
ii k+ 4 D

ii k��HH + 4 D
ii k+ 5 D

ii k
��HH + 6 D

ii k
��HH

= 2 D k 8i ; (4.59)

S
Dij

k � D
ij k��HH + 2 D

ij k
�� + 3 D

ij k
��HH + 2 D

ij k��PP
��PP

+ 3 D
ij k

+ 3 D
ij k+ 4 D

ij k��HH + 4 D
ij k+ 5 D

ij k
��HH + 6 D

ij k
��HH

= D k 8i 6= j ; (4.60)

S
D

k � D k��HH + 2 D k�� + 3 D k��HH + 2 D k��PP
��PP

+ 3 D k

+ 3 D k+ 4 D k��HH + 4 D k+ 5 D k��HH + 6 D k��HH

= 0: (4.61)

Recall that the coe�cients multiplying the D-integrals come from the choice

of basis that we have made. They can be computed with the aid of �g.

10. Notice that in principle the left-hand side of (4.59) and (4.60) could de-

pend upon the pair of crossings chosen. The factorization theorem, however,

implies that this is not the case. Actually, these relations are even more

remarkable. In (4.59) and (4.60), we are dealing with D integrals where two

of the propagators are placed in the same crossing (Dii), in two di�erent
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crossings belonging to Ca (Dij;a), or in another two in Cb (Dij;b). A given

pair of chords in a given Feynman diagram will ful�l only one of the last

two conditions, as is easily seen from their picture. So in fact eq. (4.60) is

not one but two di�erent relations. It is also worthwhile to point out that

factorization provides also a check for the kernels (3.8): the computation

of the signature contributions encoded in the symbol S Ek, done with the

aid of (3.8), has to match that coming from the factorized expression of the

invariant given in (4.57). Equation (4.58) shows that this is indeed the case.

For the other non-primitive factors one proceeds similarly. For ̂43(K) we

have:

̂43(K) = S
E

k+
1

4

X
i

�2i S
Dii

k+
X
i>j

�i�j S
Dij

k+ S
D

k;(4.62)

43(K) = ̂43(K); (4.63)

43(K) =
X
i

�i �31(K): (4.64)

Comparing (4.63) with (4.64), and making use of (3.8) to check that the

signature contributions in 43(K) match those of the right-hand side of (4.64),
we �nd the following relations for the D integrals:

S
Dii

k � D
ii k
�� + 2 D

ii k
��HH ++2 D

ii k+ 3 D
ii k+ 4 D

ii k��HH

+ 4 D
ii k+ 6 D

ii k
��HH + 8 D

ii k
��HH

= 4 S
Dik= 4[ D k(K)� D k(Ki+)� D k(Ki�)];

(4.65)

S
Dij

k � D
ij k
�� + 2 D

ij k
��HH ++2 D

ij k+ 3 D
ij k+ 4 D

ij k��HH

+ 4 D
ij k+ 6 D

ij k
��HH + 8 D

ij k
��HH

= S
Dik= D k(K)� D k(Ki+)� D k(Ki�); (4.66)
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S
D

k � D k�� + 2 D k��HH + 2 D k+ 3 D k+ 4 D k��HH + 4 D k

+ 6 D k��HH + 8 D k��HH = 0; (4.67)

where, for the last step in eqs. (4.65) and (4.66), we have made use of (4.38).

For the last non-primitive factor �̂41(K), we �nd:

�̂41(K) = S
E

k+
1

4

X
i

�2i S
Dii

k+
X
i>j

�i�j S
Dij

k+ S
D

k;(4.68)

�41(K) = �̂41(K) + b(K)
1

2
(�21(U))

2
; (4.69)

�41(K) =
1

2
(�21(K))2; (4.70)

and the relations obtained for the D-integrals turn out to be:

S
Dii

k � D
ii k��PP
��PP

+ D
ii k+ D

ii k��HH + 2 D
ii k

+ 2 D
ii k
��HH + 3 D

ii k
��HH = D k 8i ; (4.71)

S
Dij;a

k � D
ij;a k��PP

��PP
+ D

ij;a k+ D
ij;a k��HH + 2 D

ij;a k

+ 2 D
ij;a k

��HH + 3 D
ij;a k

��HH = D k 8i; j 2 Ca ; (4.72)

S
Dij;b

k � D
ij;b k��PP

��PP
+ D

ij;b k+ D
ij;b k��HH + 2 D

ij;b k

+ 2 D
ij;b k
��HH + 3 D

ij;b k
��HH = 0 8i; j 2 Cb ; (4.73)

S
D

k � D k��PP
��PP

+ D k+ D k��HH + 2 D k+ 2 D k��HH + 3 D k��HH

=
1

2

�
D k

�2
: (4.74)
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Figure 12: Dividing the knot in other knots.

Notice that in this case we have now found di�erent relations for the Dij


integrals depending on the relative position between the crossing labels.

We have obtained a series of relations which will be used in the deter-
mination of the unknown terms in the primitive factors. As in order three,
a fundamental step to carry out the computation is the expression of the

integral D k in terms of all the integrals appearing when we split its inte-
gration domain in the pieces de�ned by two selected crossings i and j. Now
there are two ways of doing this, depending on which are the relative posi-

tions of the crossings labels. The notation we will use when a closed path is
split after removing two crossings is shown in �g. 12. Notice that, when the

crossings are alternating, orientation has to be reversed in two of the four
segments the knot is divided into, so as to have actual closed paths.

Using all the previous relations for the D integrals at this order, and ap-

plying a splitting procedure analogous to the one at order three, one �nds the

following expressions for the unknown integrals present in the two primitive
factors:

S
Diik � D

ii k+ D
ii k+ 2 D

ii k��HH + 4 D
ii k

+ 5 D
ii k
��HH + 7 D

ii k
��HH
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= 3

�
D k(K)� D k(Ki+)� D k(Ki�)

�
; (4.75)

S
Dij;ak � D

ij;a k+ D
ij;a k+ 2 D

ij;a k��HH + 4 D
ij;a k

+ 5 D
ij;a k

��HH + 7 D
ij;a k

��HH

= 3 D k(K)

� 2

�
D k(Ki+) + D k(Ki�) + D k(Kj+) + D k(Kj�)

�

+ D k(Kija) + D k(Kijb); (4.76)

S
Dij;bk � D

ij;b k+ D
ij;b k+ 2 D

ij;b k��HH + 4 D
ij;b k

+ 5 D
ij;b k
��HH + 7 D

ij;b k
��HH

= D k(K)

�

�
D k(Ki+) + D k(Ki�) + D k(Kj+) + D k(Kj�)

�

+ D k(Kijc) + D k(Kijd) + D k(Kije); (4.77)

S
Dii
k � D

ii k+ D
ii k
��HH + D

ii k
��HH = 0; (4.78)

S
Dij;b
k � D

ij;b k+ D
ij;b k
��HH + D

ij;b k
��HH = 0; (4.79)

S
Dij;a
k � D

ij;a k+ D
ij;a k

��HH + D
ij;a k

��HH
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= D k(K)

�

�
D k(Ki+) + D k(Ki�) + D k(Kj+) + D k(Kj�)

�

+ D k(Kija) + D k(Kijb): (4.80)

As before, the relations we have found depend on how the two crossings are

related. Notice that all the possible ways of dividing the knot into other

closed knots when one or two crossings are removed appear. The alternating

case is a bit subtle because, to form closed paths, orientation in some seg-

ments has to be reversed, and so the integrals in the left-hand side of (4.76)
and (4.80) have to appear with the aproppriate sign.

