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We discuss the conditions under which pre-big bang models can fit the observed large-scale
anisotropy with a primordial spectrum of massive (Kalb–Ramond) axion fluctuations. The primor-
dial spectrum must be sufficiently flat at low frequency and sufficiently steeper at high frequency. For
a steep and/or long enough high-frequency branch of the spectrum the bounds imposed by COBE’s
normalization allow axion masses of the typical order for a Peccei–Quinn–Weinberg–Wilczek axion.
We provide a particular example in which an appropriate axion spectrum is obtained from a class
of backgrounds satisfying the low-energy string cosmology equations.

I. INTRODUCTION

It has recently been shown [1,2] that a stochas-
tic background of massless axions can induce large-
scale anisotropies of the Cosmic Microwave Background
(CMB), in agreement with present observations [3,4],
provided it is primordially produced with a sufficiently
flat spectrum. It has also been shown that a massive ax-
ion background can satisfy the same experimental con-
straints, with some additional restrictions on the tilt of
the spectrum, but only if the axion mass lies inside an
appropriate ultra-light mass window [1] having an upper
limit of 10−17 eV.

The cosmic axion background considered in [1,2] is
obtained by amplifying the vacuum fluctuations of the
so-called universal axion of string theory [5], i.e. the
(four-dimensional) dual of the Kalb–Ramond (KR) anti-
symmetric tensor field appearing in the low-energy string
effective action. The KR axion has interactions of gravi-
tational strength, hence its mass is not significantly con-
strained by present tests of the equivalence principle for
polarized macroscopic bodies [6]. Although (gravitation-
ally) coupled to the QCD topological current, the KR
axion is not to be necessarily identified with the “invisi-
ble” axion [7] responsible for solving the strong CP prob-
lem. Other, more strongly coupled pseudoscalars, can
play the traditional axion’s role. In this case, the stan-
dard Weinberg–Wilczek formula [8] would give the mass
of the appropriate combination of pseudoscalars which
is coupled to the topological charge, while the KR ax-
ion would mostly lie along the orthogonal combinations,
which remain (almost) massless.

In this context it is thus possible that KR axions are
neither produced from an initial misalignment of the
QCD vacuum angle [9], nor from the decay of axionic
cosmic strings [10], so that existing cosmological bounds
on the axion mass [11] can be evaded. Also, KR axions
are treated in [1,2] as “seeds”, i.e. as inhomogeneous per-
turbations of a background that is not axion-dominated,
so that the mechanism of anisotropy production is dif-
ferent from previous computations of isocurvature axion
perturbations [12]. The seed approximation is not in-
consistent either with the presence of mass or with the
possible resonant amplification of quantum fluctuations
through oscillations in the full axion potential [13].

In spite of all this, it is quite likely that the KR axion
will be heavier than 10−17 eV, in which case, taking the
results of [1] at face value, KR axions would be unable to
seed the observed CMB anisotropies. The main purpose
of this paper is to point out that this conclusion is not in-
escapable, provided one is willing to add more structure
to the primordial axion spectrum through more compli-
cated cosmological backgrounds than the one considered
in [1].

It turns out, in particular, that the bounds on the ax-
ion mass can be relaxed, provided the axion spectrum,
before non-relativistic corrections, grows monotonically
with frequency, but with a frequency-dependent slope.
At low frequencies the slope must be small enough to re-
produce the approximate scale-invariant spectrum found
by COBE, while at high frequencies the spectrum has
to be steeper. Since position and normalization of the
end point of the spectrum are basically fixed in string
cosmology, the steeper and/or longer the high-frequency
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spectrum, the larger the suppression of the amplitude
at the low-frequency scales relevant for COBE’s obser-
vation. On the other hand, the low-frequency amplitude
is proportional to a positive power of the axion mass,
in the non-relativistic regime. This is the reason why,
for a steep and/or long enough high-frequency branch of
the spectrum, it becomes possible to relax the bounds of
[1] on the axion mass while remaining compatible with
COBE’s data.

In the context of the pre-big bang scenario [14] it is
known that relativistic axions with a nearly flat spec-
trum can be produced in the transition from a dilaton-
dominated, higher-dimensional phase to the standard
radiation-dominated phase [5]. A spectrum with an ef-
fective slope that grows with frequency can be easily ob-
tained if the phase of accelerated pre-big bang evolution
consists of (at least) two distinct regimes. In that case
the allowed mass window can be enlarged to include a
more conventional range of values. Conversely, no signif-
icant relaxation of the bounds given in [1] seems to be
possible if the two branches of the spectrum are obtained
through a period of decelerated post-big bang evolution,
preceding the radiation era.

