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Exact phase advances for a two-stage collimation system
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Abstract

We propose a specification for a two-stage collimation insertion. We compute exact correlated
phase advances between primary and secondary collimators, and determine the number of jaws
needed to reach an almost ultimate performance.
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EXACT PHASE ADVANCES FOR
A TWO-STAGE COLLIMATION SYSTEM

J.B. Jeanneret, CERN, Geneva, Switzerland

Abstract in our problem, in the sense that they cannot be varied to

e ... optimise a collimation system but must rather fit to exter-
We propose a specification for a two-stage collimation in- : . .
al parameters like the dynamic aperture or the effective

sertion. We compute exact correlated phase advances 5'%-0 metrical aperture of the rina. We use the approxima-
tween primary and secondary collimators , and determir?e Apert ng. . app
. . 1on of slow diffusion of the primary halo, meaning that the
the number of jaws needed to reach an almost ultimate per- . X :
impact parameter at the primary collimator is small com-
formance. . :
pared ton, or that the impact points are at the surface of
the collimator and also that both betatronic oscillations are

1 INTRODUCTION at their maxima, i.eX, = Y, = 0. Finally we will min-

An exact treatment of a two-stage collimation system cofMiSe the extension of the secondary halo after it is cut by
sidered as an optical device, i.e disregarding true scatteritfig Secondary collimators treated as black absorberls. The
in collimator jaws, exist for the one-dimensional case angcattering process adds an arbitrary valueXfpand 7,

in the special 2D-case of an optics with equal phase a&qllow!ng here for S|mpI|C|ty an'lsotrop|c dlstrlbuthn. The
vance in the two transverse dimensions [1]. The promeﬁpordmates at the primary collimator after scattering are

of a 2D-system with an arbitrary optics was solved with nu-
merical methods in conjunction with the approximate con-
cept of phase modulation with some success [1][2][3], bukith the X — Y azimutha and the polar variable&” and¢
without cutting the amplitude of the secondary halo dowin the X! — Y plane.

to the ultimate limit of the aperture of the secondary colli-

mators. In this paper, we propose an exact solution of ttg®1 Phase advances

phase advances between collimators approaching the ulti- ) . .
mate limit. For arbitrarya and¢, we transport the particle with (2) and

(3) to a location of yet unspecified phase advanceand
iy Where a secondary collimator is located and get

A; = (nicosa, K cosp,ny sina, Ksing), (3)

2 DEFINITION AND NOTATIONS

We use horizontal and vertical betatron coordinates as well
as horizontal dispersion normalised with the transforma- As =
tionsX = Nxx, Y = N,y andy = NxD with

N1 COS a COS iy + K cos ¢ sin py,
—mnq cos asin p, + K cos ¢ cos i,
ny sin a cos iy, + K sin ¢ sin py,
—ny sin asin piy, + K sin ¢ cos pi,

< X, > _ 1 ( I 0 > ( 37/ > ) (1) The efficiency of the secondary collimator is measured by
X or \ %% Be z the smallest amplitudd..,; that it can intercept.A..; is
minimised if X, andY> are maximised. Using the invari-

Ir;( n)?frg"j‘“;f’dthcogr?'?ate?’t notefd by t‘;éecgmf — anceof4, » and4, », this condition is equivalent to asking
(X, X", Y,¥7) the betatronic transfer matrd;; between ¢, v1 'y _ o With these conditions in (4) we get

two locations is made of two clockwise rotations, one for
each proper plane, where the angles of rotagigrand ., Kcos¢ _ Ksing

(4)

are the betatronic phase advances, i.e. tan iy = nycosa tan py = nysina’ ©)
oSy Sin g 0 0 These conditions allow to compute the sole free parameters
—sinp, COS iy 0 0 Mz = Nz(a:fz): K) an.d,uy :_,uy(a,qs,.K)- W_hllea and¢
M;; = : - (2)  are free variablegy is restricted to its maximum allowed
0 0 COS by  SIN Ly

value corresponding to the smallest possitle= A.,; =
no (see Figure 1). This is obtained by using (5) in (4) with
The normalised invariant amplitudes afe = (X2 + againX; =Y, = 0. We get