Our aim is now to calculate �̂42(K) and �̂43(K), the primitive factors at
this order. It follows from (4.52) that they have the form:

�̂42(K) = S
Ek+

1

4

X
i

�2i S
Diik+

X
i>j

�i�j S
Dijk+ S

Dk; (4.81)

�̂43(K) = S
E
k+

1

4

X
i

�2i S
Dii
k+

X
i>j

�i�j S
Dij
k+ S

D
k: (4.82)

The signature contributions appearing in them can be computed from the
kernels (3.8). Using the crossing numbers notation introduced in eq. (4.6),

we �nd:

S
Ek � E k+ E k+ 2 E k��HH + 4 E k

+ 5 E k��HH + 7 E k��HH

=
38

(4!)2
n(K) +

44

(3!)2
�A2 (K) +

21

16
�C2 (K) + 3�C3 (K)

+
3

4
�E3 (K) +

9

4
�D3 (K) + 7�A4 (K) + 5�B4 (K) + 4�C4 (K)

+ �D4 (K) + 2�E4 (K) + �F4 (K); (4.83)
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S
E
k � E k+ E k��HH + E k��HH

=
5

(4!)2
n(K) +

1

3!
�A2 (K) +

1

4
�C2 (K) +

1

2
�C3 (K)

+
1

2
�E3 (K) + �A4 (K) + �B4 (K) + �C4 (K): (4.84)

Making use of all these formulae and adding the corresponding global

terms coming from (4.7) we obtain the following expressions for the primitive

invariants at order four:

�42(K) =
38

(4!)2
n(K) +

44

(3!)2
�A2 (K) +

21

16
�C2 (K) + 3�C3 (K)

+
3

4
�D3 (K) +

9

4
�E3 (K) + 7�A4 (K) + 5�B4 (K) + 4�C4 (K)

+ �D4 (K) + 2�E4 (K) + �F4 (K)

+
3

4

X
i

�2i

h
D k(K)� D k(Ki+)� D k(Ki�)

i

+
X
i;j2Ca

�i�j

�
3 D k(K)� 2

h
D k(Ki+) + D k(Ki�)

+ D k(Kj+) + D k(Kj�)
i
+ D k(Kija) + D k(Kijb)

�

+
X
i;j2Cb

�i�j

�
D k(K)�

h
D k(Ki+) + D k(Ki�) + D k(Kj+)

+ D k(Kj�)
i
+ D k(Kijc) + D k(Kijd) + D k(Kije)

�

+ D k(K) + b(K)�42(U); (4.85)

�43(K) =
5

(4!)2
n(K) +

1

3!
�A2 (K) +

1

4
�C2 (K) +

1

2
�C3 (K)
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+
1

2
�E3 (K) + �A4 (K) + �B4 (K) + �C4 (K)

+
X
i;j2Ca

�i�j

�
D k(K)�

h
D k(Ki+) + D k(Ki�) + D k(Kj+)

+ D k(Kj�)
i
+ D k(Kija) + D k(Kijb)

�

+ D k(K) + b(K)�43(U): (4.86)

To get rid of the D-integrals appearing in this expression one has to �rst

replace D k by (4.22), and then take into account the fact that all D

integrals, as well as the unknown function b(K), only depend on the shadow

of the knot. In order to simplify the equations, we will use in (4.85) and
(4.86) the following set of relations:

�E3 (K) =
X

i>j2Cb

�i�j(K)
h
n(K)� n(Ki+)� n(Ki�)

�n(Kj+) � n(Kj�) + n(Kijc) + n(Kijd) + n(Kije)
i
;

6�A2 (K) + 4�C3 (K) + �D3 (K) =
X

i>j2Ca

�i�j(K)
h
3n(K)� 2n(Ki+)� 2n(Ki�)

�2n(Kj+) � 2n(Kj�) + n(Kija) + n(Kijb)
i
;

2�A2 (K) + 2�C3 (K) =
X

i>j2Ca

�i�j(K)
h
n(K)� n(Ki+)� n(Ki�)

�n(Kj+) � n(Kj�) + n(Kija) + n(Kijb)
i
: (4.87)

These relations are analogous to (4.43) and their use will make (4.85) and
(4.86) independent of the function n(K). Evaluating (4.85) and (4.86) for
the ascending diagram �(K), a projection of the unknot, one obtains expres-

sions for the order-four integrals D k and D k. Substituting them back

into (4.85) and (4.86), using the normalization for the unknot invariant at

order two given in (4.48) and the relations (4.87), one obtains the following

expressions:

�42(K) = �42(U) +
2

9
[�A2 (K)� �A2 (�(K))] + 2 [�C3 (K)� �C3 (�(K))]
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+
1

2
[�D3 (K)� �D3 (�(K))] + 2 [�E3 (K)� �E3 (�(K))] + 7 [�A4 (K)� �A4 (�(K))]

+ 5 [�B4 (K)� �B4 (�(K))] + 4 [�C4 (K)� �C4 (�(K))] + �D4 (K)� �D4 (�(K))

+ 2 [�E4 (K)� �E4 (�(K))] + �F4 (K)� �F4 (�(K))

�
X

i>j2Ca

[�i�j(K)� �i�j(�(K))]

�
3�A2 (�(K))� 2

h
�A2 (�(Ki+)) + �A2 (�(Ki�))

+ �A2 (�(Kj+)) + �A2 (�(Kj�))
i
+ �A2 (�(Kija)) + �A2 (�(Kijb))

�

�
X

i>j2Cb

[�i�j(K)� �i�j(�(K))]

�
�A2 (�(K))� �A2 (�(Ki+))� �A2 (�(Ki�))

� �A2 (�(Kj+))� �A2 (�(Kj�)) + �A2 (�(Kijc)) + �A2 (�(Kijd)) + �A2 (�(Kije))

�

+
1

6

X
i>j2Ca

[�i�j(K)� �i�j(�(K))]
n
3b(K)� 2b(Ki+)� 2b(Ki�)

� 2b(Kj+)� 2b(Kj�) + b(Kija) + b(Kijb)
o

+
1

6

X
i>j2Cb

[�i�j(K)� �i�j(�(K))]
n
b(K)� b(Ki+)� b(Ki�)

� b(Kj+)� b(Kj�) + b(Kijc) + b(Kijd) + b(Kije)
o
; (4.88)

�43(K) = �43(U)�
1

6
[�A2 (K)� �A2 (�(K))] +

1

2
[�E3 (K)� �E3 (�(K))]