The rest of the paper is organized as follows. In Sec-
tions II and III we generalize the results of [1,2] for
massive axions to an arbitrary background of the pre-
big bang type. In particular, we will derive an equa-
tion expressing the predicted CMB anisotropy in terms
of the axion mass, of the string coupling, and of the be-
haviour of the cosmological background before the radi-
ation era. In Section IV we will discuss in detail the
example of an axion spectrum consisting of just a low-
and a high-frequency branch. For this case we will de-
termine the region in parameter space that gives consis-
tency with COBE’s data without violating other impor-
tant constraints. We will show that backgrounds of this
kind can emerge, for instance, from the low-energy string
cosmology equations in the presence of classical string
sources. Section V is finally devoted to our concluding
remarks.

II. MASSIVE AXION SPECTRA IN THE

PRE-BIG BANG SCENARIO

We start by considering the dimensionally-reduced ef-
fective action for Kalb–Ramond axion perturbations (σ),
to lowest order in α′ and in the string coupling parame-
ter. For a spatially flat background, in the string frame,
we are led to the four-dimensional action [5]:

S =
1

2

∫

d3xdη
[

a2eφ
(

σ′2 + σ∇2σ
)]

. (2.1)

Here a prime denotes differentiation with respect to con-
formal time η, φ is the dimensionally reduced dilaton
that controls the effective four-dimensional gauge cou-
pling g = eφ/2, and a is the scale factor of the external,

isotropic three-dimensional space, in the string frame.
Variation of the action (2.1) leads to the canonical per-
turbation equations, which can be written in terms of the
pump field ξ and of the normal mode ψ as:

ψ′′ +

(

k2 − ξ′′

ξ

)

ψ = 0, ψ = σξ, ξ = aeφ/2 (2.2)

(we have implicitly assumed a Fourier expansion of per-
turbations, by setting ∇2ψ = −k2ψ).

For any given model of background evolution, a(η),
φ(η), the amplified axion spectrum can be easily com-
puted, starting with an initial vacuum fluctuation spec-
trum and applying the standard formalism of cosmologi-
cal perturbation theory [15]. One has to solve the pertur-
bation equation (2.2) in the various cosmological phases,
and to match the solution at the transition epochs. From
the final axion amplitude σ(η), η → +∞, one then ob-
tains the so-called Bogoliubov coefficients which deter-
mine, in the free-field, oscillating regime (i.e. well inside
the horizon), the total number distribution n(ω) of the
produced axions.

For the purpose of this paper it will be enough to
consider the case, appropriate to the pre-big bang sce-
nario, in which the pump field ξ keeps growing during
the whole pre-big bang epoch, i.e. from η = −∞ up to
the final time η = ηr, when the background enters the
standard, radiation-dominated regime with frozen dila-
ton. For η > ηr the pump field is still growing, as the
dilaton stays constant and ξ(η) coincides with the ex-
panding external scale factor a(η).

With this model of background, it is convenient to re-
fer the spectrum to the maximal amplified frequency,
ωr = kr/a ≃ Hrar/a, where H = a′/a2 is the Hubble
parameter, and ω = k/a denotes proper frequency. The
axion energy distribution per logarithmic interval of fre-
quency, in this background, can thus be written (in units
of critical energy density ρc = 3H2/8πG) as:

Ωσ(ω, η) =
1

ρc

dρ

d lnω
=

4G

3πH2
ω4n(ω)

= g2
rΩγ(η)

(

ω

ωr

)4

n(ω). (2.3)

We have denoted with Ωγ(η) = (Hr/H)2(ar/a)
4 the

time-dependent radiation energy density (in critical
units), that becomes dominant at η = ηr. Also, we have
identified the curvature scale at the inflation–radiation
transition with the string mass scale, Hr ≃ Ms, and we
have denoted by gr ≡ g(ηr) the final value of the string
coupling parameter, approaching the present value of the
fundamental ratio between string and Planck mass [16]:

gr = eφr/2 ≃Ms/Mp ∼ 0.1 − 0.01. (2.4)

Numerical coefficients of order 1 have been absorbed into
g2

r , also in view of the uncertainty with which we can
identify the transition scale and the string scale.
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The number distribution n(ω) is completely deter-
mined by the background evolution. For a monotonically
growing pump field, as in the case we are considering, n
can be estimated as

n(ω) ≃ ξ2re(ω)

ξ2ex(ω)
=

ξ2r
ξ2ex(ω)

a2
re(ω)

a2
r

. (2.5)

Here the label r denotes, as before, the beginning of the
radiation phase; the labels “ex” and “re” mean evaluation
of the fields at the times |η| ≃ (aω)−1 when a mode ω,
respectively, “exits the horizon” during the pre-big bang
epoch, and “re-enters the horizon” in the post-big bang
epoch.

The above estimate of n(ω) has been performed by
truncating the solution of the perturbation equation
(2.2), ouside the horizon, to the frozen part of the ax-
ion field, i.e. σ(η) = const for |kη| ≪ 1. This is com-
mon practice in the context of the standard inflationary
scenario [15], where the non-frozen part of the fluctua-
tions quickly decays in time outside the horizon. It can
be shown, however, that the estimate (2.5) is generally
valid, quite independently of the behaviour of σ outside
the horizon, provided the total energy density is correctly
computed by including in the Hamiltonian the contribu-
tion of the frozen modes of the fluctuation and of its
conjugate momentum [17].

