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Abstract: We calculate the Weyl anomaly for conformal field theories that can be

described via the adS/CFT correspondence. This entails regularizing the gravitational

part of the corresponding supergravity action in a manner consistent with general co-

variance. Up to a constant, the anomaly only depends on the dimension d of the

manifold on which the conformal field theory is defined. We present concrete expres-

sions for the anomaly in the physically relevant cases d = 2, 4 and 6. In d = 2 we

find for the central charge c = 3l/2GN , in agreement with considerations based on the

asymptotic symmetry algebra of adS3. In d = 4 the anomaly agrees precisely with that

of the corresponding N = 4 superconformal SU(N) gauge theory. The result in d = 6

provides new information for the (0, 2) theory, since its Weyl anomaly has not been

computed previously. The anomaly in this case grows as N3, where N is the number

of coincident M5 branes, and it vanishes for a Ricci-flat background.
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1. Introduction

At low energies, the worldvolume theory on N coincident p-branes in M-theory or

string theory decouples from the bulk theory and can be studied on its own. In some

cases, the worldvolume theory constitutes a conformal field theory (CFT). This is true,

for example, for D3-branes in type IIB string theory and for five-branes in M-theory,

which give rise to the d = 4 N = 4 superconformal SU(N) gauge theory and a d = 6

(0, 2) superconformal field theory, respectively. It has recently been conjectured by

Maldacena [1], following earlier work on black holes [2, 3, 4, 5, 6], that these conformal

field theories are dual to M-theory or string theory in the background describing the

near-horizon brane configuration. This equivalence may also be inferred by observing

that the brane configuration can be mapped to its near-horizon limit [7] by means

of certain duality transformations [8]. However, this argument is as yet incomplete,

since these duality transformations are not fully understood, as they involve the time

coordinate. The correspondence between string theory in a specific background and

conformal field theories is a realization of the holographic principle advocated by ’t

Hooft [9] and Susskind [10] in that it describes a (d+ 1)-dimensional theory containing

gravity in terms of degrees of freedom on a d-dimensional hypersurface.

The conjectured correspondence was clarified by Gubser, Klebanov and Polyakov

[11] and by Witten [12] as follows: the supergravity background is a product of a

compact manifold and a (d+1)-dimensional manifold Xd+1 with a boundary (“horizon”)

Md. The conformal field theory is defined on Md. There is a one-to-one relationship

between operators O of the conformal field theory and the fields φ of the supergravity

theory. In particular, gauge fields in the bulk couple to global currents in the boundary.

The presence of a boundary means that the supergravity action functional S[φ] must
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be supplemented by a boundary condition for φ parametrized by a field φ(0) on Md.

The partition function is then a functional of the boundary conditions

Zstring[φ
(0)] =

∫
φ(0)
Dφ exp (−S[φ]) , (1.1)

where the subscript φ(0) on the integral sign indicates that the functional integral

is over field configurations φ that satisfy the boundary condition given by φ(0). The

conjecture states that the string (or M-theory) partition function, as a functional of

φ(0), equals the generating functional of correlation functions in the conformal field

theory:

ZCFT [φ(0)] =
〈

exp
∫
Md

ddxOφ(0)
〉
. (1.2)

The fields φ(0) act as sources for the operators of the conformal field theory. Notice

that the bulk theory only sees, through the boundary values of its fields, the abstract

conformal field theory and not the elementary fields that may realize it. The partition

function (1.2) may also be viewed as describing the coupling of conformal matter to

conformal supergravity [13]. The sources φ(0) constitute conformal supermultiplets.

The relationship just described is conjectured to hold for any number N of coin-

cident branes. However, in most cases one can reliably compute the string partition

function only for large N . The reason is that the backgrounds involve RR forms whose

coupling to perturbative strings is through D-branes. Therefore a complete string cal-

culation is rather difficult to perform. However, if the number of branes is large, the

characteristic length scale of the supergravity background is large compared to the

string scale (or the Planck scale in the case of M-theory), and one can trust the super-

gravity approximation. In addition the string coupling may be chosen small. Under

these circumstances, the string partition function reduces to the exponential of the

supergravity action functional evaluated for a field configuration φcl(φ(0)) that solves

the classical equations of motion and satisfies the boundary conditions given by φ(0)

Ztree
string[φ

(0)] = exp
(
−S[φcl(φ(0))]

)
. (1.3)

