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1 Introduction

Calculation of radiative corrections to certain jet processes is becoming extremely im-
portant (see, for instance, the reviews [Il, 2] and references therein). In particular, the
two-loop three-gluon vertex with two external gluons on shell (i.e. when two external mo-
menta squared vanish) is a part of the next-to-next-to-leading order (NNLO) contributions
to gg — gg and qg — gg processes (see, for instance, Fig. 1). The next-to-leading order
(NLO) contributions to these processes were considered in ref. [3]@ (see also in refs. []).
For a complete calculation of all relevant NNLO contributions, one also needs to calculate
the two-loop four-point functions (see, for instance, in [Bl, @]).

Studying the three-gluon vertex (and other QCD vertices) in this on-shell limit is
also important, in order to understand the structure of infrared (on-shell) singularities,
to illustrate how the corresponding Ward—Slavnov-Taylor (WST) identities work in this
divergent case and to develop calculational techniques that can then be generalized to
deal with more complicated (e.g. off-shell) configurations. Performing the calculations
in an arbitrary covariant gauge is useful, in order to exploit the consequences of gauge
invariance (the WST identities) at all stages. In the calculation of physical quantities,
the independence of the gauge parameter usually serves as an important check.

The one-loop QCD vertices have been known for quite some time. The one-loop result
for the three-gluon vertex, for off-shell gluons (with p? = p2 = p3) and in an arbitrary
covariant gauge, was presented in [7, §]. The general off-shell case, but restricted to the
Feynman gauge, was considered in [0]. Various on-shell results have also been given: in
[T0], restricted to the infrared-singular parts only (in an arbitrary covariant gauge), and
in [II], with the finite parts for the case of two gluons being on-shell (in the Feynman
gauge). The most general results, valid for arbitrary values of the space-time dimension
and the covariant-gauge parameter, have been presented in an earlier paper [I2], where
we have also collected the results for all on-shell limits of interest. Some results for the
one-loop quark—gluon vertex (or its Abelian part, which is related to the QED vertex)
can be found in [T3].

At the two-loop level, the QCD vertices were mainly studied in the zero-momentum
limit [T4, 15], i.e. when one of the external momenta is zero. This limit is useful for
studying the renormalization properties of QCD, since (for the considered vertices) it
does not bring in any infrared (on-shell) singularities. In [I4], the renormalized results
in the Feynman gauge were presented. In [I5], the unrenormalized and renormalized
results for the three-gluon and ghost-gluon vertices have been obtained in an arbitrary
covariant gauge, and the corresponding differential WST identity in QCD was analysed
in detail. The relevant techniques for on-shell two-loop calculations have been studied in
refs. [I6, 17, IR]. In ref. [T6], the two-loop electromagnetic quark form factor in massless
QCD was considered. Corrected results for this form factor were later presented in [T9, 20].
In ref. [T7], the two-loop scalar form factor was calculated. We also note that the structure
and factorization properties of infrared singularities of two-loop order QCD amplitudes
were recently discussed in ref. [27].

In the present paper, we discuss an algorithm to calculate two-loop three-point di-
agrams with two external legs on shell. Then, we present the on-shell results for the

'For a complete list of NLO contributions, see Figs. 6 and 8 of .



three-gluon vertex and the ghost-gluon vertex, in an arbitrary covariant gauge, keeping
the finite parts of the expansion in the dimensional regularization [22] parameter . We
consider the relevant WST identities in the on-shell limit and confirm that the results
obtained are consistent with these identities.

2 Preliminaries and WST identities

The three-gluon vertex is defined as (see Fig. 2)

lelzz(fi(pl?p?ap?») =-—i g f(11(12a3 Fm,uzug (p17p27p3)' (21)

Here, the f*12% are the totally antisymmetric colour structures corresponding to the
adjoint representation of the gauge group (for example, SU(N) or any other semi-simple
gauge group). Other colour structures do not appear in the perturbative calculation
of QCD three-point vertices, at least at the one- and two-loop levels. To regulate the
ultraviolet and infrared (on-shell) divergences occurring at the one- and two-loop levels,
we shall use dimensional regularization [22], with the space-time dimension n = 4 — 2e.
Since the f*%% are antisymmetric, I'y,, ., (P1, P2, p3) must also be antisymmetric
under any interchange of a pair of gluon momenta and the corresponding Lorentz indices.
Therefore, in the limit of interest (p? = p3 = 0, p3 = p?) it can be presented as

quzug(plap2ap3)‘p§:pg=0, pi=p2 = Guipe (pl - p2)u3 Ul(p2)

+ [gmmpluz - 9u2u3p2u1] U2(p2) + [guw:sp?uz - guzugplm] U3(p2)
D1 Pous (1 = P2) s Us(P?) + Popn Pras (01 — P2) s Us (p?)
+ [plulpluzplug - p2u1p2uzp2u3] UG(p2) + [plu1p1u2p2u3 - p2u1p2u2p1u3] U7(p2)- (22)

This decomposition is similar to eq. (29) of ref. [1()}@. All terms are explicitly antisym-
metric with respect to (p1, p1) < (p2, pi2). At the lowest, “zero-loop” order,

0 =1, U =-2 U"=-1, U0=0"=0"=0"=0o, (2.3)
so we get the well-known tensor structure

G pz (p1— p2)u3 * Guops (p2 — p3)u1 t Guzm (ps — pl)ug‘ (2.4)
The lowest-order gluon propagator il
aras L Pys Pz
5 1a2 E <gM1M2 _6 p2 , (25)

where £ = 1 — a is the gauge parameter corresponding to a general covariant gauge,
defined in such a way that £ = 0 (a = 1) is the Feynman gauge. The gluon polarization
operator is defined as

Hzlllllé (p> = —o"® (p2gu1u2 - pmpug) J(pz)a (2.6)

2For details, see section 4C and appendix F of ref. [T2].
3Here and henceforth, a causal prescription is understood, 1/p? — 1/(p* + i0).




while the ghost self-energy is
- -1
e (p?) = 622 p? [Gp?)| (2.7)

In the lowest-order approximation J© = G© = 1.
The ghost-gluon vertex can be represented as

919293 (1 po;ps) = —ig f*% pi# Ty (D1, D23 D3), (2.8)

where p; is the out-ghost momentum, p, is the in-ghost momentum, p3 and p3 are the
momentum and the Lorentz index of the gluon (all momenta are ingoing). For I',,,,, we
use following decomposition (see [Q]H)

T pis (D1, D23 D3) = Gpus@(P3, D3, DY) — 3,02, 0(03, 13, 1) + D103, (D3, D3, DY)
3,01, A(P3, D3, DY) + P1up1,e(3, 03, 00). (2.9)

At the “zero-loop” level, all the scalar functions involved in () vanish at this order,
except one, a(® = 1.