Let us now discuss how the above spectrum has to
be modified when axions become massive. We will first
assume that, at the beginning of the radiation era, the
axion field has already acquired a mass, but the mass is
so small that it does not affect, initially, the axion spec-
trum. As the Universe expands, however, the proper mo-
mentum is red-shifted with respect to the rest mass, and
a given axion mode k tends to become non-relativistic
when ω = k/a < m. The spectrum (2.3) is thus valid
only at early enough times, when the mass contribution
is negligible.

In order to include the late-time, non-relativistic
corrections, we may consider separately two different
regimes. If a mode becomes non-relativistic well inside
the horizon, i.e. when ω > H , then the number n(ω)
of the produced axions is fixed after re-entry, when the
mode is still relativistic, and the effect of the mass in
the non-relativistic regime is a simple rescaling of the
energy density: Ωσ → (m/ω)Ωσ. If, on the contrary, a
mode becomes non-relativistic outside the horizon, when
ω < H , then the final energy distribution turns out to be
determined by the background kinematics at exit time
(as expected because of the freezing of the fluctuations
and of their canonical momentum outside the horizon),
and the effective number of non-relativistic axions has to
be adjusted is such a way that Ωσ has the same spec-
tral distribution as in the absence of mass. The form
of the non-relativistic corrections, in both regimes, can
be rigorously obtained by solving the axion perturbation
equation exactly with the mass term included already
from the beginning in the radiation era [1], and also by

using the general phenomenon of perturbation freeze out
[18] described in [17].

The two regimes are separated by the limiting fre-
quency ωm of a mode that becomes non-relativistic just
at the time it re-enters the horizon [1]. For modes re-
entering during the radiation era,

ωm(η) = ωr

(

m

Hr

)1/2

= (mHeq)
1/2

Ωγ

= (mH)
1/2

Ω1/4
γ , (2.6)

where the label eq denotes, as usual, the time of matter–
radiation equilibrium. Given the non-relativistic spec-
trum for ωm < ω < m, continuity at ωm then fixes Ωσ

for the low-frequency band ω < ωm. Such a mass contri-
bution to the spectrum was already taken into account
when discussing non-relativistic corrections to the energy
density of relic dilatons [19].

In order to compute the induced large-scale anisotropy,
we need the axion spectrum evaluated in the matter-
dominated era, i.e. after the time ηeq. Also, we will
assume that m > Heq ∼ 10−27eV (see Sect. III), so
that non-relativistic corrections are already effective for
η > ηeq. In the non-relativistic regime Ωσ evolves in time
like the energy density of dust matter, Ωσ ∼ a−3, and
then, in the matter-dominated era, it remains frozen at
the value Ωσ(ηeq) reached at the time of matter–radiation
equilibrium. By adding the non-relativistic corrections to
the generic spectrum (2.3) we thus obtain, for η > ηeq:

Ωσ(ω) = g2
rΩγ

(

ω

ωr

)4

n(ω), m < ω < ωr,

= g2
r

m

Hr

(

Hr

Heq

)1/2 (

ω

ωr

)3

n(ω), ωm < ω < m,

= g2
r

(

m

Heq

)1/2 (

ω

ωr

)4

n(ω), ω < ωm,

(2.7)

where n(ω) is the same axion number as in eqs. (2.3),
i.e. the one determined by the solution of the relativistic
perturbation equation in the radiation era, and expressed
in terms of the background as in eq. (2.5). Also, we have
used (Hr/Heq)

2(ar/aeq)
3 = (Hr/Heq)

1/2. A particular
example of the spectrum (2.7) was already considered in
[1].

The particular shape of the spectrum is now deter-
mined by the pump field ξ(η), and thus by the back-
ground describing the phase of pre-big bang evolution.
Note that the end-point value of the spectrum, Ωσ(ωr),
where by definition n(ωr) ≃ 1 (according to eq. (2.5)), is
completely fixed in terms of the final string coupling pa-
rameter only, Ωσ(ωr) = g2

rΩγ ∼ 10−4g2
r . At the opposite

(low-frequency) end, instead, the amplitude of the spec-
trum crucially depends on the axion mass, and the effect
of non-relativistic corrections is to enhance the spectral
amplitude at low frequency, as shown in Fig. 1.
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FIG. 1. Two examples of axion spectra: (a) the limiting
case of a flat relativistic spectrum, with non-relativistic cor-
rections (a′), and (b) the case of a relativistic spectrum which
is flat below ωs, and grows above it, with non-relativistic cor-
rections (b′). The end-point at ωr is uniquely determined by
the string coupling parameter.