+ �A4 (K)� �A4 (�(K)) + �B4 (K)� �B4 (�(K)) + �C4 (K)� �C4 (�(K))

�
X

i>j2Ca

[�i�j(K)� �i�j(�(K))]

�
�A2 (�(K))� �A2 (�(Ki+))� �A2 (�(Ki�))

� �A2 (�(Kj+))� �A2 (�(Kj�)) + �A2 (�(Kija))) + �A2 (�(Kijb))

�
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+
1

6

X
i>j2Ca

[�i�j(K)� �i�j(�(K))]
n
b(K)� b(Ki+)� b(Ki�)

� b(Kj+)� b(Kj�) + b(Kija) + b(Kijb)
o
: (4.89)

Notice that some coe�cients of the crossing functions have changed because

there are new contributions coming from the use of (4.22) and (4.87). Also,

the terms depending only on �(K) (like n(K) or �C2 ) disappear after substi-

tuting back D k and D k.
The expressions (4.88) and (4.89) contain sums involving the function

b(K) evaluated in di�erent closed paths. In analogy with order three, we will

require the factors of these sums to be constants. Actually, as we argue below,

this is the only possibility for (4.88) and (4.89) to be invariants. Making use

of the constraint imposed at order three (see (4.46)) we de�ne the following:

2x � [b(K)� b(Kijc)� b(Kijd)� b(Kije)] = y;

2x � [b(K)� b(Kija)� b(Kijb)] = z;

4x � [b(K)� b(Kija)� b(Kijb)] = t; (4.90)

where y, z and t are the constants and x = �1
6
follows from (4.49). Recall

that the labels of K refer to the closed paths in which the original knot
is split when two of its crossings are removed (see �g. 12). Consistency
between the last two equations leads to t = 2x + z. A solution for the

other two can be obtained by using the values of �42 and �43 for some non-
trivial knot (for example, for the trefoil knot T : �42(T ) = 62=3 + 1=360 and

�43(T ) = 10=3� 1=360). They turn out to be:

y = z = 0: (4.91)

The �nal combinatorial expressions for the two order-four primitive Vas-

siliev invariants are:

�42(K) = �42(U) +
1

6
[�A2 (K)� �A2 (�(K))] + 2 [�C3 (K)� �C3 (�(K))]

+
1

2
[�D3 (K)� �D3 (�(K))] + 2 [�E3 (K)� �E3 (�(K))] + 7 [�A4 (K)� �A4 (�(K))]

+ 5 [�B4 (K)� �B4 (�(K))] + 4 [�C4 (K)� �C4 (�(K))] + �D4 (K)� �D4 (�(K))
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+ 2 [�E4 (K)� �E4 (�(K))] + �F4 (K)� �F4 (�(K))

�
X

i>j2Ca

[�i�j(K)� �i�j(�(K))]

�
3�A2 (�(K))� 2

h
�A2 (�(Ki+)) + �A2 (�(Ki�))

+ �A2 (�(Kj+)) + �A2 (�(Kj�))
i
+ �A2 (�(Kija)) + �A2 (�(Kijb))

�

�
X

i>j2Cb

[�i�j(K)� �i�j(�(K))]

�
�A2 (�(K))� �A2 (�(Ki+))� �A2 (�(Ki�))

� �A2 (�(Kj+))� �A2 (�(Kj�)) + �A2 (�(Kijc)) + �A2 (�(Kijd)) + �A2 (�(Kije))

�
(4.92)

�43(K) = �43(U)�
1

6
[�A2 (K)� �A2 (�(K))] +

1

2
[�E3 (K)� �E3 (�(K))]

+ �A4 (K)� �A4 (�(K)) + �B4 (K)� �B4 (�(K)) + �C4 (K)� �C4 (�(K))

�
X

i>j2Ca

[�i�j(K)� �i�j(�(K))]

�
�A2 (�(K))� �A2 (�(Ki+))� �A2 (�(Ki�))

� �A2 (�(Kj+))� �A2 (�(Kj�)) + �A2 (�(Kija))) + �A2 (�(Kijb))

�
: (4.93)

Again, the coe�cient of �A2 in (4.92) has changed because of the contribution

coming from the last equation in (4.90). Note that both formulae have the

same structure: a sum over some crossing numbers evaluated in K minus the
same sum evaluated in the ascending diagram �(K). In addition, there are

residual sums involving some combination of the functions �A2 evaluated in

the di�erent pieces the knot is divided into when two crossings are selected. In
�42(K) we have two of these sums: one for all the pairs of crossings belonging

to Ca, and another for those in Cb. In �43(K), however, only the former set
contributes. This, together with the fact that there is a larger number of

order-four crossing numbers appearing in (4.92), makes the expression for

�42(K) more complicated.
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There is another important comment to be made: the term in both in-

variants proportional to �A2 (K) � �A2 (�(K)) is in fact a Vassiliev invariant

by itself, that of order two with the unknot normalized to zero. So the rest

of the sum also has to be a topological invariant (as we prove in the next

section). Then, the value of the coe�cient of �A2 (K) � �A2 (�(K)) does not

a�ect the topological invariance of our formulae. The last two constraints

for the function b(K) in (4.90) only a�ect that term, so that any other values

for t and z, as long as they are constants, would not spoil the topological

invariance of our formulae. With our present knowledge, the only way to �x

t and z is to compare our expression for �42(K) and �43(K) to a known one

for some non-trivial knot, as we did to get (4.91). Of course, this would not

be necessary if we had an independent argument to obtain the function b(K).

To �x the constant y, however, there is no need to make explicit comparisons:
it follows from invariance, as was the case of x at order three. Indeed, under
the �rst Reidemeister move, the variation of the sum that multiplies y,X

i>j2Cb

�i�j(K); (4.94)

is proportional to the writhe, �1(K), while the rest of the terms remain
invariant (this will be explicitly shown in the next section). Thus y = 0 is

the only solution.
We have implemented the combinatorial expressions (4.92) and (4.93),

as well as the known ones, (4.23) and (4.50) into a Mathematica algorithm.

In the tables 1 and 2 of the appendix we present a list of the values of the
four primitive invariants �21, �31, �42 and �43 for all prime knots up to nine

crossings. Actually, the values presented in those tables are �21, �31, �42 and
�43 once their value for the unknot has been substracted. The values for the
new combinatorial expressions for �42 and �43 agree for all knots for which

those quantities are known [14, 15, 29].

The constraints that we have obtained for the function b(K) can be sum-
marized in the following equations:

b(K)� b(Ki+)� b(Ki�) = �
1

6
;

b(K)� b(Kija)� b(Kijb) = �
1

3
;

b(K)� b(Kijc)� b(Kijd)� b(Kije) = �
1

3
: (4.95)
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These constraints on b have a very simple solution. Let us consider a repre-

sentative of K which is a Morse function in both the x and the y directions.