An operator of particular importance in any conformal field theory is the energy-

momentum tensor Tij , i, j = 1, . . . , d. The corresponding bulk gauge field is the metric

Ĝµν , µ, ν = 0, . . . , d on Xd+1. In the supergravity backgrounds under consideration,

the metric Ĝµν does not induce a unique metric g(0) on the boundary Md, because it

has a second-order pole there. However it does determine a conformal equivalence class

or conformal structure [g(0)] of metrics on Md. To get a representative g(0), we pick

a function ρ on Xd+1 with a simple zero on Md and restrict ρ2Ĝµν to Md. Different

choices of the function ρ yield different metrics on Md in the same conformal equivalence

class. The field that specifies the boundary condition of the metric is thus a conformal

structure [g(0)]. This means that, at least naively, the trace of the energy-momentum

tensor decouples.
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In this paper we wish to determine the dependence of the boundary theory partition

function (or zero-point function) on a given representative g(0) of the conformal struc-

ture. In other words, we shall study whether the trace of the energy-momentum decou-

ples. Since we examine correlation functions that only involve the energy-momentum

tensor, the only relevant part of the bulk action is the gravitational one. Therefore we

set all other fields to zero. At tree level, we then need to solve the classical supergravity

equations of motion on Xd+1 subject to the conditions that the metric Ĝµν on Xd+1

induces a given conformal structure [g(0)] on Md and all other fields vanish there. In

the theories under consideration, this means that Ĝµν fulfills Einstein’s equations

R̂µν −
1

2
ĜµνR̂ = ΛĜµν , (1.4)

with some cosmological constant Λ and that all other fields vanish identically on Xd+1.

According to a theorem due to Graham and Lee [14], up to diffeomorphism, there is a

unique such metric Ĝµν . (Actually the theorem has been proved for the case when Xd+1

is topologically a ball Bd+1 so that Md is a sphere Sd and the conformal structure [g(0)]

on Md is sufficiently close to the standard (conformally flat) one.) The conformal field

theory effective action (strictly speaking, the generating functional of the connected

graphs) WCFT [g(0)] = − logZCFT [g(0)] is then given by evaluating the action functional

S[Ĝµν ] = Sbulk + Sboundary

=
1

16πG
(d+1)
N

[∫
Xd+1

dd+1x

√
det Ĝ

(
R̂ + 2Λ

)
+
∫
Md

ddx
√

det g̃ (2Dµn
µ + α)

]
(1.5)

for this metric. Here g̃ is the metric induced on Md from Ĝ, and nµ is a unit normal

vector to Md. The bulk term is of course the usual Einstein-Hilbert action with a

cosmological constant. The inclusion of the first boundary term is necessary on a

manifold with boundary in order to get an action that depends only on first derivatives

of the metric [15]. The possibility of including the second boundary term with some

coefficient α was first discussed in [13].

The above description might seem to indicate that the conformal field theory effec-

tive action WCFT [g(0)] only depends on the conformal equivalence class of the metric on

Md. This is of course as it should be in a truly conformally invariant theory. However,

the action functional (1.5) does not make sense for the metric Ĝµν determined by (1.4)

and the boundary conditions. Indeed, the bulk term of the action diverges because of

the infinite volume of Xd+1. The boundary terms are also ill-defined, since the induced

metric g̃ij on Md diverges because of the double pole of Ĝµν . The action should there-

fore be regularized in a way that preserves general covariance, so that the divergences

can be cancelled by the addition of local counterterms. As we will see shortly, this regu-

larization entails picking a particular, but arbitrary, representative g(0) of the conformal

structure [g(0)] on Md. In this way, one obtains a finite effective action, which, however,

will depend on the choice of this representative metric. Conformal invariance is thus
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explicitly broken by a so-called conformal or Weyl anomaly. The anomaly, which is

usually perceived as a UV effect, thus arises from an IR-divergence in the bulk theory.

This is an example of a more general IR-UV connection that applies to holographic

theories [16].

In this paper, we will calculate the Weyl anomaly for conformal field theories that

can be derived from a supergravity theory, as described above. In the next section,

we will describe the regularization procedure and the computation of the anomaly in

general. In the last section, we evaluate the anomaly in the physically relevant cases

d = 2, 4, 6. For d = 2 and d = 4 we compare with the known anomaly for the adS3

boundary conformal field theory and the d = 4 N = 4 superconformal SU(N) gauge

theory respectively, and find perfect agreement. For d = 6 there is no corresponding

calculation of the Weyl anomaly, so our result provides new information about the

(0, 2) superconformal field theory.