At fixed mass the low-frequency amplitude obviously
depends on the slope of the relativistic part of the spec-
trum, and thus on the background. In Fig. 1 we have
plotted, for illustrative purposes, two possible spectra
with non-relativistic corrections. The first one, labelled
by (a), corresponds to a pre-big bang background with
ξ ∼ η−1, which leads to a flat relativistic spectrum. The
second one, labelled by (b), corresponds to a pre-big bang
background with ξ ∼ η−1 up to ηs, and with ξ ∼ η−1/2

for ηs < η < ηr. The corresponding relativistic spectrum
is flat up to ωs ≃ (aηs)

−1, and grows linearly up to ωr.
It is thus evident that the steeper is the slope of the rel-
ativistic, high-frequency branch, the larger is the mass
allowed by the COBE normalization of the spectrum, as
we will discuss in the following sections.

The non-relativistic spectrum (2.7) has been obtained
under the assumption that axions become massive at the
beginning of the radiation era [1]. Actually, we may ex-
pect the effective axion mass to turn on at some time
during the radiation era, such as, typically, at the decon-
fining/chiral phase transition. In that case, the above
analysis remains valid provided axions become massive
before the frequency ωm re-enters the horizon.

Let us call Tm the temperature scale at which the mass
turns on, and ωT the proper frequency re-entering the
horizon precisely at the same epoch. The present value
of ωT is then

ωT (η0) ≃ ωeq

(

Tm

eV

)

, (2.8)

and the spectrum (2.7) is valid for ωm < ωT , namely for
m/Heq < (Tm/eV)2.

In the opposite case, ωm > ωT , the role of the transi-
tion frequency, that separates modes that become non-

relativistic inside and outside the horizon, is played by
ωT , and the lowest-frequency band of the spectrum (2.7)
has to be replaced by:

Ωσ = g2
r

(

m

Heq

) (

eV

Tm

) (

ω

ωr

)4

n(ω),

(

m

Heq

)1/2 (

eV

Tm

)

> 1, ω < ωT (2.9)

(we have used ω0 ∼ 10−2ωeq ∼ 10−18 Hz, and ωr(t0) ∼
g
1/2
r 1011 Hz). In this mass range the non-relativistic

spectrum is further enhanced with respect to eq. (2.7) by

the factor (m/Heq)
1/2 (eV/Tm) > 1, with a consequently

less efficient relaxation of the bounds on the axion mass.
This effect has to be taken into account when discussing
restrictions for a given model in parameter space.

III. MASSIVE-AXION CONTRIBUTIONS TO

∆T/T

The main results of this section have been obtained
also in [1], in the context of the “seed” approach to den-
sity fluctuations, by exploiting the so-called “compensa-
tion mechanism” [20] to estimate the relative contribu-
tion of seeds and sources to the total scalar perturbation
potential. Here we will show, for the sake of completeness
and for the reader’s convenience, that when the axion
mass is sufficiently large the contribution to the temper-
ature anisotropies can be quickly estimated also within
the standard cosmological perturbation formalism, with
results that are the same as those provided by the com-
pensation mechanism. We also generalize the results of
[1] to the case of a generic background and spectrum.

We will work under the assumption that axions can be
treated as seeds for scalar metric perturbations: the in-
homogeneous axion stress tensor, τν

µ , will thus represent
the total source of perturbations, without contributing,
however, to the unperturbed homogeneous equations de-
termining the evolution of the background. Also, we shall
only consider modes that are relevant for the large-scale
anisotropy, i.e. modes that are still outside the hori-
zon at the time of decoupling of matter and radiation,
ηdec ∼ ηeq. Assuming that such modes are already fully
non-relativistic,

ω < Heq < m, (3.1)

the corresponding axion stress tensor turns out to be
completely mass-dominated [1], so that we can neglect
the off-diagonal components and set

τν
µ = diag

(

ρσ,−pσδ
j
i

)

. (3.2)

In that regime, it will be convenient to write down the
scalar perturbation equations in the longitudinal gauge
since, for perturbations represented by a diagonal stress
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tensor, the perturbed metric δgµν can be parametrized,
in this gauge, in terms of a single scalar potential Ψ [15]:

δgµν = diag 2a2Ψ (1, δij) . (3.3)

The perturbation of the Einstein equations, in the
matter-dominated era, then leads to relate the Fourier
components of Ψ and of τ0

0 as [15]:

ρk = −ρ
6

[

(kη)2Ψk + 6ηΨ′
k + 12Ψk

]

, (3.4)

where ρ is the total unperturbed matter energy den-
sity, i.e. the source of the background metric, while
ρk = τ0

0 (k) represents the contribution of the axion back-
ground. In the matter era ρ ≃ ρc so that, for modes well
outside the horizon (kη ≪ 1),

Ψk ≃ −1

3

ρk

ρc
. (3.5)