Whenever possible, we adopt the notation used in our previous papers [12, [[5]. In
particular, for a quantity X (e.g. any of the scalar functions contributing to the propa-
gators or the vertices), we denote the zero-loop order contribution as X© (cf. eq. [£3)),
the one-loop order contribution as X, and the two-loop order contribution as X, In
this paper, as a rule,

X0 = x@8 4 x@La) (2.10)

where X(€) denotes the contribution of gluon and ghost loops in a general covariant
gauge (Z3) (in particular, X > corresponds to the Feynman gauge, & = 0), while X (-9
represents the contribution of the quark loops.

In general, the WST identity [23] for the three-gluon vertex reads (see e.g. in [24]):

P4 T o (P, P2 13) = =T (0) G(B3) 9,07 — DrymP| Ty (P, P33 12)
+J(13) G(D3) (9,205 — Popal?] Tpagps (2,3 p1)- (211)

It is easy to see that the ¢ and e functions from the ghost-gluon vertex (Z3) do not
contribute to the WST identity (1]). In the on-shell case, some of the momenta squared
vanish. Note that (in the case of massless quarks) J(0) = G(0) = 1. In eq. (1)) we can
also consider permutations of the indices 1, 2, 3 corresponding to the contractions of the
three-gluon vertex with p{* or ph*. To get all relations between the scalar functions in the
case of interest (p? = p2 = 0, p3 = p?), it is sufficient to consider the contractions with
p5* and py”.

The WST identity (T1) (contraction with p5*) yields just one condition on the scalar
functions:

Us(p?) = Us(p®) + 50°Us () + 507U (p?)
= —J(0) G(p*) [a(0,p%,0) + 3p*(0, p*,0) + 3p%d(0,p,0)] . (2.12)

4Adopting the notation used in ref. [9], we have written in previous papers [I2, [[5] the arguments of
these ghost-gluon scalar functions a, b, ¢, d and e as momenta (vectors). In the present paper, it is more
convenient to write the arguments as momenta squared. The order (3,2,1) of the arguments on the r.h.s.
of eq. (ZH) corresponds to ref. [9] and has not been changed.
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Considering contraction with pi", we get four relations:

Ui(p*) + $p°Us(p?) = G(0) J(p*) [a(0,0,p%) + 3p°6(0,0,p%) + $pd(0,0,p7)],  (2.13)

Uz(p?) = =2 G(0) J(p*) a(0,0,p%), (2.14)
Us(p*) = 3p°U= (%) = G(0).J(0) 39°b(p*,0,0) — G(0)J (p*) [a(0,0,p*) —3p°d(0,0,p%)]
(2.15)

WUs(p?) = =G(0) J(0) [a(p®,0,0) — 3p*d(p*,0,0)]
+G(0) J(p*) [a(0,0,p%) + $p°d(0,0,p%)] . (2.16)

Note that the Lh.s. of eq. (ZI2) can be constructed from the L.h.s.’s of eqs. ([ZI4)—
(ZI8). This gives a condition on the scalar functions from the ghost-gluon vertex:

G(p*) [a(0,p%,0) + 2p?b(0,p*, 0) + 2p*d(0, p?,0)]
= G(0) [a(p®,0,0) + 3p°0(p*,0,0) — 3p*d(p*,0,0)] . (2.17)

Therefore, the conditions (Z13))—(ZI7) may be considered as a set of independent corol-
laries of the WST identities (EZ1TJ).

At the one-loop order, the diagrams contributing to the three-gluon vertex, two-point
functions and the ghost-gluon vertex are shown in Figs. 1, 2 and 3 of ref. [I2]. The
one-loop expressions for the U; functions are presented in Appendix F of ref. [12]@, for
arbitrary values of the space-time dimension and of the covariant-gauge parameter £. In
ref. [I2], they were obtained as a limiting case of the general off-shell expressions. Of
course, they may also be obtained by direct calculation, using results for the on-shell one-
loop integrals collected in Appendix A of the present paper. The corresponding one-loop
expressions for the ghost-gluon scalar functions are, for the on-shell limits of interest,
collected in Appendix B. They can be obtained from the expressions for general momenta
presented in Appendix D of ref. [I2], or by direct calculation. The one-loop expressions
for the two-point functions can be found, for instance, in ref. [25] (see also in [I2] and
Appendix C of the present paper). Collecting all the mentioned one-loop results, we have
checked that they satisfy the conditions (2213))—(ZI1), in any space-time dimension n and
for any £.

In the one-loop expressions, the following notation is usedd:

2

H(p2> = _(TL — 3)(7’L _ 4) (_p2)(n—4)/2 = m (_p2>_€7 (218)
"= 1;((5:31)) F3-%)= ?(51_32 F+e)
= e |1- %7952 — 5(353 — %W‘le‘l +0(”)], (2.19)

5The divergent parts were presented earlier in ref. [I(]], whereas the Feynman-gauge results, including
the finite terms in ¢, are available in [T1].

5Below, we shall also use the factor 1 in two-loop results (they are proportional to n?). Since the
two-loop contributions involve poles up to 1/e%, we need the expansion of n up to the * term.

>



where y ~ 0.57721566... is the Euler constant, whilst (5 = ((3) = 332, 77 ~ 1.2020569...
is the value of Riemann’s zeta function.

We also use the standard notations Cy for the eigenvalue of the quadratic Casimir
operator in the adjoint representation,

fedfbed — ¢, 6%  (Cy = N for the SU(N) group), (2.20)

and Cr for the eigenvalue of the quadratic Casimir operator in the fundamental repre-
sentation. For the SU(N) group, Cr = (N? — 1)/(2N). Furthermore,

T = N;Tg, Tr = % Tr(I) = % , (2.21)
where Ny is the number of quark flavours, and I is the “unity” in the space of Dirac
matrices (we assume that Tr(7) = 4).

3 Planar two-loop three-point integrals

To calculate two-loop contributions to the three-gluon vertex (shown in Fig. 1 of ref. [15]),
we consider contractions of eq. ([22) with all possible tensor structures carrying three
Lorentz indices p1, s and ps. Note that non-planar graphs do not contribute to the
two-loop vertex, since their over-all colour factors vanish, due to the Jacobi identity (see
Fig. 6 of ref. [26], where this is explained).