2. The regularization procedure

A regularization scheme that preserves general covariance was described in [12]. As

discussed above, up to diffeomorphisms, there is a unique Einstein metric Ĝ on Xd+1

that induces a given a conformal structure [g(0)] on the boundary Md. We now pick

a metric g(0) on Md in the given conformal equivalence class. According to a theorem

due to Fefferman and Graham [17], there is a distinguished coordinate system (ρ, xi)

on Xd+1 in which Ĝ takes the form

Ĝµνdx
µdxν =

l2

4
ρ−2dρdρ+ ρ−1gijdx

idxj , (2.1)

where the tensor g has the limit g(0) as one approaches the boundary represented by

ρ = 0. The length scale l is related to the cosmological constant Λ as Λ = −d(d−1)
2l2

.

Einstein’s equations for Ĝ amount to

0 = ρ
(
2g′′ − 2g′g−1g′ + Tr(g−1g′)g′

)
+ l2Ric(g)− (d− 2)g′ − Tr(g−1g′)g

0 = (g−1)jk
(
∇ig

′
jk −∇kg

′
ij

)
0 = Tr(g−1g′′)−

1

2
Tr(g−1g′g−1g′) , (2.2)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covariant

derivative constructed from the metric g and Ric(g) is the Ricci tensor1 of g.

In the case when d is odd, these equations can be solved order by order in ρ so that

g = g(0) + ρg(2) + ρ2g(4) + . . . , (2.3)

where the tensor g(k) is given by some covariant expression in the boundary metric

g(0), its Riemann tensor and the corresponding covariant derivative. Throughout this

1Our conventions are as follows Rijk
l = ∂iΓjk

l + Γip
lΓjk

p − i↔ j and Rij = Rikj
k.
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paper, a subscript in parentheses on a quantity indicates the number of derivatives with

respect to xi. In the case when d is even, this procedure breaks down at order d/2 in

ρ, where a logarithmic term appears:

g = g(0) + ρg(2) + . . .+ ρd/2g(d) + ρd/2 log ρ h(d) +O(ρd/2+1) . (2.4)

The tensors g(k) for k = 0, 2, . . . , d − 2 are again covariant. The same is true for

Tr(g−1
(0)g(d)) but not for the complete tensor g(d). Finally, Tr(g−1

(0)h(d)) vanishes identically.

The regularization procedure now amounts to restricting the bulk integral to the

domain ρ > ε for some cutoff ε > 0 and evaluating the boundary integrals at ρ = ε.

The regulated action evaluated for the metric Ĝ is thus (16πG
(d+1)
N )−1

∫
ddxL, where

L =
d

l

∫
ε
dρ ρ−d/2−1

√
det g + ρ−d/2

(
−

2d

l

√
det g +

4

l
ρ∂ρ

√
det g + α

√
det g

)∣∣∣∣∣
ρ=ε

.(2.5)

In the first term, which arises from the bulk part of the action, we have used the fact

that Ĝ is an Einstein metric so that R̂ + 2Λ = − 4
d−1

Λ = 2d
l2

.

For d odd, it follows from (2.3) that
√

det g is a power series in ρ with covariant

coefficients. For d even, this is true up to and including the ρd/2 terms. (The higher-

order non-covariant corrections will play no role in the sequel). The Lagrangian (2.5)

can therefore be written as

L =
√

det g(0)

(
ε−d/2a(0) + ε−d/2+1a(2) + . . .+ ε−1/2a(d−1)

)
+ Lfin (2.6)

for d odd, and as

L =
√

det g(0)

(
ε−d/2a(0) + ε−d/2+1a(2) + . . .+ ε−1a(d−2) − log ε a(d)

)
+ Lfin (2.7)

for d even, where Lfin is finite in the ε→ 0 limit. All the a(k) coefficients are covariant,

so the divergent terms can be cancelled by subtracting covariant counterterms, as

promised. The logarithmic divergence that appears for d even comes only from the

bulk integral.