Certainly this can always be done without lost of generality for any projec-

tion K. This representative has well de�ned numbers of critical points in

both the x and the y directions. Let us denote these numbers by nx and ny
respectively. A solution of the equations (4.95) is:

b(K) =
1

12
(nx + ny): (4.96)

To prove that this is indeed a solution, let us consider the three possible

splittings of K contained in eq. (4.95), which are represented in �g. 12.

Under the �rst splitting we �nd that nx + ny ! nx + ny + 2, i.e. that the

number of extrema is increased by 1 in each of the resulting components.
Under the second splitting, the number of extrema is increased by 2 in each

of the resulting components, and therefore nx+ny ! nx+ny+4. Finally, in
the third splitting nx + ny ! nx + ny + 4, since one component increases by
2 while in the other two it increases by 1. Thus (4.96) satis�es the relations

(4.95). Notice that the ansatz (4.96) is symmetric under the interchange
of x and y. This is consistent with the rotational invariance on the plane

normal to the time direction present in the temporal gauge. We conjecture
that (4.96) is the correct form of the function b(K) when a representative of
K, which is a Morse function in both the x and the y directions, is chosen.
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Figure 13: Reidemeister I .

5 Invariance under Reidemeister moves

In this section we will prove that the combinatorial expressions for the two
primitive invariants of order four, (4.92) and (4.93), are actually topological

invariants, showing that they are invariant under the three Reidemeister
moves. To do so, we have to know how the crossing functions behave under
these moves. For some of them this has been done in [26, 27]. For the others,

we will work out the form of their variations proceeding in an analogous way.
The Reidemeister moves are depicted in �gs. 13, 14, 15. For concreteness,

we have made a choice of base points and orientations, as well as a choice of

joining the three curves in R-III, but it should be clear that these choices do
not a�ect our proof. They have also been taken such that the signature of

the crossings involved in the moves does not vary when we change from K
to �(K) or from K0 to �(K0). As the number of di�erent functions is quite
large, we are going to provide details only for one case, �A4 , and give a list of

the variations for the rest of the crossing functions.
It is easier to understand the procedure to obtain the variations of the

crossing functions using diagrams. Recall that in �g. 6 we gave a diagram-

matic de�nition of the crossing functions in which a circle represented the

ordered set of crossing labels on K, and a series of chords joining the labels i

and j represented the signature function �(i; j). From those diagrams one can
immediately �gure out that, given a selected group of crossings, only those

that follow the pattern given by the diagram contribute to the corresponding

function. In �gs. 13, 14, 15 we have drawn similar diagrams to represent
the three Reidemeister moves, which are labelled R-I, R-IIA and R-IIB, and

R-III. In these diagrams, the circle representing K is divided into sections,
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Figure 15: Reidemeister III.
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some of them a�ected by the move and some not. Only the labels a�ected

by the move are depicted and a chord is pictured as joining them. All other

crossings do not change under the moves.

Under R-I, the function �A4 does not vary:

�A4 (K
0)� �A4 (K) = 0: (5.1)

The e crossing does not contribute to any term in �A4 , as can be seen from the

symbolic expression of the move in �g. 13: there is no way to choose e and

other three crossings so that they reproduce the diagrammatic expression

of this function, because all the others lay in the region outside (e�; e+).

The same argument holds for every other crossing function appearing in eqs.

(4.92) and (4.93) for �42(K) and �43(K), because none has a diagrammatic

expression with isolated chords.
Under a move of type R-IIA we �nd:

�A4 (K
0)� �A4 (K) = �e �f

X
i1;i22(f

�;e+)

i3;i42(f
+;e�)

�(i1; i3)�(i2; i4); (5.2)

where the crossings e and f are such that �e = ��f . In this expression
and throughout this section, the crossing labels i1; : : : ; in ful�l the natural

order: i1 < i2 < � � � < in. In the variation (5.2) there is a potential term
proportional to �e+ �f but it does not contribute because its coe�cient turns
out to be zero. The sum on the right-hand side of (5.2) can be expressed

in diagrammatic form. The regions to which the labels are attached are the
regions not a�ected by the move. The signature functions �x how to draw
the chords. These two chords, together with the ones corresponding to e and

f , build the diagram associated to �A4 .

Under R-IIB we �nd,

�A4 (K
0)� �A4 (K) = 0: (5.3)

As in the previous case the crossings e and f are such that �e = ��f , and
the terms linear in e and f cancel. This time no quadratic contribution is

left, because there is no way to choose e, f and two other crossings so as to

end up with the chord diagram corresponding to �A4 .
Under R-III the three crossings involved in the move are such that �f =

�g = ��e. Their signature values do not vary from K0 to K. The variation
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turns out to be:

�A4 (K
0)� �A4 (K) = � �f �g

X
i1;i22(f

+;e�)

i3;i42(e
+;g+)

�(i1; i3)�(i2; i4)

� �e �g
X

i1;i22(f
+;e�)

i3;i42(g
�;f�)

�(i1; i3)�(i2; i4)� �f �e
X

i1;i22(g
�;f�)

i3 ;i42(e
+;g+)

�(i1; i3)�(i2; i4): (5.4)

In order to make the resulting expressions simpler, from now on we will

assume that �f = 1 in any of the moves. Certainly this does not imply a loss

of generality. We now present the lists of variations of the crossing functions.

Under R-IIA one �nds:

�A2 (K
0)� �A2 (K) = �1

�C3 (K
0)� �C3 (K) = �

X
i12(f

+;e�)

i22(f
�;e+)

�2(i1; i2) + 2
X

i1;i22(f
+;e�)

i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�D3 (K
0)� �D3 (K) = 2

X
i1;i2;i32(f

+;e�)

i42(f
�;e+)

�(i1; i3)�(i2; i4) + 2
X

i12(f
+;e�)

i2;i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�E3 (K
0)� �E3 (K) = 2

X
i1;i22(f

+;e�)

i3;i42(f
�;e+)

�(i2; i3)�(i1; i4);

�B4 (K
0)� �B4 (K) = �

X
i1 ;i22(f

+;e�)

i3 ;i42(f
�;e+)

�(i2; i3)�(i1; i4);

�C4 (K
0)� �C4 (K) = 0;

�D4 (K
0)� �D4 (K) = 0;

�E4 (K
0)� �E4 (K) = �

X
i1 ;i2;i32(f

+;e�)

i42(f
�;e+)

�(i1; i3)�(i2; i4) �
X

i12(f
+;e�)

i2;i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�F4 (K
0)� �F4 (K) = 0: (5.5)
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Under R-IIB the variations turn out to be:

�A2 (K
0)� �A2 (K) = 0;

�C3 (K
0)� �C3 (K) = 2

X
i1;i22(f

+;e�)

i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�D3 (K
0)� �D3 (K) = 2

X
i1;i2;i32(f

+;e�)

i42(f
�;e+)

�(i1; i3)�(i2; i4) + 2
X

i12(f
+;e�)

i2;i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�E3 (K
0)� �E3 (K) = �

X
i12(f

+;e�)

i22(f
�;e+)

�2(i1; i2) + 2
X

i1;i22(f
+;e�)

i3;i42(f
�;e+)

�(i2; i3)�(i1; i4);