Technically, the problem is therefore reduced to the calculation of scalar integrals cor-
responding to the planar two-loop vertex graph shown in Fig. 3a (and similar graphs with
cyclic permutation of external momenta py, p2 and p3). However, as a result of contract-
ing the tensor structures, we get in the numerator some polynomials in scalar products
of external and loop momenta. The complete basis for expanding these polynomials (see
ref. [27]) includes (i) three external momentum invariants (e.g. p?, p3 and p3), (ii) six
squared momenta corresponding to the six denominators shown in Fig. 3a, and (iii) one
additional invariant, which can be chosen as ¢?. Diagrammatically, the latter member
of the basis can be associated with the seventh line of an auxiliary “forward-scattering”
four-point diagram shown in Fig. 3b.

Since ¢? is missing in the original set of denominators (Fig. 3a), it always remains
as a numerator, which cannot be cancelled against any of the denominators involved.
Therefore, it is referred to as an irreducible numerator (see, for instance, ref. [27]). In
general, integrals with irreducible numerators require a special consideration [27, 28].
However, as we shall see below, this problem is not so serious in the on-shell case as in
the general off-shell case, since the relevant “boundary” integrals can be calculated for
any (integer) powers of the numerator ¢2.

In terms of an algorithm, it is convenient to consider ¢* as an extra denominator,
remembering that its power v is usually non-positive. Thus, let us consider integrals
corresponding to the auxiliary diagram in Fig. 3b:

K3(n; Vi, V2, V3, V4, Vs, Vg, V?)
_ // d"q d"r
B [(pr + )] [(p1 4+ @)?2 [(p2 — 7)?]78 (D2 — @)?]"4(r?)7 [(q — 7)?]"e (@)
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where n = 4 — 2¢ is the space-time dimension. We shall also need diagrams corresponding
to the permutations of the external momenta in the diagram [B). They are:

K2(n7 V17V2a1/371/47y5a1/671/7) = Eq (m) Wlth (plaanp?)) - (p?nplap?)a (32)
Kl(n7 1/1’1/271/3’1/4,1/571/6’1/7) = Eq (m) with (pl7p27p3) - (p%p?npl)‘ (33)

The corresponding diagrams are the same as given in Fig. 3; the only thing to do is to
permute the external momenta p;. Note that for the integrals Ky and K7 not all external
lines of the four-point function are on shell, since some of them carry ps with p2 = p? # 0.
Instead, one of the corresponding Mandelstam variables vanishes.

To construct a procedure of calculating the integrals K; with different integer v;, the
integration-by-parts procedure [29] is usefulll. If we introduce the notation jT to denote
an increase of v; by one unit (and similarly let j~ denote a decrease of v; by one unit),
then the set of independent integration-by-parts relations for the functions (Bl) can (for
arbitrary momenta) be written as followé:

—p§1/33+ +p2usbt —13173" — 151757 467 (2_ — 1_) +(n—21/1—1/3—1/5—1/6)_ K3 =0,
(3.4)
—p§1/11+ +pavsbt — 111737 — 153757 467 (4_ — 3_) +(n—1/1—21/3—1/5—1/6)_ K3 =0,
(3.5)
_pfz/llJr +pa33t —1157 — 133757 467" (7_ — 5_) +(n—1/1—1/3—21/5—1/6)_ K3 =0,
(3.6)

17 (27 =67 ) + 153" (47 =67 ) + w557 (77 —67) + (n—11—vs—v5—2u5)| Ky =0,

(3.7)
) —1/72_7+ +(n—2u2—u4—uﬁ—u7)} Kg = 0,
(3.8)
)
(

[p§y44+ 2Tt — 1274 46t (1— 2

[pgy22+ + e Tt — 1274 414567 (3_ —47 ) —v 4Tt +(n—V2—2V4—V6—V7)} K;=0,

(3.9)

[1/22+ (1_ — 6_) + 14t (3_ — 6_) + 7t (57 — 6_) + (n—l/g—l/4—21/6—1/7)} Ks3=0,
(3.10)

[p%yg2+ —|—p§1/44+ — 2 7T — 1 ATTT 46T (5_ — 7_) +(n—1/2—1/4—y6—2u7)} Ks;=0.
(3.11)

Analogous relations for K, and K; can be obtained by permuting the subscripts of p?,

according to egs. (B2) and B3).

Now, if we recall that we are dealing with the on-shell case, p7 = p3 = 0, we can see
that some terms on the r.h.s. of eqs. (B4)-(BII) (and in the analogous relations for the
K, and K integrals) vanish. In this case, the following symmetry property is valid:

Ky (n; vy, v, U3, vy, Us, Vg, V7) = Ko(n; U3, Vg, 1, V2, Vs, Vg, V7) (when p% = pg) (3.12)

Therefore, it is sufficient to consider the K3 and K, integrals.

"The application of this procedure to the calculation of the integral K3(n;1,1,1,1,1,1,0) was presented
in [I8] (see also eq. (BI3) below). In a more general context, it was also discussed in [30].

8The set of recurrence relations for calculating one-loop three-point functions was considered in
ref. [31].



When certain powers of propagators v; Vanishﬁ, the corresponding integrals K; can
be calculated in terms of I' functions or finite sums over terms involving I' functions. A
collection of relevant results for such “boundary” integrals is presented in Appendix D.
Using the relations (B4)—(BI1), the integrals K; with integer powers of propagators v; can
be reduced to a set of such “boundary” integrals, or to analogous integrals where some
V’s are negative, i.e. the corresponding denominators are in the numerator. The latter
integrals can also be reduced to boundary integrals (with the corresponding v’s equal to
zero), by using the tensor decomposition in appropriate self-energy-type sub-loops, i.e.
formulae similar to those collected in Appendix A of ref. [I§] (see also [29, 32]).

It should be noted that, starting from integrals with non-positive v and using relations
BA)-([B11), we never get integrals with positive v, since 77 is always accompanied by
v; and one cannot “overcome” v; = 0. Nevertheless, in some cases integrals with positive
v; may appear, due to the above-mentioned tensor decomposition in the sub-loops. Since
the relevant boundary integrals can be calculated for an arbitrary v; (see Appendix D),
this does not create extra problems, even if all seven v’s are positive (see eq. (O.0)).

