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Abstract

We discuss the current picture of the stan-

dard Higgs sector at strong coupling and

the phenomenological implications for di-

rect searches at the LHC.

Recently, considerable progress has

been made in understanding the nature of

the standard Higgs sector when its cou-

pling becomes strong. Technically, com-

putations on a lattice in the Higgs sec-

tor still have a long way to go to attain

a precision useful phenomenologically, for

instance when applied to LHC processes.

Meanwhile, a new higher-order nonper-

turbative 1=N approach proved able to

match the precision of two-loop pertur-

bative results at low coupling, while its

validity extends into the strong coupling

zone as well. The availability of this non-

xInvited talk presented by A. Ghinculov at the

Theory of LHC processes meeting, 9{13 February

1998, CERN, Geneva.
{Work supported by the US Department of

Energy (DOE).
kURA 1436 associ�ee �a l'Universit�e de Savoie.

perturbative approach opens up the per-

spective to explore in a reliable way ex-

citing ideas such as the possibility of a

Higgs boson coupled strongly to the vec-

tor bosons and to itself, and the formation

of a spectrum of bound states at a higher

scale. Such possibilities were proposed in

the past. However, they could not be

worked out from �rst principles because

a nonperturbative solution was missing.

From the experimental point of view,

should a resonance similar to a Higgs bo-

son be discovered at the LHC, it is cru-

cial that its properties be understood suf-

�ciently well theoretically, so that a stan-

dard Higgs can be distinguished from a

nonminimal version. This can indeed be a

serious issue if everything we know is per-

turbation theory, as it will become clear

from the following example.

Figure 1 summarizes the evolution of

our knowledge of the width of the Higgs

boson. Here we are concerned only with

the width of a heavy Higgs boson, which

decays dominantly into vector bosons.

Quantum corrections at the one-loop level
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Figure 1: The current knowledge of the

Higgs width at strong coupling. The mass

and width parametersMPEAK and �PEAK
are extracted from the position and the

height of the Higgs resonance in fermion

scattering as if the resonance was of Breit-

Wigner type. We give the relation between

MPEAK and �PEAK in perturbation the-

ory (LO, NLO and NNLO) and in the

nonperturbative 1=N expansion (LO and

NLO). For the perturbation theory curves

we give the corresponding values of the on-

shell mass parameter mH.

were �rst considered in ref. [1]. There it

was noticed that the computation of cor-

rections of enhanced electroweak strength

can be greatly simpli�ed by using the

equivalence theorem in Landau gauge. As

one can see in this picture, the one-loop

correction turns out to be fairly small.

This suggested that perturbation theory

is perfectly under control over the whole

region of concern, even well above 1 TeV.

There seemed to be little point in calcu-

lating higher-loop corrections.

However, at the same time another so-

lution was known, which disagreed nu-

merically quite strongly with perturba-

tion theory. This approach attempted

to calculate Green functions in the sigma

model by expanding in 1=N , where N

is the number of degrees of freedom of

the theory, instead of the coupling con-

stant. This was proposed for the O(N){

symmetric sigma model in refs. [2, 3,

4]. It was subsequently applied to the

standard Higgs sector in refs. [5, 6].

The resulting leading order width does

not appear to be numerically useful be-

cause it di�ers substantially from pertur-

bation theory at low coupling, where per-

turbation theory is expected to be reli-

able. This large discrepancy raised doubts

about the consistency of the 1=N ap-

proach.

However, we calculated one order

higher in both expansions [7, 8, 9], and

it turns out that the discrepancy between

perturbation theory and the nonpertur-

bative 1=N expansion is reduced dramat-

ically. As can be seen in �g. 1, the two

expansions appear to be nicely converging

towards a common solution. The next-to-

leading 1=N solution and two-loop pertur-

bation theory are in a remarkable agree-

ment up to such high values of the Higgs

mass as 800{900 GeV.

Also it can be seen from �g. 1 that the

true value of the decay width can di�er

considerably from the tree and one-loop

level calculations, which so far were used

widely for phenomenological studies for

the LHC. As the coupling in the Higgs sec-

tor increases, an interesting saturation of

the mass takes places, where only the to-

tal decay width grows. Should a standard
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Higgs resonance be discovered at the LHC

somewhere in the zone where the satura-

tion e�ect comes into place, the low-order

perturbative analysis would suggest that

its coupling to the vector bosons is too

strong to be compatible with the standard

model.