�B4 (K
0)� �B4 (K) = �

X
i1;i22(f

+;e�)

i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�C4 (K
0)� �C4 (K) = �

X
i1;i22(f

+;e�)

i3;i42(f
�;e+)

�(i2; i3)�(i1; i4);

�D4 (K
0)� �D4 (K) = �

X
i1;i2;i32(f

+;e�)

i42(f
�;e+)

�(i1; i3)�(i2; i4) �
X

i12(f
+;e�)

i2;i3;i42(f
�;e+)

�(i1; i3)�(i2; i4);

�E4 (K
0)� �E4 (K) = 0;

�F4 (K
0)� �F4 (K) = 0: (5.6)

Under R-III moves we �nd the variations of the crossing numbers collected

below. For simplicity, we have not written explicitly the terms where the

signature function is squared (these terms appear in �C3 , �
D
3 and �E3 ). The

reason is that, whatever they might be, they are trivially cancelled when we
compute �42(K

0)��42(K), or �43(K
0)��43(K), because they always appear

in terms of the form �(K)� �(�(K)) and �(i; j)2 has the same value in both

K and �(K) for any i; j. We will generally denote these contributions by
F (�2). The variations under R-III moves are:

�A2 (K
0)� �A2 (K) = 1
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�C3 (K
0)� �C3 (K) = 1� 2

X
i12(e

+;g+)

i22(f
+;e�)

�(i1; i2) + F (�2);

�D3 (K
0)� �D3 (K) = 0 + F (�2);

�E3 (K
0)� �E3 (K) = 2

X
i12(e

+;g+)

i22(f
+;e�)

�(i1; i2)� 2
X

i12(g
�;f�)

i22(f
+;e�)

�(i1; i2)� 2
X

i12(g
�;f�)

i22(e
+;g+)

�(i1; i2);

�B4 (K
0)� �B4 (K) = �

X
i1;i22(e

+;g+)

i3;i42(f
+;e�)

[�(i1; i4)�(i2; i3)� �(i1; i3)�(i2; i4)� �(i1; i3)]

+
X

i1;i22(g
�;f�)

i3;i42(e
+;g+)

[�(i1; i4)�(i2; i3)� �(i1; i3)�(i2; i4) + �(i1; i3)]

+
X

i1;i22(g
�;f�)

i3;i42(e
+;g+)

[�(i1; i4)�(i2; i3)� �(i1; i3)�(i2; i4) + �(i1; i3)]

+ 2
X

i1;i22(g
�;f�)

i32(e
+;g+);i42(f

+;e�)

�(i1; i3)�(i2; i4)

�C4 (K
0)� �C4 (K) = �

X
i1;i22(g

�;f�)

i32(e
+;g+);i42(f

+;e�)

�(i1; i3)�(i2; i4) +
X

i2;i32(e
+;g+)

i12(g
�;f�);i42(f

+;e�)

�(i1; i3)�(i2; i4)

+
X

i3;i42(f
+;e�)

i12(g
�;f�);i22(e

+;g+)

�(i1; i3)�(i2; i4)�
X

i1;i22(g
�;f�)

i3;i42(e
+;g+)

�(i1; i4)�(i2; i3)

+
X

i1;i22(e
+;g+)

i3;i42(f
+;e�)

�(i1; i4)�(i2; i3)�
X

i1;i22(g
�;f�)

i3;i42(f
+;e�)

�(i1; i4)�(i2; i3)

�D4 (K
0)� �D4 (K) = 2

X
i1;i22(e

+;g+)

i3;i42(f
+;e�)

�(i1; i4)�(i2; i3) +
X

i1;i2;i32(e
+;g+)

i42(f
+;e�)

�(i1; i3)�(i2; i4)
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+
X

i12(e
+;g+)

i2;i3;i42(f
+;e�)

�(i1; i3)�(i2; i4)�
X

i1;i2;i32(g
�;f�)

i42(e
+;g+)

�(i1; i3)�(i2; i4)

�
X

i12(g
�;f�)

i2;i3;i42(e
+;g+)

�(i1; i3)�(i2; i4)�
X

i1;i2;i32(g
�;f�)

i42(f
+;e�)

�(i1; i3)�(i2; i4)

�
X

i12(g
�;f�)

i2;i3;i42(f
+;e�)

�(i1; i3)�(i2; i4);

�E4 (K
0)� �E4 (K) = �2

X
i1;i22(g

�;f�)

i32(e
+;g+);i42(f

+;e�)

[�(i1; i3)�(i2; i4)� �(i1; i4)�(i2; i3)]

+ 2
X

i1;i22(e
+;g+)

i3;i42(f
+;e�)

�(i1; i3)�(i2; i4)�
X

i1;i2;i32(e
+;g+)

i42(f
+;e�)

�(i1; i3)�(i2; i4)

�
X

i12(e
+;g+)

i2;i3;i42(f
+;e�)

�(i1; i3)�(i2; i4) +
X

i1;i2;i32(g
�;f�)

i42(e
+;g+)

�(i1; i3)�(i2; i4)

+
X

i12(g
�;f�)

i2;i3;i42(e
+;g+)

�(i1; i3)�(i2; i4) +
X

i1;i2;i32(g
�;f�)

i42(f
+;e�)

�(i1; i3)�(i2; i4)

+
X

i12(g
�;f�)

i2;i3;i42(f
+;e�)

�(i1; i3)�(i2; i4);

�F4 (K
0)� �F4 (K) =

X
i1;i22(g

�;f�)

i32(e
+;g+);i42(f

+;e�)

[�(i1; i3)�(i2; i4)� 3 �(i1; i4)�(i2; i3)]

+
X

i2;i32(e
+;g+)

i12(g
�;f�);i42(f

+;e�)

[�(i1; i4)�(i2; i3)� �(i1; i3)�(i2; i4)]
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χ χ(K’) (K) =3 3
C C

-χ χ(K’) (K) =3 3
D D

-χ χ(K’) (K) =3 3
E E

-χ χ(K’) (K) =4
A A

4

-χ χ(K’) (K) =4 4
B B

-

+ 2

-χ χ(K’)2 2(K) = -1

-χ χ(K’) (K)4 4
C C = 0

-χ χ(K’) (K) =4 4
DD 0

-χ χ(K’) (K) =4 4
E E - -

-χ χ(K’) (K) =4 4
F F 0

-

2

2

-

-

+ 2

Figure 16: Behaviour of crossing functions under Reidemeister IIA.

+
X

i3;i42(f
+;e�)

i12(g
�;f�);i22(e

+;g+)

[�(i1; i4)�(i2; i3)� �(i1; i3)�(i2; i4)]

(5.7)

+ 2
X

i1;i2;i32(e
+;g+)

i42(f
+;e�)

�(i1; i3)�(i2; i4) + 2
X

i12(e
+;g+)

i2;i3;i42(f
+;e�)

�(i1; i3)�(i2; i4)

All the variations in the previous equations possess simple diagrammatic
expressions. They have been depicted in �gs. 16, 17 and 18.