In order to estimate the induced CMB anisotropies,
we now compute the so-called power spectrum of the
Bardeen potential, PΨ(k), defined in terms of the two-
point correlation function of Ψ as:

ξΨ(x, x′) = 〈ΨxΨx′〉 =

∫

d3k

(2πk)3
eik·(x−x

′)PΨ(k) (3.6)

(the brackets denote spatial average or quantum ex-
pectation values if perturbations are quantized). The
square root of ξΨ, evaluated at a comoving distance
|x−x′| = k−1, represents the typical amplitude of scalar
metric fluctuations induced by the axion seeds on a scale
k. Using eq. (3.5),

P
1/2
Ψ (k) ≃ 1

3

P
1/2
ρ (k)

ρc
∼ G

H2
P 1/2

ρ (k), (3.7)

where Pρ(k) is determined by the two-point correlation
function of the axion energy density, and then by the
four-point function of the stochastic, non-relativistic ax-
ion field σ(x):

∫

d3k

(2πk)3
eik·(x−x

′)Pρ(k) =

= 〈ρx(σ)ρx′(σ)〉 − 〈ρx(σ)〉2 = m4
(

〈σ2
xσ

2
x′〉 − 〈σ2

x〉2
)

= m4

∫

d3k

(2π)3
eik·(x−x

′)

∫

d3p

(2π)3
|σp|2 |σk−p|2 . (3.8)

The above integral is extended, in principle, to all
modes, both the relativistic and the non-relativistic ones,
in the three regimes of the axion spectrum. When con-
sidering the spectrum (2.7) it turns out, however, that
for a sufficiently flat slope at low frequency the integral
over p is dominated by the contribution of the region
p ∼ k. Since we do need a flat spectrum (in order to
fit the observed large-scale anisotropy), and since we are
restricting our attention to all modes k that re-enter af-
ter equilibrium, k < keq < km = keq(m/Heq)

1/2, we

can safely estimate the integral through the contribution
of the lowest frequency part of the axion background
σp, i.e. for p < km. The same conclusion applies to
the lowest-frequency part of the spectrum (2.9), since
keq < kT ∼ keq(Tm/eV). We will now compute the
convolution (3.8) for the particular case of the spectrum
(2.7), but the result is also valid when the axion mass is
in the range corresponding to the spectrum (2.9).

We note, first of all, that in the frequency range we
are interested in, the effective axion field can be obtained
from eq. (2.7) in the form

σp(η) ≃
1

a

[

n(p)

ma

]1/2 (

p

kr

)1/2 (

Hr

m

)1/4

,

p < km, η > ηeq , (3.9)

so that the integral (3.8) becomes

Pρ(k) ≃

mHr

(

k

kr

)3 (

kr

a

)6 ∫

dp

p

(

p

kr

)4 |p− k|
kr

n(p)n(|k − p|).

(3.10)

We parametrize the slope of the relativistic axion spec-
trum by p4n(p) ∼ p3−2µ, with µ < 3/2 to avoid over-
critical axion production. For a flat enough slope, i.e.
µ > 3/4, it can be easily checked that the integrand of
eq. (3.10) grows from 0 to k, and decreases from k to km.
The power spectrum may thus be immediately estimated
by taking the contribution at p ∼ k, namely

Pρ(k) ∼ mHr

(

kr

a

)6 (

k

kr

)8

n2(k). (3.11)

Comparison with eq. (2.7) leads to the final result, valid
for η > ηeq,

P
1/2
Ψ (k) ∼ G

H2
P 1/2

ρ (k)

∼ g2
r

(

m

Heq

)1/2 (

k

kr

)4

n(k) ∼ Ωσ(k), (3.12)

where Ωσ is the lowest frequency, non-relativistic band
of the axion spectrum.

As the axion contribution to the Bardeen potential
does not depend on time in the matter-dominated era,
the large-scale anisotropy of the CMB temperature is de-
termined by the ordinary, non-integrated Sachs-Wolfe ef-
fect [21] as [1,15]:

P
1/2
T (k) ∼ P

1/2
Ψ (k) ∼ Ωσ(k), (3.13)

where the temperature power spectrum PT (k) is defined
by

〈∆T/T (x)∆T/T (x′)〉 =

∫

d3k

(2πk)3
eik·(x−x

′)PT (k).

(3.14)
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Equation (3.13) can be converted (see [1]) into a relation
for the usual coefficients Cℓ of the multipole expansion
of the CMB temperature fluctuations.

Also, eqs. (3.13), (3.12), and (2.5) can be used to relate
the cosmological background at a given time η directly
to the axion mass and to the temperature anisotropy at
a related scale. We find:

ηr ξr
η ξ(−η) ≃ g−1

r

(

m

Heq

)−1/4
[

P
1/4
T (k)

]

kη=1
, (3.15)

where we have used the fact that, for an accelerated
power-law background, the exit time of the mode k in
the pre-big bang epoch is at k ≃ −η−1.