The two-loop perturbative analysis is

based, just as the one-loop calculation,

on the use of the equivalence theorem in

Landau gauge. The main di�culty at

the two-loop level is that it involves the

evaluation of massive two-loop Feynman

graphs at �nite external momentum. This

is known to be a di�cult problem because

the scalar integrals in the general kine-

matic case are usually unknown analytic

functions. One particular case where the

special functions involved were identi�ed

is the so{called sunset self-energy topol-

ogy. This was shown to be related to the

Lauricella functions [10]. It turns out that

even in this case the diagram is most ef-

�ciently evaluated by means of integral

representations. For this reason, we de-

veloped a general approach which is based

entirely on integral representations when

the external momentum of the graph is �-

nite [7, 11]. The case with zero external

momentum can always be treated analyt-

ically and the general solution has been

known for a long time [12]. Our general

solution is numerical. However, due to

the use of deterministic adaptative algo-

rithms combined with an optimized com-

plex integration path de�ned in terms of

spline functions, the solution is fast and

accurate. It was already used for the cal-

culation of several physical processes of

phenomenological interest [7, 13, 14, 15].

The two-loop result shown in �g. 1 was

obtained with this method, and was also

reproduced in ref. [8] with di�erent nu-

merical methods.

Regarding the use of numerical versus

analytical methods for this type of cal-

culations, we would like to make the fol-

lowing remark. The nontrivial two-point

functions involved in this calculation were

�rst calculated numerically [7, 8], but

later on an analytical solution was ob-

tained for them when the external mo-

mentum is on-shell [16]. This was possible

because the calculation is in essence a one-

scale problem if treated in Landau gauge.

This simpli�es the problem considerably.

For the three-point case, because of the

complexity of the diagrams, an analyti-

cal solution was not found so far. Still,

the existing numerical solution is accurate

enough for any practical purpose.

Our nonperturbative solution to this

problem is based on considering an O(N)-

symmetric sigma model, which recovers

the standard model for N = 4. At an

intermediate stage, a double expansion is

performed, both in the coupling constant

and in 1=N . Because of the combinato-

rial structure of this theory, it is possi-

ble to calculate and to sum up the Feyn-

man graphs of all orders which are gener-

ated for a given order in 1=N . This pro-

cedure works in principle for any Green

function, but the complexity of the prob-

lem increases with the number of external

legs.

The leading order of the 1=N expansion

is simply the well{known geometric series

of bubble self-energy one-loop graphs and

was known for a long time [2, 3, 4]. How-

ever, the next-to-leading order is much

more di�cult to calculate. The �rst prob-

lem encountered is to identify the rele-

vant diagrams in all loop orders. This
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is most elegantly solved by a combinato-

rial trick proposed by Coleman, Jackiw

and Politzer [2]. Their idea consists of

adding a nondynamical piece to the La-

grangian, which contains an unphysical

auxiliary �eld. As a result, the dynam-

ics of the theory remains unchanged, but

the Feynman rules are modi�ed, and there

are no quartic vertices left. This leads to a

rearrangement of Feynman graphs in the

higher orders.

Actually, this idea was used originally

only at leading order, where it does not re-

ally simplify the problem. The real power

of this rearrangement is apparent only in

higher orders. For the next-to-leading

order calculation the combinatorial rear-

rangement of Feynman graphs is practi-

cally unavoidable.

After identifying the relevant graphs in

all loop orders, a method is needed for

evaluating them. Barring a few trivial

cases of limited applicability, an analytic

solution is not available. We developed a

highly e�cient numerical approach based

on the work of ref. [17] on three{loop

massive graphs. In ref. [9] we applied

this to two-point functions. Meanwhile it

was also extended to three-point functions

[18]. Most probably these methods can be

extended to more complicated processes.