Let us illustrate this procedure by some important examples. One of them is the
integral K3(1,1,1,1,1,1,0) (Fig. 3a), which was calculated in [I6, 17, 18]:

Ks(n;1,1,1,1,1,1,0)

1
=52 [K3(n;0,2,1,0,1,2,0) — 2K3(n;0,1,0,2,2,1,0) + 2K3(n; 1,1,2,2,0,0,0)]
1 1

6 3
_ 42 2\-2-2 2| * , * 2 O P AL 06] . (313
R ()R [k St St oo+ 0(E)] L (3.13)
To reduce the number of terms, some obvious symmetry properties of the boundary
integrals have been used. Another example is the K5 integral with the same v’s:

Ka(ns1,1,1,1,1,1,0)
1
e Ky(n:1,0,0,2,1,2,0)+ Ky(n:0,1,0,1,2,2,0)+2K(n: 1,0,0,3,1,1,0
28(1+2€)[2(n;a777a7)+2(77/;’>a>a7)+ 2(77,,,7,7’7)]

9 9 9 3 3 3 1
:7T42(—p2)222 9

_4—53 + 252 - g + 4_€7T2 + 6 — %7’(2 + 6<3 + 0(5) . (314)
It corresponds to Fig. 3a, with the left lower momentum off shell. Expanding the n
factor (ZI9), one can see that our results (BI3)—(BId) coincide with those presented in
[16, 7, 18]. Our eq. (BIJ) corresponds to the result for diagram 6A (with numerator
= 1) presented in the Appendix of ref. [T6], to the first line of Table 4 of ref. [I7] (“fig. 27),
and to eq. (12) of ref. [I§]. Our eq. (BI4) corresponds to the second line of Table 4 of
ref. [I7] (“fig. 47), and to eq. (27) of ref. [18]. We have also checked the results for
other scalar integrals listed in refs. [I6, 7, 18], namely: all results for the diagrams from
6A to 3A in the Appendix of ref. [T6] (including those with numeratord], but excluding

9Diagrammatically, this can be understood as shrinking the corresponding line to a point.

0Tn eq. (27) of ref. [T8], 9¢4 should read 9¢>. We also note another obvious misprint: in the last diagram
on the r.h.s. of eq. (9) of [1]], the “upper” line should contain a dot, i.e. the power of the propagator is
equal to 2, which is clear from their egs. (8) and (10).

HWe note a misprint in the result for the diagram 4C with numerator (I - p), 15/(16w) should read
5/(16w) (in our notation, w <« —¢). In addition, {2 is forgotten in the product of denominators in
diagram 5F, and the denominator (I — r)? should read (I + r)? in diagram 4D.



the non-planar diagram 6B); the three remaining lines in Table 4 of ref. [I7], as well as
the results listed in Appendix C of [l 7] (excluding the non-planar stuff, egs. (C.6) and
(C.7)); eqgs. (26) and (28) of ref. [I§].

The algorithm discussed in this section makes it possible to evaluate all relevant inte-
grals (corresponding to planar two-loop diagrams) for an arbitrary value of the space-time
dimension n. However, since in physical applications one usually needs the expansion in
e = (4—n)/2, we present below the results for the two-loop vertices in an expanded form,
up to €Y, i.e. keeping the poles and the finite terms.

4 Two-loop results for the three-gluon vertex

Below, we list the unrenormalized two-loop contributions to the functions U;(p?) occur-
ring in the three-gluon vertex. They were calculated using a set of REDUCE [33] pro-
grams based on the algorithm described in the previous section. The two-loop diagrams
contributing to the three-gluon vertex are shown in Fig. 1 of ref. [T5]. The results are
expanded in € up to the finite terms. The factor n is defined (and its expansion in ¢ is
given) in eq. (2ZI9). The colour factors Cy, T and Cf are defined at the end of section 2.

The contributions of the diagrams without quark loops, in an arbitrary covariant gauge
(for the definition of the gauge parameter &, see eq. (ZH)) are

oG = ¢ ST e (2 ) LA B, B e

A (4m)n 4\64 1287/ T 3 \12 ' 384 ' 256
1,37 19 , 623 3 , 103, 1 3>
o ( 72 102" taret TisT T st TRt
+1< 29 1, M 3B 3T
|-+ ="+ — — &+ —
s\ 54 72 4% "7 1728° " 384
21 137, 1 ,, 9 3)
3G T3y T ¢ T gt
6653 119 , 139 o1 , 1333 37 , 101
301 13" T 129t 30" T mmat Tt ot 3t
1, 1993, 3 ., 11, 19, 14}
— iy B P i 41
Form ¢t et T 1mT S Tt T Tt Ol (D)
UROR) = o2 I 2)_25{ 5 1 (19 N 5§>
2 W= Ay TP 16c4 =3\16 ' 8
1 /15 5 , 1 1, 6l 2)
22 ( T U DA TS L
1,593 1 , 7 67 1, 1 31, 133)
5(48 367 1% ot T T Re T RS T

17939 19 , 107. 1 , 8381 31,
o 1T T 12 T 20" st Togt o0

1 41 I 5. 1 s 11 4 1 4}

—— T = =" — T+ — — =& ==y +0(@E), (42

610" * st 12" S T TR s ©, (42)

2Tn eq. (C.5) of ref. [I7], in the second term in the square brackets (the term containing D) the
numerator 2 + &2 should read 2 + %82 (note that the ¢ used in [I7] corresponds to our —2¢).
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4 .2
U = AR 5 (5 - - )
1 /79 65 103 , 27 4
5 (56~ 1926~ 1928 3¢
1,95 17 , 157 13 751
= (m ot T
97 1, 135
TRt T T oot

1 ( 6125 155 ,

-+ =

c\ 864 72 1728

S62 S TR e T 3st TRt Tt g

265205 206 , 227 1 40815, 319 ;239
—_ —_ —7"' —_

sst T or” TS T ke T o 39 ¢
1, 23687, 1.,., 9 ., 1 ,., 145,
220" ¢ T hsat TS Tm®t T ¢ Tl
5 13
2¢3 -~ 3 Y 4 43
&+ " — o'+ 06) (43)

1 81 1
2__22__3__4
1™ ¢ ot 325)

13
+ 6t

768"

4 2
277(2.6) (, 2 :_2977_2—25{i(1_1 99 i?,)
1 /11 301 539, 65, 25 4)
ts (16+ o6 ¢ T 1s TS st