After subtraction of the divergent counterterms, we are left with a renormalized

effective action (16πG
(d+1)
N )−1

∫
ddxLfin with a finite limit as ε goes to zero. Its vari-

ation under a conformal transformation δg(0) = 2δσg(0) for an infinitesimal parameter

function δσ is of the form

δLfin = −
∫
Md

ddx
√

det g(0)δσA (2.8)

and we would like to calculate the anomaly A. For d odd, A in fact vanishes, whereas

for d even

A =
1

16πG
(d+1)
N

(−2a(d)) . (2.9)

To see this, we note that for a constant parameter δσ, the regulated Lagrangian (2.6)

or (2.7) is invariant under the combined transformation δg(0) = 2δσg(0) and δε = 2δσε.
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The terms proportional to negative powers of ε are separately invariant, so the variation

of the finite part plus the variation of the logarithmically divergent term (for d even)

must vanish. Since log ε transforms with a shift and
√

det g(0)a(d) itself is invariant, we

get (2.9).

On general grounds [18, 19], the coefficient a(d) that appears in the anomaly (2.9)

must be of the form

a(d) = dld−1
(
E(d) + I(d) +DiJ

i
(d−1)

)
, (2.10)

where E(d) is proportional to the d-dimensional Euler density and I(d) is a conformal in-

variant. These terms are referred to as the type A and the type B anomaly, respectively,

in [19]. The dimension of the space of conformal invariants grows with d. The DiJ
i
(d−1)

term, where Di is the covariant derivative constructed from the boundary metric g(0),

is trivial in the sense that it can be cancelled by the variation of a finite covariant

counterterm added to the action. To see this, notice that a covariant counterterm will

be, in particular, scale invariant. Making the parameter of the scale transformation

local amounts to computing the Noether current for scale transformations. Thus, the

result of the variation is δσDiJ
i. However, local scale transformations are just Weyl

transformations. Thus terms of the form DiJ
i can be obtained by variation of covariant

counterterms.

The coefficients of the various independent contributions (properly normalized) in

(2.10) are closely related to renormalization group equations, and they reflect the matter

content of the superconformal theory. Using Ward identities one can relate them to

Schwinger terms in the OPEs of the energy-momentum tensor [20]–[23]. For a recent

application, see [5]. Our results for d = 6 can be similarly used to determine Schwinger

terms in the OPEs of the (0, 2) theory.

3. Evaluation of the anomaly

In this section, we will perform the above procedure in the physically relevant cases

d = 2, 4, 6 and give concrete formulas for the quantities E, I and J i appearing in

(2.10). As we have mentioned in the previous paragraph, the logarithmic divergence

comes only from the bulk integral. It is completely straightforward to obtain a(d). One

only needs to expand
√

det g up to appropriate order in ρ. In the formulae below, we

further simplify the result by eliminating Tr(g−1
(0)g(n)), for n > 2, by using the third

equation in (2.2). We raise and lower indices with the boundary metric g(0) and its

inverse g−1
(0). The Riemann tensor and the covariant derivative constructed from g(0) are

denoted Ri
jkl and Di, respectively.

3.1. d = 2 and the asymptotic symmetry algebra of adS3

Calculating

a(2) = lTr(g−1
(0)g(2)) (3.1)
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and decomposing it according to (2.10), we get

E(2) =
1

4
R

I(2) = 0

J i(1) = 0 . (3.2)

(There is in fact no non-trivial conformal invariant I in this dimension.) Writing the

anomaly in the form

A = −
c

24π
R , (3.3)

(in our conventions a free boson contributes to the anomaly −1/24πR) we thus get

c =
3l

2G
(3)
N

. (3.4)

This agrees with the value of the conformal anomaly c as computed in [24] by consid-

ering the asymptotic symmetry algebra of adS3.

3.2. d = 4 and N = 4 super Yang-Mills theory

In this case one finds

a(4) = l3
1

2

(
[Tr(g−1

(0)g(2))]
2 − Tr[(g−1

(0)g(2))
2]
)

= l3
(
−

1

8
RijRij +

1

24
R2
)
. (3.5)

Notice that this expression vanishes for a Ricci-flat background. A check on our cal-

culation is whether (3.5) can be rewritten in the form (2.10). Indeed, this is possible,

and we obtain

E(4) =
1

64

(
RijklRijkl − 4RijRij +R2

)
I(4) = −

1

64

(
RijklRijkl − 2RijRij +

1

3
R2
)

J i(3) = 0 . (3.6)