Applying the formulae for the variations to the expressions (4.92) and

(4.93) for �42 and �43, we obtain the transformation under the moves of all
the terms containing only crossing numbers. The behaviour of the terms

containing sums over Ca and Cb has to be studied separately. One has to
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χ χ(K’)2 2(K) =

-χ χ(K’) (K) =3 3
C C

-χ χ(K’) (K) =3 3
D D

-χ χ(K’) (K) =3 3
E E

-χ χ(K’) (K) =4
A A

4

-χ χ(K’) (K)

-

=

0

4 4
B B -

-χ χ(K’) (K) =4 4
F F 0

-χ χ(K’) (K) =4 4
E E 0

-χ χ(K’) (K)4 4
C C = -

-χ χ(K’) (K) =4 4
DD - -

2

0

 2

2 + 2

-

Figure 17: Behaviour of crossing functions under Reidemeister IIB.
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χ χ(K’) (K)4 4
C C ++= - - -

-χ χ(K’) (K) =4 4
DD - -

+ +

- -

-χ χ(K’) (K) =4 4
E E + +- + +

- 2 + 2 + 2

-χ χ(K’) (K) =4 4
F F

-

-

- - + 2 + 2

- 3 + +

-χ χ(K’)2 2(K) = 1

-χ χ(K’) (K) =3 3
C C - + +1  - 2

-χ χ(K’) (K) =3 3
D D 0

-χ χ(K’) (K) =3 3
E E 2 - 2 + - --2

-χ χ(K’) (K) =4
A A

4 - -

-χ χ(K’) (K) =4 4
B B

+ + + +-

+ 2 + +

Figure 18: Behaviour of crossing functions under Reidemeister III.
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analyse the three di�erent cases: both crossings i and j belong to the set

a�ected by the moves, only one of them, or none. Recall that these sums are

essentially made out of the crossing number �A2 evaluated in the ascending

diagram of di�erent closed pieces of the knot. In order to clarify the analysis,

let us reproduce those terms here:

I1(K) =
X

i>j2Ca

[�i�j(K)� �i�j(�(K))]

�
�A2 (�(K))

� �A2 (�(Ki+))� �A2 (�(Ki�))� �A2 (�(Kj+))� �A2 (�(Kj�))

+ �A2 (�(Kija)) + �A2 (�(Kijb))

�
; (5.8)

I2(K) =
X

i>j2Ca

[�i�j(K)� �i�j(�(K))]

�
3�A2 (�(K))

� 2�A2 (�(Ki+))� 2�A2 (�(Ki�))� 2�A2 (�(Kj+))� 2�A2 (�(Kj�))

+ �A2 (�(Kija)) + �A2 (�(Kijb)

�
; (5.9)

I3(K) =
X

i>j2Cb

[�i�j(K)� �i�j(�(K))]

�
�A2 (�(K))

� �A2 (�(Ki+))� �A2 (�(Ki�))� �A2 (�(Kj+))� �A2 (�(Kj�))

+ �A2 (�(Kijc)) + �A2 (�(Kijd)) + �A2 (�(Kije))

�
:

(5.10)

These three expressions possess the same structure, so we will refer to them

in the following compact way, whenever we do not need to take into account
particular details:

Ik(K) =
X

i>j2c(k)

[�i�j(K)� �i�j(�(K))]F
k
ij(K); (5.11)

with k = 1; 2; 3, F k
ij standing for the combination of functions entering a

given sum. The superindex in F k
ij denotes that this combination depends on
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the sum, and the subindexes that it also depends on the pair of crossings.

The set over which the sum is taken is speci�ed by c(k), where c(k) = Ca for

k = 1; 2 and c(k) = Cb for k = 3.

Under R-I the variation of all these sums is trivially zero for the same

reasons as stated above: as the crossing e involved in this move is isolated,

there is no other crossing that could give a contribution to any of the �A2
functions. As we have already seen, the variation of all the other terms in

�42(K) and �43(K) also vanishes; then it follows trivially that our formulae

(4.92) and (4.93) are invariant under this move.

Under R-IIA or R-IIB the general behaviour of the sums can be written

as:

Ik(K
0)� Ik(K) =

X
i>j 6=fe;fg
i;j2c(k)

[�i�j(K)� �i�j(�(K))] (F
k
ij(K

0)� F k
ij(K))

+
X

i6=fe;fg
i;e2c(k)

�e[�i(K)� �i(�(K))]F
k
ie(K

0) (5.12)

+
X

i6=fe;fg
i;f2c(k)

�f [�i(K)� �i(�(K))]F
k
if (K

0):

Notice that in this equation there are no additional terms proportional to

�e�f because the diagram in �g. 15 has been chosen so that

�e�f (K)� �e�f (�(K)) = 0: (5.13)

Recall that all the crossings i; j 6= fe; fg do not change when going from K0

to K. In the last two terms, there is no subtraction of the function F k(K)
because the crossings e and f are not present in K.

After these general comments on (5.11) we will evaluate (5.12) and then

we will �nd out the behaviour of (5.8), (5.9) and (5.10) under the second
Reidemeister move. We need to specify the two labellings on each crossing,

as in the case of the crossing numbers, to distinguish on which section of K

they lay. We will write the signature function as given in (4.5) and the labels

will ful�l the ordering i1 < i2 < i3 < i4. Under R-IIA we �nd:

I1(K
0)� I1(K) = �

X
i1;i22(f

�;e+)

i3;i42(f
+;e�)

h
�(i1; i3)�(i2; i4)(K)� �(i1; i3)�(i2; i4)(�(K))

i
;
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I2(K
0)� I2(K) =

�
� 3

X
i1;i22(f

�;e+)

i3;i42(f
+;e�)

�
X

i1 ;i2;i32(f
�;e+)

i42(f
+;e�)

�
X

i12(f
�;e+)

i2;i3;i42(f
+;e�)

�

�
h
�(i1; i3)�(i2; i4)(K)� �(i1; i3)�(i2; i4)(�(K))

i
;

I3(K
0)� I3(K) = �

X
i1;i22(f

�;e+)

i3;i42(f
+;e�)

h
�(i1; i4)�(i2; i3)(K)� �(i1; i4)�(i2; i3)(�(K))

i
;

(5.14)

and, under R-IIB:

I1(K
0)� I1(K) = �

X
i1;i22(f

�;f+)

i3;i42(e
+;e�)

h
�(i1; i3)�(i2; i4)(K)� �(i1; i3)�(i2; i4)(�(K))

i
;

I2(K
0)� I2(K) = �

X
i1;i22(f

�;f+)

i3;i42(e
+;e�)

h
�(i1; i3)�(i2; i4)(K)� �(i1; i3)�(i2; i4)(�(K))

i
;

I3(K
0)� I3(K) = 0: (5.15)

The invariance under the second Reidemeister move of �42(K) in (4.92) and

�43(K) in (4.93) then follows, after summing up the contributions coming
from the crossing numbers in (5.5) and (5.6), and the expressions (5.14) and
(5.15), respectively, and �nding out that they cancel.