1,9 11, 38 9 , 1541, 49 ,,
&2 (16+967T TV TR T E N T LI

4267 , 1
g o003y

3 1
L9 9 L
23045 T3¢ TS Tt )
1/2195 271 , 19 34549 7 , 15 7031, 5 .,
: ( 06 14d" g T g Sty St g Gl gt 5T ¢
221, 20881 , 1 ,. 21 . 203, 1 ,, 35>
P T 3me S T T Tt Tam o Tt
JBI6S3 273 5 80, L, 1212661 685 o
576 216 ¢ 24> T 16" 710368 ° ' 216"
1661 19 , 39857 , 1327 , ., 109
Rt T e tageT ¢ g

139 , ., 87085, 73 ,. 21 . 3 .
180" & T Ema S T e T3t T ¢

80 , 1 .., T .. 7T 5}

ety L onoea L L 44
T8 T 1™ & T g0 T g5¢ + O(e), (4.4)

+

4 2
21282y _ 2 90 _2—26{_i<1 3) i(i_@ _§2)
PUTTW) = Ca e =p) a3 ted) TE a1t st

1,10 1, 653 7 , 67, 1 3)
22 (9 167 TRt T 12" ¢ T 1et T 16t

10385 11 , 21 4303, 5 , 5 . 63, 1 ,, 5 3)
" (216 R R v U IS Sy A DU T

0557 41 , 113 9 , 12889 9 , 103 9
1206 108" 12 160" 1206 T3:3" ¢ T 169 3" ¢
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S G 6] 4+ 0(), (45)
(26) o 9N o e 3 1/ 1
PUT) = 05 (47r)n(_p) {3254“?(" @5 1285)
(Wf—% ——cg—%u— %+ Sk
L <§2——§)
450148249 N % 2 _Cf” N ﬁ T 115003366875 @W N _C35+ %Wg
——5+”3 25+;<£+1280 re 6 e 332£}+0<>< 0)
+i3 (% %g—%g 12278£>
= (T o6™* it i 25—2%“ %47?252—%5’ ')
é<_%+% 2 —gg—%g 192 26__@’5
o S LG - e 253—%4)
1100617 | 6377 , 3763 s 4 mg_g o
5184 432 160 10368
—ﬂcgs—g% 45—%5 + 22 <§2+ﬁ g2
o~ —6<353—%54}+0<e>. (4.7

The unrenormalized two-loop contributions of the diagrams involving quark loops are

UE) — car L0 p2>—2f{ : (1—7 +eE)+ —(5——5)

18 18
1383 1, 9 43, 2}
(108 T 6 6 ) 321 T 108" <3 162S ¢
4 2
g*n ov_2c [ 2 61 }
- S 4,
0T () { + o= 166 +O(e), (43)
(2.0) (2 g'n . g eyl 173 5
v = ot Rt {5 5 (5 5¢)
Lol 1 5.5 %2) 2113 23 , 85, 190 %2}
(12+367r toe—3¢ 72 18" 698 T ottt
g* n? o2 [ 4 110 }
S 4
FORT )7 =2 = 5 1826} + 0(e), (4.9)



4 2
| g Ll T 1,1
UL (p?) = O4T (47:;"(_]92) 2 {53 (_E * §£+ 6£2>

1,3 1, 1 11 2) 1(4405 151 , 23 47 2)
22 ( % 6" Tt tRY) TG T ST et
152755 1661 , 133 1, 235 1, 337 2}
_ e gt 2 9 27
1206 216" 129 20" 33 T3’ & TRt gt
+CrT g (—p*) % {—iﬁ + 0 o 10¢ } + O(e) (4.10)
2 4 3¢ 3 ° ’ '
42 1,5 29 19, 1
22y — o, 9N _2-%{_(_ 29, o _3)
p U (p7) A (4W)n(p) Sl gt aét s s

151342477 - 31300877T2 - % 3T %07T4 - %g N 2%#5 * 2_38C35
+1Z$£2 + %ﬁ&? + 54352 + %&3}

4 p? 8 1 2 4
~CpT (947:;”(—;92)‘25 {5—2+g (52+—7r2) +214+§7r2+52§3}+O(a)(4.11)

3
4 2
20720 2y — o 9N _2—2a{i<_i 1) l<_1_4 1_4>
U = Ca (47r)”( sl ) tale et
1/ 64 1 , 100 8101 37 , 1. 767 12}
5( 57 36" 27€>+ 321 s T3t i3
gt o o
40T L2y L 0(e), (4.12)
(4m)n
4 ,.2
220 2y — o, 9N _2—2e{i<_2 E) i(@_@>
pUT) = Ol gty s st el b
102387 13, 49 1 , 72)
5(216 8" tort TS
42515 223 , 35 1519 11 , 77 2}
to06 T 108" T3Gt et T et Gl T 3Re
42 4 110
+opr 41 (—p2)—2€{—+——32g3}+c9(5>, (4.13)
(4m)n 5 3
2U(27q)( 2) — O.T 94 772 (_ 2)—2«3{i (_§+35+l§2)
P W)= A gy P B\ 3 2473

37 1., 167 112>
+52<36 37T TRt gl
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1/,9419 125 61 1 , 107 2)
: ( 516 36" 2GRttt yT it 51¢
334055 352 , 29 1, 263 5 , 457 2}
M T TR A T Gl Ay G (S S T

4 .2 1 2
+OpT L (p)2 {— (4 - —7r2> 454 — 47 — 52@,} +O(e).(4.14)
(4m)m € 3

We have also obtained the two-loop results for the ghost-gluon scalar functions in all
on-shell limits of interest. They are given in Appendix E, whereas the relevant two-loop
contributions to the two-point functions J(p?) and G(p?) are collected in Appendix C.
Using all these expressions, together with the one-loop contributions, we have checked
that all the results obtained satisfy the WST identities (2I3)—(117), as they should.

The renormalization of the results for the three-gluon vertex (and other three- and
two-point functions involved) was discussed in detail in section 8 of ref. [I5]. The cor-
responding renormalization factors (7, Z;, Z3 and Z3) in the MS (or MS) scheme have
been presented in refs. [34), B5]. For a detailed discussion of these results, together with
a list of misprints, see Appendix B of ref. [I5]. To construct renormalized expressions for
the three-gluon vertex functions U; at the two-loop level, we need
(i) to take the sum of (unrenormalized) zero-, one- and two-loop contributiond™, consid-
ering the coupling constant and the gauge parameter as “bare” quantities, ¢ — gg and
§ — &g;
(ii) to substitute gg and &g in terms of the renormalized g and &, multiplied by the ap-
propriate Z-factors (see eqgs. (8.8) and (8.9) of ref. [15]);
(iii) to multiply the resulting expression by the corresponding Z—facto, namely Z; (see
eq. (B.1) of ref. [19]).