Because an analytical solution is not

available, the ultraviolet 1=� poles cannot

be isolated from the graphs as usual and

absorbed into the 1=N counterterms. A

few remarks about renormalization are in

order here. First, in contrast with per-

turbation theory, the choice of renormal-

ization scheme is of no relevance whatso-

ever. After summing up the complete per-

turbative series of the 1=N coe�cients no

residual scheme dependence is left. One

obtains precisely the same physical re-

sult by working in any intermediate renor-

malization scheme. This freedom can be

best exploited for simplifying to some ex-

tent the calculation. Second, the wave

function renormalization constants turn

out to be �nite, as they should be in a

nonperturbative solution. Only the cou-

pling constant counterterms are truly ul-

traviolet divergent. Since it is compli-

cated to extract the 1=� poles explicitly,

we performed the intermediate renormal-

ization in a nonstandard way, similar to

the BPHZ procedure.

At the fundamental level of the the-

ory, there is the problem of treating

the leading-order tachyons of the O(N)-

symmetric sigma model in the 1=N ex-

pansion. The sigma model is widely be-

lieved to be trivial, although a rigorous

proof does not exist yet. Within pertur-

bation theory, an indication of triviality

is the existence of the Landau pole. Sim-

ilarly, in the 1=N expansion there is a

tachyon in the Green functions. In per-

turbation theory the Landau pole is gen-

erated in a region where the beta function

is not obtained reliably. Thus the Landau

pole can be considered at most an indica-

tion of triviality. In the 1=N expansion

the validity of the result depends only on

the value of N , and not on how strong

the coupling is. So the previous argument

does not apply. Not much is known about

the convergence properties of the 1=N ex-

pansion, and it was even suggested that a

nonuniform convergence may explain the

occurrence of the tachyon. Independently

from what happens in higher orders, the

tachyon cannot be considered a prediction

of the theory in the usual derivation of the

1=N expansion. Normally the 1=N solu-
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tion for the Green functions is obtained by

summing up its perturbative expansion.

The �nal result is thus determined only up

to an arbitrary function which vanishes in

perturbation theory. This freedom can be

used to preserve causality. The residuum

of the tachyon pole is precisely such a

function. As such, it can be subtracted

at its pole without upsetting the origi-

nal information from the Feynman dia-

grams. Our tachyonic regularization sim-

ply subtracts the tachyon pole from the

leading-order two-point functions. This

procedure can be repeated consistently in

higher orders if necessary.

It is interesting to note that the sat-

uration e�ect is actually within the di-

rect production reach of the Large Hadron

Collider. We only considered the stan-

dard Higgs production by gluon fusion.

The other production mechanism, the

vector boson scattering, is not yet avail-

able nonperturbatively or at two-loop or-

der. It is only known at one-loop [19].

Studies which were performed at tree level

indicate the gluon fusion to dominate up

to about 1 TeV [20].

The gluon fusion process at hadron col-

liders was studied in detail at leading or-

der [21]. We included the correction of

enhanced electroweak strength at NNLO,

as a �rst approximation for the nonper-

turbative 1=N result [22]. This is because

the three-point function is not available

yet in the 1=N expansion at NLO. The

use of the two-loop result is justi�ed up to

about 1.1 TeV because the two-loop Higgs

width agrees well with the nonperturba-

tive result. To simplify the analysis and to

avoid the need for precise detector details,

such as actual energy and angular resolu-

tions, we con�ned our analysis to the non-

hadronic decay channels. We considered a

100 fb�1 sample and we asked for a 5� ef-

fect. Then, the four charged lepton chan-

nel can reach up to an on-shell Higgs mass

of about 830 GeV [22]. The two charged

lepton and missing transverse momentum

channels can reach up to about 1030 GeV.

As one can see in �g. 1, this value is well

within the saturation zone. It is possi-

ble that the hadronic channels may al-

low one to go even deeper in the satura-

tion zone, due to a higher branching ratio.

The analysis is complicated by the pres-

ence of a heavy QCD background. How

well can the QCD background be sepa-

rated from the signal is a matter of de-

tector energy and angle resolution. This

is a study which still needs to be done to

assess the full potential of the LHC.

In conclusion, we now have the tools

for calculating both two-loop corrections

and NLO nonperturbative 1=N expan-

sions in the Higgs sector. By combining

the two expansions we were able to elu-

cidate the strong coupling behaviour, and

to establish the presence of a mass satura-

tion e�ect at about 930 GeV. We treated

the Higgs resonance in gluon fusion with

these methods, and we established that

the mass saturation e�ect is within the

reach of the LHC even by conservatively

considering only purely leptonic channels.
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