To prove the invariance under R-III we will study �rst the behaviour of
the Ik sums (5.8�5.10) under R-III. As in the previous case, we start by
writing down the general structure of their variation:

Ik(K
0)� Ik(K) =

X
i>j 6=fe;f;gg
i;j2c(k)

[�i�j(K)� �i�j(�(K))] (F
k
ij(K

0)� F k
ij(K))

+
X

i6=fe;f;gg
i;e2c(k)

�e[�i(K)� �i(�(K))] (F
k
ie(K

0)� F k
ie(K))

+
X

i6=fe;f;gg
i;f2c(k)

�f [�i(K)� �i(�(K))] (F
k
if (K

0)� F k
if (K))

+
X

i6=fe;f;gg
i;g2c(k)

�g[�i(K)� �i(�(K))] (F
k
ig(K

0)� F k
ig(K)):

(5.16)
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Again, the terms proportional to �e�f , �e�g or �g�f do not contribute because

their signature values do not vary when going from K to �(K). The com-

putation of the variation of the di�erent F k functions appearing in (5.16) is

more complicated than before. Instead of changes in the crossings involved

in the move, we are now dealing with a change in the con�guration of the

three crossings a�ected by the move. This implies that many of the crossings

contributing to the functions �A2 change. For example, the value of the sub-

traction �A2 (�(K
0
ija
))� �A2 (�(Kija)) (or any other of the functions evaluated

in the splitt knot) depends on the sections of the knot in which the crossings

i and j lay in between. Let us work out some examples. In these examples,

we will specify both labels of the crossings: i1 < i2 for one and j1 < j2 for

the other.

If a crossing happens to have all the labels in the region (e�; e+) we �nd:

�A2 (�(K
0
ija
))� �A2 (�(Kija)) = ��e�f � �e�g � �g�f = 1; (5.17)

while if the situation is i1 2 (e�; e+) and i2; j1; j2 2 (f�; f+):

�A2 (�(K
0
ija
))� �A2 (�(Kija)) = 0: (5.18)

In some other cases there are apparently non-trivial contributions linear

in the signature of the crossings e, f or g. An example is �A2 (�(K
0
iea
)) �

�A2 (�(Kiea)) for some crossing i such that i; e 2 Ca and whose two labels,
i1 < i2, lay in the following knot regions: i1 2 (e�; e+) and i2 2 (g+; g�). We

then �nd that:

�A2 (�(K
0
iea
))� �A2 (�(Kiea)) = �f

�
�
X

j12(e
�;i1)

j22(f
�;f+)

�(j1; j2)(�(K)) +

X
j12(f

�;f+)

j22(g
+;i2)

�(j1; j2)(�(K))

�
� �g

� X
j12(e

�;i1)

j22(f
�;f+)

�(j1; j2)(�(K))�
X

j12(f
�;f+)

j22(g
+;i2)

�(j1; j2)(�(K))

�
:

(5.19)

The minus sign in front of some of the terms inside the brackets is due to the

fact that in order to close the knot Kiea, we had to reverse the orientation in
some piece of the original knot; this implies a change of sign in the signature

functions a�ected by this reversing. In this example we are reversing the

orientation of the region (e�; i1). The key point is to notice that to the
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contributions inside the brackets sum up to the linking number between

some speci�c knots and that this linking number is always zero:

�A2 (�(K
0
iea
))� �A2 (�(Kiea)) = �f � L(�(K

f+
iea
); �(K

f�
iea
))

� �g � L(�(K
g+
iea
); �(K

g�
iea
)) = 0; (5.20)

where L(K1;K2) stands for the linking number between K1 and K2. In the

�rst term the knots are the two pieces into which the knot �(Kiea) is divided

when splitting the f -crossing, and in the second those obtained after the

splitting of the g-crossing. As the knot �(Kiea) is just an ascending diagram,

these two pieces lay one on top of the other, and so their linking number is

zero. This kind of argument can be applied to other contributions of the same

type (i.e. for other choices of crossings in the sums Ik and other �A2 functions

appearing in them). The computation of all the contributions to (5.16) of the

sums (5.8 � 5.10) can now be done without di�culty, leading to the following
formulae for their behaviour under R-III (where again i1 < i2 < i3 < i4):

I1(K
0)� I1(K) =

� X
i3;i42(g

+;g�)

i12(e
�;e+);i22(f

�;f+)

+
X

i12(e
�;e+);i42(g

+;g�)

i2;i32(f
�;f+)

+
X

i1;i22(e
�;e+)

i32(f
�;f+);i42(g

+;g�)

�

� �(i1; i3)�(i2; i4) + 2
X

i22(g
+;g�)

i12(f
�;f+)

�(i1; i2);

I2(K
0)� I2(K) = 3

� X
i3;i42(g

+;g�)

i12(e
�;e+);i22(f

�;f+)

+
X

i12(e
�;e+);i42(g

+;g�)

i2;i32(f
�;f+)

+
X

i1;i22(e
�;e+)

i32(f
�;f+);i42(g

+;g�)

�

� �(i1; i3)�(i2; i4) +

� X
i12(e

�;e+)

i2;i3;i42(f
�;f+)

+
X

i2;i3;i42(g
+;g�)

i12(f
�;f+)

+
X

i12(e
�;e+)

i2;i3;i42(g
+;g�)

�
�(i1; i3)�(i2; i4)

+

� X
i42(f

�;f+)

i1;i2;i32(e
�;e+)

+
X

i1;i2;i32(f
�;f+)

i42(g
+;g�)

+
X

i42(g
+;g�)

i1;i2;i32(e
�;e+)

�
�(i1; i3)�(i2; i4) + 6

X
i22(g

+;g�)

i12(f
�;f+)

�(i1; i2);

I3(K
0)� I3(K) =

� X
i3;i42(g

+;g�)

i12(e
�;e+);i22(f

�;f+)

+
X

i1;i22(e
�;e+)

i32(f
�;f+);i42(g

+;g�)

�
�(i1; i4)�(i2; i3)
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+
X

i12(e
�;e+);i42(g

+;g�)

i2;i32(f
�;f+)

�(i1; i2)�(i3; i4) (5.21)

+

�X
i1;i22(e

�;e+)

i3;i42(f
�;f+)

+
X

i3;i42(g
+;g�)

i1;i22(f
�;f+)

+
X

i1;i22(e
�;e+)

i3;i42(g
+;g�)

�
�(i1; i4)�(i2; i3)

Taking into account (5.21) and the behaviour under R-III of the crossing

numbers given in (5.7), one can see that all the terms appearing in computing

the variation of (4.92) and (4.93) under R-III cancel, and thus the topological

invariance of the combinatorial expressions (4.92) and (4.93) for �42(K) and

�43(K) is established.
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6 Conclusions

In this paper we have analysed Chern-Simons gauge theory in the temporal

gauge. The main outcome of our work is that we have shown that this gauge

is particularly well suited to obtain combinatorial expressions for Vassiliev

invariants. These are much simpler than the integral expressions obtained in

covariant gauges or the ones leading to Kontsevich integrals which emerge in

the light-cone gauge.