Since the resulting renormalized expressions are as cumbersome as the unrenormalized
ones (and can easily be obtained from the latter ones), we do not present them here. They
also contain infrared (on-shell) poles in € up to 1/&%.

5 Conclusion

In the limit when two external gluons are on shell, we have calculated the two-loop
contributions to the three-gluon vertex, in an arbitrary covariant gauge, keeping finite
terms of the expansion in € = (4 —n)/2. In this limit, the three-gluon vertex is described
by seven scalar functions U;(p?) associated with different tensor structures, see eq. ([22).
The results (listed in section 4) contain on-shell singularities up to 1/e*. The ultraviolet
singularities are at most 1/¢% and should be removed by the renormalization. In a realistic
physical calculation of squared amplitudes, the infrared (on-shell) singularities should be
cancelled by the contributions of one-loop diagrams with soft emission from the external
legs, etc., according to the Kinoshita—Lee-Nauenberg mechanism [36]. In this way, our
result will be useful as a “block” in the calculation of NNLO corrections to physical
amplitudes.

13Note that the one-loop expressions should be expanded up to 2 terms, since they may be multiplied
by other one-loop contributions involving 1/£2 poles.

UFor the ghost-gluon vertex (see Appendix E), the renormalization factor Z; is required (see, for
instance, eq. (B.2) in ref. [T5]).
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We have also calculated the ghost-gluon vertex (Z3) in all on-shell limits of interest;
the results are collected in Appendix E. We have confirmed that the obtained results obey
the corresponding WST identities (Z13)—(217).

We note that in the on-shell case considered, the problem of irreducible numerators
in three-point two-loop integrals already shows up, but it can be overcome in a relatively
simple way, since the relevant boundary integrals can be calculated for any integer powers
of this numerator (see Appendix D). In the zero-momentum calculation [I5], there was no
such problem at all. In the general off-shell calculation, though, the problem of irreducible
numerators is much more severe [27].

Our results can be considered as a further step, in addition to [I4} 5], towards cal-
culating the two-loop QCD vertices in more complicated cases, such as the on-shell limit
with just one gluon on shell, or the general off-shell casdd.
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sov for useful discussions. A. D. is grateful to the Department of Physics, University of
Bergen (where this work was started), and also to the Department of Physics, University
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thank the Theory groups of DESY and CERN for kind hospitality. This research has
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Humboldt Foundation (A. D.). A partial support from the grants RFBR-98-02-16981
and Volkswagen—1/73611 is acknowledged (A. D.).

15In principle, the techniques for calculating the relevant off-shell scalar integrals are already available
[373, 27].
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Appendix A: Some useful one-loop formulae

The “triangle” integral with the external momenta p;, ps and p3 = —p; — po is defined as
/ o
[(p2 = @)1 (1 + @)*]72 (%)™

where n = 4—2¢ is the space-time dimension. For general values of n and v;, the result for
the integral ([AJ]) can be expressed in terms of hypergeometric functions of two variables
[38, 31].

When two external legs are on shell, p? = p3 = 0 (p3 = p?), the following simple
formula can be easily obtained:

(A1)

J(n7 Vi, Vo, V3) =

J(n; vy, va, v3) = {2 (p?)n/2 L (%_Vl_y3) g (%_Vz_yg) L <Z Vi_%).

7 T T (1 2 1)

p3=p

(A.2)

In particular, we shall need this formula for the case when one of the indices is a negative

integer, v3 = —s. This means that (¢?)® is in the numerator. When v3 = 0, the r.h.s. of

([A2) gives the well-known result for the one-loop two-point function. When v; or v, are
non-positive integers, we get zero.

We also need the result for the triangle integral with one leg on shell. Assuming that

p?#£0, p2#£0and p3 =0, we get

y/2- 5w I (% T Vz)

T(n: _il-n_n/2
(n; V17V27V3) p%:O 1 T (pl F(V?))F (n—sz)
JTG-m-wT(En-8) o wsu-t (B
['(vy) AR I R I

o) (4

p% %—l/l—Vg—i‘l

ii)}, (A.3)

where 5F7 is the Gauss hypergeometric function. If we use the well-known formula of
analytic continuation of yF} function from the argument z to 1 — z (with z = p3/p?),
we reproduce the result presented in Appendix A of ref. [39] (namely, their K-integral at
N =0). When v; = —s (where s is a non-negative integer), the second term in the braces
of ([(A3)) vanishes, and we get

l1 n n/2(

)n/2+8—u2—1/3

J(n;—s, v, 13) Py

p

F( +S—V2) (% S—Vg) (V2+V3—S—%) . —8, Uptrg—s5—1
C()l(v) ' (n+ s — vy — 13) 2 1( vs—s—5+1

X

2. )

P1

with a terminating o F} series containing (s + 1) terms.

15



Appendix B: One-loop results for the ghost-gluon

vertex

At the zero-loop level, we have

a®(p%,0,0) = a®(0, % 0) = a®(0,0,p%) =1, (B.1)

whereas all other ghost-gluon functions are equal to zero at this order.

The diagrams contributing to the ghost-gluon vertex at the one-loop level are shown in
Fig. 3 of ref. [I2]. The general expressions listed in Appendix D of [I2] give the following
results in the on-shell limits of interest:

a(p?,0,0)

a(0,p?,0)
a (0,0, p?)

o (p?,0,0)

b (0,p%,0)

o™ (0,0,p?)
M (p%,0,0)

cM(0,p%,0)

(0,0, p?)
d(p*,0,0)

d™(0,p%,0)

d™(0,0,p%)