(Up to a constant, I(4) is in fact the unique conformal invariant with four derivatives

in this dimension, namely the Weyl tensor contracted with itself.) We now use the fact

that G
(5)
N = G

(10)
N /V ol(S5), where V ol(S5) = l5π3 is the volume of the compactification

five-sphere of radius l, and G
(10)
N = 8π6g2

str is the ten-dimensional Newton’s constant

(the α′’s cancel out in the Maldacena limit). Furthermore, l is related to the number

N of D3-branes as l = (4πgstrN)1/4 [1]. Putting everything together, we get

A = −
N2

π2

(
E(4) + I(4)

)
. (3.7)
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This should be compared with the conformal anomaly of the d = 4 N = 4 supercon-

formal SU(N) gauge theory. The conformal anomaly of a theory with ns scalar fields,

nf Dirac fermions and nv vector fields is [25]

−
1

90π2
(ns + 11nf + 62nv)E(4) −

1

30π2
(ns + 6nf + 12nv)I(4) . (3.8)

The anomaly of the N = 4 SU(N) super Yang-Mills multiplet is equal to N2 − 1 (as

all fields are in the adjoint) times (3.8) for ns = 6, nf = 2 and nv = 1. Thus, in

the large N limit we obtain exact agreement with (3.7). This is perhaps surprising

since the result (3.8) is derived using free fields whereas our result is about the full

interacting N = 4 SU(N) superconformal field theory. This indicates that there must

be a non-renormalization theorem that protects these coefficients.

Various orbifolding procedures [26, 27] change the volume of the compactification

space and also give rise to other gauge groups. It is easy to check that the anomalies

still work out correctly.

3.3. d = 6 and tensionless strings

Following [18], we introduce

(K1, . . . , K11) =
(
R3, RRijR

ij , RRijklR
ijkl, Ri

jRj
kRk

i, RijRklRiklj,

RijR
iklmRj

klm, RijklR
ijmnRkl

mn, RijklR
imnlRj

mn
k,

R R,Rij Rij , Rijkl Rijkl
)
. (3.9)

The six-dimensional Euler density is then proportional to

E0 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8 (3.10)

and

I1 =
19

800
K1 −

57

160
K2 +

3

40
K3 +

7

16
K4 −

9

8
K5 −

3

4
K6 +K8

I2 =
9

200
K1 −

27

40
K2 +

3

10
K3 +

5

4
K4 −

3

2
K5 − 3K6 +K7

I3 = K1 − 8K2 − 2K3 + 10K4 − 10K5 −
1

2
K9 + 5K10 − 5K11 (3.11)

form a basis for conformal invariants with six derivatives.

We have

a(6) = l5
(

1

8
[Trg−1

(0)g(2)]
3 −

3

8
Tr[g−1

(0)g(2)]Tr[(g−1
(0)g(2))

2]+

+
1

2
Tr[(g−1

(0)g(2))
3]− Tr[g−1

(0)g(2)g
−1
(0)g(4)]

)
. (3.12)

Evaluating this expression we obtain

a(6) =
l5

64

(
−

1

2
RRijRij +

3

50
R3 +RijRklRikjl+

+
1

5
RijDiDjR−

1

2
Rij Rij +

1

20
R R

)
. (3.13)
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Observe that the above expression vanishes in a Ricci-flat background. The next task

is to put this expression in the form (2.10). This is a nice check on our calculation.

The result is

E(6) =
1

6912
E0

I(6) =
1

1152

(
−

10

3
I1 −

1

6
I2 +

1

10
I3

)
J i(5) = −

1

1152
[−RijklDmRmjkl + 2(RjkD

iRjk − RjkD
jRki)] +

+
1

720
RijDjR +

17

11520
RDiR . (3.14)

We now use the fact that G
(7)
N = G

(11)
N /V ol(S4), where V ol(S4) = R4

sph(8π
2/3) and

Rsph = lP lanck(πN)1/3 is the radius of the compactification sphere. In addition, the

eleven-dimensional Newton’s constant is equal to G
(11)
N = 16π7l9P lanck, and the char-

acteristic length l is l = 2lP lanck(πN)1/3. Putting everything together we get for the

anomaly

A = −
4N3

π3

(
E(6) + I(6) +DiJ

i
(5)

)
. (3.15)

The anomaly for a (0, 2) tensor multiplet has not yet been calculated. However, we see

that the anomaly grows as N3, in agreement with considerations based on the entropy

of the brane system [28, 5]. This growth is presumably related to the appearance of

tensionless strings when multiple fivebranes coincide.
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