0 0 —sin gy, COS fiy

X'2)1/2, A, = (Y2 +Y'2)1/2 andA4 = (Agzc +A2)1/2.
’ ’ K =K. =\/n}—n3, (6)
3 BETATRON COLLIMATION which is independent of both and¢. Writing tan p, =
We first consider circular collimators in normalised coorfc/m1 = (n3 — n?)/? [ny, (5) is now

dinates. The normalised aperture of the primary and sec- cos b sin &
ondary collimators are, andn,. These numbers are fixed tanpu,; = tan Ho o0 tan py = tan p,

()

sin ar



Y2
K Table 1:Secondary collimator locations and jaw orientations for
c K three scattering centers)and for parallel and orthogonal scatter-
0 ing.
a ¢ [ 2] My Ojaw
Ujaw 0 0 Lo - 0
X 0 ™ T — lho - 0
N np 72 0 /2 T 3r/2 -l
0 | —m/2 ™ 3r/2 Lo
) ) . . . wf4 | w/4 Iho Iho /4
Figure 1:The line of the scattered particles at the primary colli- 7/d | snjd || m—po | T—p /4
mator parametrised witm(, «, K, ¢) transforms at the location 7/ | 3n/a || m— o | T+ o /4

of a secondary collimator to another line which crosses the circle

of radiusn, whenK = K. whatever &, ¢). A flat jaw at azimuth T/ = /ATt e | T o m/4

@jaw is sufficient to cut at amplitudd = n., see text. m/2 | 7/2 } Ho /2
/2 | —7/2 - T = o /2
/2 ™ /2 ™ T2 — o

These formulae indicate that an optimum collimation for /2 0 /2 ™ T/2+ po

all possiblec and¢ would need an infinity of collimators,
with an optics able to offer an infinity of pairs of phase
advancesyfy, fi,).

Before compromising on the number of collimators, it
must be noticed that for given(p), the secondary colli-
mator at ., 1,,) Needs not be circular. A single flat jaw
attheX — Y azimutha,,, = tan™'(X>/Y>) is sufficient
(see Figure 1). With (4), the azimuth of the jaw must be

sin o cos y + tan pi, sin ¢ sin pu,
COS (¢ COS [1g + tan p, COS ¢ sin piy

(8)

tan ajow =

3.2 A finite number of collimators

To limit the number of collimators, we consider a system
made of three primary collimators which delimit an octag-
onal primary aperture. Further we consider the scattered
particles to be issued from the central point of each jaw, i.&/9ure 2:Left: the axis are eithek andY” or A, and4,. The
at azimutha = 0,7 /4, 7/2 (Figure 2). Then we compute cwclgs |nd.|cate. the sourcepoints used to cqmpute the .colllmator
the phase advances between a primary and the seconalgf;ft'on given in Table 1. The contour plot is the density of the
collimators associated to the four scattering azimgths secondary hala” N/dA.dA, Obta!ned. with the numeric simu-

. lation described in Section 3.3. Right: the amplitude distribution
a, a+m and¢ = a+/2, called respectively plang)and dN/dA integrated fromi> N/d A, dA,,. Fullline, the 12-jaw case

orthogonal () scattering . Fofl-scattering with (7) we get and dotted line, the 24-jaw case. We used= 6 andn = 7.
He = py = Ep, + k7 which is the old result found for

1D-collimation [1], and with (8) we getjq., = a + k7.

For L-scattering , we ge, = = tan~!(tan p, tana),

py = £ tan™! (tan p,/ tan @). The resulting phases in Ta- primary aperture and the flat secondary collimators gener-
ble 1 are the smallest ones. One can add any of these ate an octagonal footprint id, — A,, with largest sec-

phases but them;,,, must be reevaluated. ondary amplituded = nycos(w/8) = 1.08n,, whereas
circular collimators would sharply cut at = n». This fact
3.3 Simulation for realistic primary halo taken into account, the 3-point approximation is very good,

. L the count rate being small above= 1.08n.. A 24-jaw
To check the relevance of the 3-point approximation, w g 12 )

i imple simulati Pri . ¢ Solution is explored with in addition t) — and L — scat-
Wrote a simp'e simuiation program. Frimary impacts ar?ering the scattering angles= 45° + kx /2. The result is

Woser to the ultimate limit (see Figure (2)) but certainly not

gles are uniform in thél — ¢ plane. The tracking is made worth the additional hardware investment.

with transfer matrices like (2) in whichu, i) are taken

from Table 1. At each collimator it is verified if the par- We therefore need four secondary collimators for each of
ticle touches a jaw. The particles surviving all secondarthe primary azimuths, i.e. twelve with three primary colli-
collimators are added to4, — A, plotand to a combined mators. This result was already obtained by D. Kaltchev
amplitude distributioniN/dA (Figure 2). The octagonal [3] with numerical methods.