This equation can be seen as the analogue, in our con-
text, of the reconstruction of the inflaton potential from
the CMB power spectrum in ordinary slow-roll inflation
[22].

By parametrizing the slope of Ωσ as Ωσ ∼ ω(n−1)/2,
it follows from eq. (3.13) that n can be identified with
the usual tilt parameter of the CMB anisotropy [3], con-
strained by the data as:

0.8 <∼ n <∼ 1.4. (3.16)

The observed quadrupole amplitude, which normalizes
the spectrum at the present horizon scale ω0 [4], gives
also:

Ωσ(ω0) ≃ 10−5. (3.17)

In addition, the validity of our perturbative computation,
which neglects the back-reaction of the axionic seeds, re-
quires that the axion energy density remains well under-
critical not only at the end point ωr (which is automati-
cally assured by g2

r < 1), but also at the non-relativistic
peak at ω = ωm. We thus require

Ωσ(ωm) < 0.1. (3.18)

The COBE normalization (3.17), imposed on the low-
est frequency end of the axion spectrum, fixes the mass
as a function of the background. In the two cases of eq.
(2.7) and (2.9) we get, respectively,

log10

m

Heq
≃ 96 − 2 log10 gr − 4 log10

[

ξr
ξex(ω0)

]

,

(

m

Heq

)1/2 (

eV

Tm

)

< 1, (3.19)

log10

m

Heq
≃ 48 + log10

(

Tm

eV

)

− log10 gr

−2 log10

[

ξr
ξex(ω0)

]

,

(

m

Heq

)1/2 (

eV

Tm

)

> 1. (3.20)

In the next section it will be shown, with an explicit ex-
ample of background, that a very large axion mass win-
dow may in principle be compatible with the bounds (3.1)
and (3.16)–(3.18).

IV. CONSTRAINTS ON PARAMETER SPACE

FOR A PARTICULAR CLASS OF

BACKGROUNDS

In order to provide a quantitative estimate of the pos-
sible axion mass window allowed by the large-scale CMB
anisotropy, in a string cosmology context, we will discuss
here a class of backgrounds that is sufficiently representa-
tive for our purpose, and characterized by three different
cosmological phases. We parametrize the evolution of the
axionic pump field in these three phases as

ξ ∼ |η|r+1/2
, η < ηs,

ξ ∼ |η|−β
, ηs < η < ηr,

ξ ∼ |η| , ηr < η, (4.1)

where ηs marks the beginning of an intermediate phase,
preceding the standard radiation era, which starts at
η = ηr. There is no need to consider here also the
last transition from radiation- to matter-dominance, at
η = ηeq, since we are assuming m > Heq , so that the
axion spectrum becomes mass-dominated (and thus in-
sensitive to the subsequent transitions) before the time
of equilibrium.

For the intermediate phase, ηs < η < ηr, we have two
possibilities: accelerated or decelerated evolution of the
background fields, corresponding respectively to a shrink-
ing or expanding conformal time parameter, |ηr/ηs| < 0
or |ηr/ηs| > 0. In the first case, as η ranges from −∞
to ηr, the “effective potential” V = |ξ′′/ξ| of eq. (2.2)
grows monotonically from zero to V (ηr) ∼ η−2

r , the max-
imal amplified frequency is kr = V 1/2(ηr) ∼ η−1

r , and
all frequency modes “re-enter the horizon” in the ra-
diation era. In the second case V is instead decreas-
ing from ηs to ηr, the maximal amplified frequency is
ks = V 1/2(ηs) ∼ η−1

s , and the high-frequency band of
the spectrum, ks < k < kr, re-enters the horizon during
the intermediate phase preceding the radiation era.

In the first case both the curvature scale and the string
coupling eφ keep growing. In the second case there is
still a growth of the coupling, but the curvature scale is
decreasing. Such a phase may correspond, typically, to
the dual of the dilaton-driven, accelerated evolution from
the string perturbative vacuum, and its possible effects
on the fluctuation spectra have already been discussed in
[23,24].

In our case, as we shall see below, compatibility of the
low-frequency part of the spectrum with the observed
anisotropy requires the initial parameter r to be suffi-
ciently near to −3/2 (this value simultaneously guaran-
tees a flat spectrum and an accelerated growth of the
metric and of the dilaton). With this value of r, if we
consider a decelerated intermediate phase, it turns out
that for β < −1 and β > 2 the high-frequency band
of the axion spectrum is decreasing, the amplification of
perturbations is thus enhanced at the COBE scale, and
the bounds on the axion mass become more constraining
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instead of being relaxed. For −1 < β < 2 the spectrum
grows monotonically, but an explicit computation shows
that even in that case no significant widening of the mass
window may be obtained.