One of the crucial ingredients of our work is the observation that in the

temporal gauge all the signature-dependent parts of the invariant can be

easily extracted. In fact we have obtained an explicit general expression

for the leading signature-dependent terms. These terms are the ones in the

expansion (3.8) and constitute the kernels of the Vassiliev invariants. The
kernels are not Vassiliev invariants. Di�erent kernels may belong to the same

knot, but they are well de�ned on knot projections. As an order-n Vassiliev
invariant, an order-n kernel vanish in signed sums of order n+1. The kernel
is the only part of the order-n Vassiliev invariant that in general does not

vanishes for signed sums of order less than n+1. In other words, an order-n
kernel di�ers from an order-n Vassiliev invariant by terms which vanish in
signed sums of order n.

The kernels contain a large amount of information about the Vassiliev
invariants. We have shown how the full invariants can be reconstructed from

them. The two main ingredients of the reconstruction procedure are the fac-
torization theorem and the structure of the perturbative series expansion of
the vacuum expectation value of the Wilson loop in the temporal gauge. The

key observation of the reconstruction procedure is that combinatorial expres-
sions can be obtained without actually performing any of the D-integrals. All

these integrals are solved in terms of the kernels using the series of relations

provided by the factorization theorem.

In our analysis we have carried along the unknown function b(K), ob-

taining a series of consistency relations for it. These relations are necessary
conditions to have knot invariants. We have shown that these relations pos-

sess a simple solution, similar to the one that must be introduced in the

light-cone gauge. It would be very helpful to understand the origin of this
function in the context of Chern-Simons gauge theory, and to prove that,

indeed, our ansatz is correct. The same type of problem has not been solved
in the light-cone gauge.
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The reconstruction procedure has been performed up to order four. We

have obtained known combinatorial expressions at orders two and three, and

new ones for the two primitive Vassiliev invariants present at order four. The

form of these combinatorial expressions suggests some general structure. For

example, it seems that at even orders the quantities that enter the combi-

natorial expressions are paired, one of the terms for the diagram associated

to K, and another for the corresponding ascending diagram with opposite

sign. In addition, the terms involved in the splitting of a knot are evaluated

on the ascending diagram. For odd orders, crossing numbers seem not to

be accompanied by their ascending-diagram counterparts. However, as in

the even-order cases, the terms involved in the splitting are evaluated in the

ascending diagram.

We have successfully applied the reconstruction procedure up to order
four, obtaining new combinatorial expressions for Vassiliev invariants. The
question to ask now is if the procedure can be generalized to higher orders.

We conjecture that this can be done. Certainly, the complexity of the combi-
natorial expressions will increase with the order, but it would be very impor-
tant to establish if the procedure would work at any order. In other words,

it would be very important to possess a reconstruction theorem which would
guarantee that from the kernels (3.8) and the factorization theorem, we can

solve for all the D-integrals present at each order. Provided we know a basis
of primitive group factors, this would imply that there exists a systematic
algorithm to obtain combinatorial expressions for Vassiliev invariants at any

order.
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APPENDIX

In this appendix we present the values of the primitive Vassiliev invari-

ants at orders two, three and four for all prime knots up to nine crossings.

These have been computed, with the aid of a Mathematica algorithm, us-

ing the formulae (4.23), (4.50), (4.92) and (4.93). In the tables 1 and 2 we

present the value of these invariants once their value for the unknot has been

substracted. In other words, the �ij(K) shown in the tables are the result of

the replacement:

�ij(K) �! �ij(K)� �ij(U):

The values for the unknot primitive invariants up to order four are, in the

normalization and basis that we used:

�21(U) = �1
6
; �31(U) = 0;

�42(U) =
1
360

; �43(U) = � 1
360

:
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Knot �21 �31 �42 �43 Knot �21 �31 �42 �43

31 4 8 62/3 10/3 85 �4 �24 �62/3 86/3

41 �4 0 34/3 14/3 86 �8 �24 68/3 100/3

51 12 40 174 26 87 8 �16 124/3 �28/3

52 8 24 268/3 44/3 88 8 �8 124/3 �4/3

61 �8 �8 116/3 52/3 89 �8 0 212/3 124/3
62 �4 �8 34/3 38/3 810 12 �24 110 10

63 4 0 14/3 �14/3 811 �4 �16 �14/3 62/3

71 24 112 684 100 812 �12 0 82 30
72 12 48 222 34 813 4 �8 14/3 �38/3

73 20 88 1510/3 242/3 814 0 0 16 16
74 16 64 1016/3 184/3 815 16 56 776/3 112/3
75 16 64 968/3 136/3 816 4 �8 14/3 �38/3

76 4 16 158/3 34/3 817 �4 0 82/3 62/3
77 �4 8 �14/3 �10/3 818 4 0 62/3 34/3

81 �12 �24 66 38 819 20 80 1270/3 170/3

82 0 �8 0 24 820 8 16 172/3 20/3
83 �16 0 520/3 200/3 821 0 �8 �16 8

84 �12 8 114 54

Table 1: Primitive Vassiliev invariants up to order four for all prime knots

up to eight crossings.
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Knot �21 �31 �42 �43 Knot �21 �31 �42 �43

91 40 240 5660/3 820/3 926 0 8 �32 �8

92 16 80 1304/3 184/3 927 0 8 16 8

93 36 208 1578 246 928 4 0 �34/3 �14/3

94 28 152 3122/3 502/3 929 4 �16 62/3 �14/3

95 24 120 780 140 930 �4 �8 82/3 38/3

96 28 144 2834/3 382/3 931 8 16 172/3 20/3
97 20 96 1654/3 218/3 932 �4 16 �62/3 14/3

98 0 16 48 16 933 4 �8 62/3 10/3

99 32 176 3760/3 560/3 934 �4 0 34/3 14/3
910 32 176 3856/3 656/3 935 28 144 3026/3 574/3

911 16 �72 1160/3 208/3 936 12 �56 270 42

912 4 24 302/3 58/3 937 �12 8 82 22
913 28 144 2930/3 478/3 938 24 112 684 100

914 �4 16 �110/3 �34/3 939 8 �32 460/3 116/3
915 8 �40 508/3 92/3 940 �4 �8 34/3 38/3

916 24 112 668 84 941 0 8 �48 �24

917 �8 0 116/3 28/3 942 �8 0 164/3 76/3
918 24 120 748 108 943 4 16 254/3 82/3

919 �8 8 68/3 4/3 944 0 8 0 �8

920 8 32 412/3 68/3 945 8 �32 412/3 68/3
921 12 �48 238 50 946 �8 �24 20/3 52/3

922 �4 8 34/3 �10/3 947 �4 �16 �110/3 �34/3
923 20 88 1462/3 194/3 948 12 �40 190 42

924 4 16 110/3 34/3 949 24 112 700 116
925 0 8 64 24

Table 2: Primitive Vassiliev invariants up to order four for all prime knots

with nine crossings.
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