4 EXISTING SOLUTIONS

With a symmetric opticsy(; (s) = y(s)) the secondary
halo is cut atd;.. = 1.32n» [1] with arations/n, = 7/6.

The present best performance obtained with a modulated
optics for the LHC collimation insertion ids.. = 1.21n4

[3]. It was emphasized in former studies [1][2][3] that to
cut on large amplitudes associated tescattering large
phase modulation, i.e. largg, — p,, was needed along
the cleaning insertion. This argument was right but incom- .

plete. Strict correlation of the phase advanggsindy,, is ° SO e 0B
mandatory and the maximum modulatiop — p, = /2

is needed for some jaws (see Table 1). While it may be

unfair to compare the performance of existing optics to odfi9ure 3: The maximum excursion ... of a particle as a
nearly ultimate limitA,.. = 1.08n, obtained with a yet function of the relative momentum offsé}, (abscissa) and of

virtual optics, a potential gain exists and we explain what{1e primary collimator aperture, (index in the right upper cor-
. . ¥ Lo . ner of the figure). Each curve is endeddgt = d.(n1) where
is lacking to the existing insertions.

Xmaz = Nare = 11.8, a case study for LHC.

5 MOMENTUM COLLIMATION i .
and define the largest momentum offset which can pass the
We restrict our discussion to a momentum cleaning inseprimary collimator ash, = n1/x1 with 4, 3 = 0. After
tion installed in a straight section, where the dispersioscattering and the cut of the amplitude by the secondary
function is a betatronic trajectory. In that case, the coreollimators , the maximum horizontal betatronic amplitude
dition D'/D = —a, /3., or equivalentlyy’ = 0 (see (1)), is A, 3 = [(n1 — x10,)? + K2]'/2. Expanding4, s with
must be satisfied at the primary collimator [1][4] to ensuré6), the maximum horizontal excursion in the arc is
that the cut made on the secondary halo does not depend on . N
the momentum offset,. It also strictly reduces the treat- Xmaz (1, X1,0) = Xared + (X107 = 2n1x10 +n3)

ment of the momentum collimation to the betatronic case o (10)
in a straight section[1], while outside the straight sectio"d i plotted in Figure 3. The largest allowed excur-
z andz;s, must of course be distinguished. SION Xynaz (71, X1,0c) = Nare fixesde(n1) = ni/x1 =

Contrary to the betatron halo which may drift away fromiNare = (73 —n%)"/*]/Xarc. Would largen, values be con-
the beam in all transverse directions, momentum losses atgered the larg&’,,,, excursion at smalf values would
concentrated in the horizontal plane. The most demandiff§ Cut at the betatron cleaning insertion. The system is
case occurs at ramping when off-bucket protons are lo&ompletely fixed by chosing; and computing
Most of these protons keep their initial betatronic ampli- _ny N1 Xare
tude at injection and are therefore confinedlip, ~ 2. It xi(m) = 3 Nopo— (n2 —m2)i/2°
is therefore enough to use a single horizontal primary colli- . o
mator, to which four secondary collimators must be assocf:S for the choice ofi;, a lower limit s fixed by the accept-
ated. Their relative locations correspond to the ease0 able effective cut of the horizontal betatronic _amplltude at
of Table 1 and they limit the components of the betatrof1® €dge of the bucket.q,. = n.(1 - 4,/d.) with d, the
vector after scattering td; = (ny, K., ~ 2, K.). bucket width.

In the arc of a ring, the aperture limitation for a particle
with momentum offset s located near horizontally focusing 6 CONCLUSIONS
guadrupoles where both, and D, are at their maximum. : .

With also, small, itis thus adequate to fit the largest hori—By using correlated phase advances between primary and

zontal excursionsl, 5 of the secondary halo with the aper secondary collimators in both andy planes simultane-
@8 ) . M= ously, the amplitude of the secondary halo of a two-stage
ture Ny = Ny orc at that location. The straight sections Y, P Y g

f aring need not b nsidered for momentum collimati ﬁollimation system can be cut down to the aperture of the
otaring need hot be considered for momentum cofima Osecondary collimators. The remaining difficult problem is
since the dispersion is usually supressed in these areas.

to find an optic satisfying these correlated constraints.

(11)
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