In this paper we will thus concentrate on the first type
of background, namely on an accelerated evolution of
the pumping field, parametrized as in eq. (4.1). The
axion spectrum grows monotonically in the whole range
−2 < β < 1, but it seems natural to assume that also the
pumping field is growing, so that we shall analyse a back-
ground with 0 < β < 1. This background includes, in the
limit β → 1, a phase of constant curvature and frozen
dilaton, a ≃ (−η)−1, φ ≃ const, which is a particular
realization of the high-curvature string phase introduced
in [25,26] for phenomenological reasons, and shown to be
a possible late-time attractor of the cosmological equa-
tions when the required higher-derivative corrections are
added to the string effective action [27].

For the background (4.1) the initial relativistic spec-
trum has two branches, corresponding to modes that
“cross the horizon” during the initial low-energy phase,
ω < ωs ≃ Hsas/a, and during the subsequent intermedi-
ate phase, ωs < ω < ωr. The non-relativistic corrections
are to be included according to eqs. (2.7) and (2.9). For
the purpose of this paper, it will be sufficient to consider
the non-relativistic spectrum in two limiting cases only:
the one in which only the low-frequency branch of the
spectrum becomes non-relativistic, and the one in which
already in the high-frequency branch there are modes
that become non-relativistic outside the horizon. In the
first case the spectrum is given by

Ωσ = g2
rΩγ

(

ω

ωr

)2−2β

, ωs < ω < ωr,

= g2
rΩγ

(

ω

ωr

)3−2|r| (
ωs

ωr

)2|r|−2β−1

,m < ω < ωs,

= g2
r

m

Hr

(

Hr

Heq

)1/2 (

ω

ωr

)2−2|r| (
ωs

ωr

)2|r|−2β−1

,

ωm < ω < m,

= g2
r

(

m

Heq

)1/2 (

ω

ωr

)3−2|r| (
ωs

ωr

)2|r|−2β−1

,

ω < ωm, (4.2)

for m/Heq < (Tm/eV)2, and

Ωσ = g2
rΩγ

(

ω

ωr

)2−2β

, ωs < ω < ωr,

= g2
rΩγ

(

ω

ωr

)3−2|r| (
ωs

ωr

)2|r|−2β−1

,m < ω < ωs,

= g2
r

m

Hr

(

Hr

Heq

)1/2 (

ω

ωr

)2−2|r| (
ωs

ωr

)2|r|−2β−1

,

ωT < ω < m,

= g2
r

(

m

Heq

) (

eV

Tm

) (

ω

ωr

)3−2|r| (
ωs

ωr

)2|r|−2β−1

,

ω < ωT , (4.3)

for m/Heq > (Tm/eV)2. In the second limiting case the
spectrum is

Ωσ = g2
rΩγ

(

ω

ωr

)2−2β

, m < ω < ωr,

= g2
r

m

Hr

(

Hr

Heq

)1/2 (

ω

ωr

)1−2β

, ωm < ω < m,

= g2
r

(

m

Heq

)1/2 (

ω

ωr

)2−2β

, ωs < ω < ωm,

= g2
r

(

m

Heq

)1/2 (

ω

ωr

)3−2|r| (
ωs

ωr

)2|r|−2β−1

, ω < ωs,

(4.4)

for m/Heq < (Tm/eV)2, and

Ωσ = g2
rΩγ

(

ω

ωr

)2−2β

, m < ω < ωr,

= g2
r

m

Hr

(

Hr

Heq

)1/2 (

ω

ωr

)1−2β

, ωT < ω < m,

= g2
r

(

m

Heq

) (

eV

Tm

) (

ω

ωr

)2−2β

, ωs < ω < ωT ,

= g2
r

(

m

Heq

) (

eV

Tm

) (

ω

ωr

)3−2|r| (
ωs

ωr

)2|r|−2β−1

,

ω < ωs, (4.5)

for m/Heq > (Tm/eV)2.
The spectrum depends on five parameters: gr, m,

ωs/ωr, β and Tm, the temperature scale at which the
axions become massive. The conditions to be imposed
on the axion energy density in order to fit present obser-
vations of the large-scale anisotropy, without becoming
over-critical, provide strong constraints on the parame-
ters ωs/ωr and β, namely on the pre-big bang evolution
of the background, as we now want to discuss. We will
show that, for ω0 < ωs, the COBE normalization (3.17)
imposed on the lowest-frequency band of the above spec-
tra can be satified consistently with all constraints both
for (m/Heq)

1/2 < Tm/eV and (m/Heq)
1/2 > Tm/eV, and

the bounds on the mass can be significantly relaxed.
In order to discuss this possibility, it is convenient to

use as parameters the duration of the intermediate pre-
big bang phase, measured by the ratio ωr/ωs, and the
variation of the pump field during that phase, ξs/ξr =
(ηs/ηr)

−β = (ωr/ωs)
−β . Thus we set

β = − y
x
, x = log10(ωr/ωs) > 0, y = log10(ξs/ξr) < 0.