92 n Ca ( 2)
(4m)2 16(n —4) P
x [4(n —4) = 26(2n% = 9n + 8) + £2(n — 2)(n — 4)] , (B.2)
- (4%2/2 4(an y k(%) [2+€m? —6n+ 7)), (B.3)
e S ) 230 8) — € =4, (B.4)
92 n CA fi( 2)
(4m)"/2 16(n — 4)p2 P
x [16(n — 4) + 4¢(2n® — 15n + 30) — £(n® — 8n + 20)] , (B.5)
92 n CA K,( 2)
(4m)n2 8(n — a)p2 "
x [8(n —4) +48(n? — Tn + 13) — £2(n* — 8n + 14)], (B.6)
(45;)2/2 4(71?“‘4)}92 K(p?) [8+26(2n - 5) — €7 (B.7)
s i ) € (n =6 +22), (B5)
92 n OA Ii( 2)
(4m)2 8(n — 4)p2
x [4(n = 6) +26(n — 2)(n — 6) + £2(n” — 10n + 20)], (B.9)
_ (fw );7/2 16(nC—A4)p2 K(p?) (n — 6) [8 + 4¢(n — 2) + €(n — )], (B.10)
(45;)2/2 16(ncl44)p2/§(p2) [8(n—6)— 4€(5n—18)+ €2(n* —4n—4)| (B.11)
_ 92 Ui CA /i( 2)
(Am) 2 8(n—4p2 "
x [8(n — 6) +26(2n% — 150 + 32) — £2(n* — 8n + 14)] , (B.12)
9" Ca 5 K(p?) [2(n— 6) — 26(2n — 5) + €], (B.13)

(4m)/2 4(n —4)p
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(1) (12 _ 9> n Ca 2 B 9
e (p*,0,0) @) 2n = D k(p?) [2+€@2n—9) +2¢7, (B.14)
9°n_Ca
(4m)"/2 Ap?

eM(0,p°,0) = €(0,0,p*) = — k(p?) 24 &(n—3)], (B.15)

where n and r(p?) are defined by eqs. (I9) and ([ZIH), respectively. These results are
valid for arbitrary values of n and £&. Note that there are no quark-loop contributions at
the one-loop level.

Appendix C: Two-point functions

For arbitrary values of n and &, the results for the one-loop two-point functions (see
egs. (Z8) and (Z1)) are available elsewhere (see [35], 25, 12]). For completeness, we also
present them here:

JO(p?) = (4%2/2 K(p?) {—% [74(37:2) A2n-T)E - (n—4)§2] + QTZ = i} ,
(C.1)
G ?) = (45;—);7/2 % K(p%) 2+ (n —3)¢], (C.2)

where k(p?) and 7 are defined in eqs. (ZI) and ([ZI9), respectively. The corresponding
diagrams are shown in Fig. 2 of ref. [12].

Two-loop diagrams contributing to the gluon polarization operator are shown in Fig. 3
of ref. [T5]. Calculating their sum, we get the following unrenormalized results [T5]:

4 .2
2802 — 29" _2—2a{i<_§ ] 12) l<_@ 113, 19, §3)
T =Gt @ e tatt e ) e U e
14311 425 1, 9 1
_ 149911 20 L oeen ez J e L 4} .
3y T T g TG T € T st 06, (G3)

1) = et T oty {5 (5 - 36) + £ (g + 56— 3¢)

(47)" e2\3 3 18
1961 142 22 ,
g 85— g€
4 .2
g'n 2y—2: [2 9D }
T — -+—-1 4
HORT s (1) {2+ 166 +0(), (C.4)

where Cy, T and Cr are defined at the end of section 2.
The two-loop ghost self-energy diagrams are shown in Fig. 4 of ref. [I5]. Their sum
yields the following unrenormalized results:

4 .2
282y — (29 1 _2—2a{l<§ T 1 2) 1(@ l)
AR A VR TAs Al R ST TN
599 3. 9 §2_32}
o5 18 T g T8 T ¢ Gy T O, (C.5)
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gt 2
GO 2) = CuT LT ()2 {—— L —} +O(e). (C.6)
(4m)"
The discussion of renormalization, as well as the renormalized results for J and G can
be found in section 8 of ref. [I5] (see also [I4], where these results in the Feynman gauge
are presented).

Appendix D: Boundary integrals

Below the case p? = p2 = 0, p? = p? is understood. Using the integration-by-parts
relations (B)—([BII), we can reduce the integrals with six denominators to integrals
where some of the lines are shrunk, i.e. some of the v’s vanish. Here we list explicit
results for such “boundary” integrals of interest. Apart from the one-loop formulae listed
in Appendix A, the following well-known (see, for example, in [I8, B]) trick is useful, to
combine two internal lines attached to a triple vertex with the remaining external line on

shell:

1 _F(V+V /loz (1—a)" ' da (D.1)
)3

[(p — )" (qz)u’ o S I'(»)T [(q — ap)? u+y

In fact, this is nothing but the Feynman parametrization of a product of two propagators,
where it is taken into account that the difference of their momenta is light-like.

The diagrams formally corresponding to the boundary cases of the integrals K3 and
K, (listed below) are drawn in Fig. 4 and Fig. 5, respectively. To distinguish an off-shell
external line (corresponding to ps) from the on-shell ones (corresponding to p; and py),
the former is drawn as a double line, which can be associated with the sum of p; and ps.
Note that when using the tensor decomposition in the sub-loops we may get some integrals
with positive v7. This is not a problem, because the relevant integrals can be calculated
for any 17 (see below). When the result is valid for an arbitrary v;, the corresponding
line is solid; when it is valid only for non-positive integer v, this is indicated by a dashed
line, as in Fig. 3b.

The results (O.2), (O4) and (D) can be obtained by repeated use of the one-loop
formulae (see Appendix A). To get other results, the trick (D.]) has been used. For the
integrals (OL3), (O.1), (OY) and ([I0), this trick was used for two pairs of propagators.
The notation Yv; means Y., v;, i.e. the sum over all v’s involved (excluding those equal
to zero). In particular, if v; = —s then Yv; = Z?:l V; — S.

D.1: K3 integrals

The following boundary integrals can be expressed in terms of one-term products of I"
functions:

Ks(n; vy, vy, 13, 04, 05,0, 1) = 12720 (p?) "> F(V1+V3+V —%) F(V2+V4+V7—%)

y F(%—I/l—l/g,) F(%—I/g—l/g,) F(%—I/g— 1/7) F(%—m— 1/7)
C(v) T ()T () T(w)l (n—vy —v3 —vs) T (n— g — vy — v7)’

(D.2)
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Ks(n; 0,15, 13,0, v5, U5, v7) = 122" 1" (p*)" 2" T'(Sy; — n)

XF(%—I/Q—I/’?) F(E—I/g—l/5) F(%—VG) Fn—ve—vs—vg—v7) '(n—v3—v5—15—17)

- (D.3)
D)D) T ()T (n—1vo —vg—v7) I (n—vg — w5 — 1) T (7 — EVZ')
K3(na Oa Va, 07 Vg, Vs, Vg, V7) = i2_2nﬂ-n(p2)n_zyi F(ZVZ - n)
F(%—I/g,) F(%—Vﬁ) F(I/5+l/ —%) Fn—ve—vs—vg—v7) I'(n—vy—vs—15—17) (D.4)
X . (D.

T(v2) D (va)T ()T ()T (0 — v5 — 1) T (22 — Xy
In the following formula we assume that v; = —s is a non-positive integer:
Ks(n; vy, v9,13,0,0, v, —s) = i27 2" (p?)" > (v — n)
F(%+S—V2) F(g—l/g) F(%+3_Vﬁ) C(n+s—v1—vy—1p)
TN ()T (% — S0) T (ns—va—16)

n
F(V2+V6_s_2) =S, 5~ V3, Vot lUg—S—3

E
342 n
F(z/1+1/2+y6—s—%) ( ve—s—5+1, 1t trg—s—3

X

1) . (D.5)

Here, 3F, denotes a generalized hypergeometric series. In fact, we have a terminating 3 F5
series of unit argument, since one of the upper parameters is equal to —s. This may be
considered just as a compact representation of a finite sum containing (s+ 1) terms, each
term being a product of I' functions.

Using the results for the boundary integrals with v > 0, one can also calculate the
planar forward-scattering double-box diagram (see Fig. 3b),

i2e 32 o1 5 16 @
Ks3(n;1,1,1,1,1,1,1) = (—p?) n 5_5_2+ +——44 T2 424G +0(e) |,
(D.6)
and similar integrals with higher powers of the propagators.
D.2: K, integrals
In the following two formulae, we also assume that v, = —s is a non-positive integer:

Ko(n;0, vy, v3, v4, 05, 5, —s) = 12727 (p*)" > T (Zw; — n)
F(E_VQ_V4) F(E—Vg—y5) F(E_VG) F(n—VQ—Vg—V4—V6) F(n+S—V3—V4—V5—V6)
X
D(vo)(vs) T (16)T (37" - Zz/i) I'(n—ve—vs—15) I (n—v3—v5—15)

n

X - 3F2< R U — n
F(V3+V5+V6—s——) N—Vy—V4—Vg, V3+Vs+Vs—5—5

1) ., (D7)

2
K2(n7 V1707 Vg, V4, V5, V6, — ) - '2—2717.‘.71(1)2)71—21/1' r (EVZ - n)
F(%—V4+s) (——1/6+s)1" n—v —v3—vy—vg+8) I'(n—v3—vy —v5—1g +5)

. (v (vg)T (v5)T( G)F(n—l/4—l/6+S)F(37”—V1—V3—V4—V5—V6 —i—s)

o n =S, 1—ws, v+ —5—73
XF(V4+V6 5 2) 3F2( ve—s—5+1, mtvstugtrg—s—n+1 >1> (D8)
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Here, we also have terminating 3F; series of unit argument, containing (s + 1) terms.
However, in some cases they may contain less terms. For example, for an integer v > 0
the number of terms in 3/, from (L) is min(s + 1,v5). In particular, when s = 0 or
vs = 1 we get just one term.

When v3 = 0, eq. (D7) also contains just one term, since one of the upper parameters
in 3F5 vanishes, so that 3F5 = 1. Moreover, the corresponding result can be extended to
an arbitrary value of v7:

K5(n;0, 19,0, vy, U5, Vg, V7) = 2720 (p?) =i T (S — n)
XF(% ) ( ) (——1/2—1/4) F(I/g,—i-l/ﬁ—%) F(n—l/4—1/5—1/6—1/7)‘
I'(v2)L(v5)L (v6)T (V5+V6+V7—§)F("—V5—VG)F(%"—2%‘)

An important special case of eq. (D7) is v = 0 (s = 0). In this case, the 3F, function
is equal to 1 (since one of the upper parameters is zero) and we ge

(D.9)

K2(na Oa Vo, V3,V4, Vs, Vﬁao) - 12 n n(p2)n_21/i r (ZVZ - n)
F(%—I/Q—V4) F(%—I/g—l/5) F(%—VG) Fn—ve—v3—vy—vg) I'(n—v3—1y—v5—1%)
X
C(vo)D(ws)T(v6)T (n—ve—vy—v6) T (n—v3—v5—15) T (37" - ZVZ')

(D.10)

This result corresponds to the last diagram shown in Fig. 5.

Appendix E: Two-loop results for the ghost-gluon
vertex

Here we present the unrenormalized expressions for two-loop contributions to the scalar
functions occurring in the ghost-gluon vertex (), in all on-shell limits of interest. To
calculate these functions, the same algorithms (and the same REDUCE program) as for
the three-gluon vertex have been employed. The two-loop diagrams contributing to the
ghost-gluon vertex are shown in Fig. 2 of ref. [I5]. Their renormalization is similar to that
of the three-gluon vertex (see section 8 and Appendix B of ref. [T5]); the renormalization
factor Zl should be used.

E.1: Non-zero gluon momentum squared

(2,6) (2 e 9 e é(_i _) i(i __2 )
@ (p,0.0) = G4 (47T)”( ) {54 32 1285 T = \gg 192S 128" T 128S

16This diagram has been considered in ref. [40)], using the method of negative-dimensional integration.
We note that in their result (11) (or in the definition (5)) the parameters m and n (corresponding, up
to a sign, to v4 and v3 in our eq. (O.I0)) should be interchanged. Also, (—m)P should read 7 (they
use Euclidean metric). We are grateful to the authors of 0] for confirming these misprints. The other
diagrams considered in [A{] (see also [4]) correspond to integrals that can be obtained by repeated use
of one-loop formulae. The results are given in egs. (18), (21) and (23) of 0], and they correspond to
the special cases of our egs. ([OA) (at s = 0), (@) (at vz = 0) and (@) (at v7 = 0), respectively.
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E.2: Non-zero in-ghost momentum squared
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E.3: Non-zero out-ghost momentum squared
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g g q g
M M
g g q g
Figure 1: Contributions to the gg — gg and qq¢ — gg processes which involve the three-
gluon vertex

p3 K3 as

b1 1 Gy b2 p2 a2

Figure 2: Notation used for gluon momenta (p; + ps + ps = 0), Lorentz indices, p;, and
colour indices, a;
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Figure 3: The planar two-loop three-point diagram (a) and an auxiliary four-point func-

tion (b)
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