(4.6)

According to eq. (3.16), the slope of the non-relativistic,
low-energy branch of the spectrum,
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(n− 1)/2 = 3 − 2|r|, (4.7)

is constrained by

1.4 ≤ |r| ≤ 1.5 (4.8)

(n < 1 has been excluded, to obtain a growing axion
spectrum also in the limit ηs → ηr). The COBE normal-
ization (3.17) fixes the mass as follows

log10

m

Heq
= 4y + (4|r| − 2)x+ 164 − 116|r|

− (1 + 2|r|) log10 gr,

(

m

Heq

)1/2 (

eV

Tm

)

< 1, (4.9)

log10

m

Heq
= 2y + (2|r| − 1)x+ log10

(

Tm

eV

)

+ 82 − 58|r|

−
(

1

2
+ |r|

)

log10 gr,

(

m

Heq

)1/2 (

eV

Tm

)

> 1. (4.10)

The critical bound also depends on the mass: if m/Heq <
(Tm/eV)2 the condition (3.18) has to be imposed on eq.
(4.2) for ωm < ωs, and on eq. (4.4) for ωm > ωs; if,
on the contrary, m/Heq > (Tm/eV)2, then the condition
(3.18) has to be imposed on eq. (4.3) for ωT < ωs, and on
eq. (4.5) for ωT > ωs. Finally, we have the constraints
log10 (m/Heq) > 0, see eq. (3.1), and, by definition, x >
0, y < 0, y > −x (since β < 1).

The allowed region in the (x, y) plane, as determined
by the above inequalities, is not very sensitive to the
variation of gr and |r| in their narrow ranges, deter-
mined respectively by eqs. (2.4) and (4.8). For a qualita-
tive illustration of the constraints imposed by the COBE
data we shall fix these parameters to the typical values
gr = 10−2 and |r| = 1.45 (corresponding to a spectral
slope n = 1.2). Also, we will assume that axions be-
come massive at the scale of chiral symmetry breaking
Tm ≃ 100 MeV. The corresponding allowed ranges of the
parameters of the intermediate pre-big bang phase (du-
ration and kinematics) are illustrated in Fig. 2.

The allowed region is bounded by the bold solid curves.
The lower border is fixed by the condition m > Heq ∼
10−27 eV for x >∼ 18, and by the condition β < 1,
i.e. y > −x, for x <∼ 18. The upper border is fixed
by the condition Ωσ(ωm) < 0.1, imposed for ωT > ωs

and m/Heq > 1016. The region is limited to the range
ωr/ωs <∼ 1028, as we are considering the case in which the
axion contribution to the CMB anisotropy arises from the
low-frequency branch of the spectrum.

The dashed lines of Fig. 2 represent curves of constant
axion mass, determined by the conditions (4.9), (4.10),
with gr = 10−2, |r| = 1.45 and Tm = 100 MeV, namely

y = −0.95x− 0.9 +
1

4
log10

( m

10−27eV

)

, m < 10−11 eV,

y = −0.95x− 4.9 +
1

2
log10

( m

10−27eV

)

, m > 10−11 eV.

(4.11)

x = log 10( r / s)

y 
=
 lo

g
1
0
(

s
/

r
)

0

-10

-20

-25

-5

-15

5 10 15 20 25

10 -27
eV

10 8eV
10 -5

eV

FIG. 2. Possible allowed region for the parameters of an
intermediate pre-big phase, consistent with an axion spec-
trum that does not become over-critical, and that reproduces
the present COBE observations. The dashed lines represent
curves of constant axion mass.

As shown in the picture, the allowed region is compatible
with masses much higher than Heq, up to the limiting
value m ∼ 100 MeV above which the discussion of this
paper cannot be applied, since for m > 100 MeV all the
produced axions decayed into photons before the present
epoch, at a rate Γ ∼ m3/M2

p . For the particular example
shown in Fig. 2, the allowed axion-mass window is then

10−27 eV < m < 102 MeV. (4.12)

In the absence of the intermediate phase, i.e. for
x, y → 0, we recover the result obtained in [1], with
m ∼ 103.8Heq ∼ 10−23 eV.

A high-curvature string phase with nearly constant
dilaton and curvature scale, i.e. β ≃ 1, y ≃ −x, is not
excluded but must lie very near the lower border of the
allowed region, so that it does not relax in a significant
way the bounds on the axion mass. It is nevertheless re-
markable that such a phase is not inconsistent with axion
production and with the COBE normalization of the ax-
ion spectrum. Such a phase would produce a relic gravity
wave background with a nearly flat spectrum [26], easily
observable by advanced detectors, and its extension in
frequency would be constrained by x <∼ 18, to avoid con-
flicting with present pulsar-timing data [28]. This does
not introduce additional constraints in our discussion,
however, since for x > 18 the line y = −x lies outside the
allowed region of Fig. 2.

We conclude this section by giving a possible exam-
ple of background, which satisfies the low-energy string
cosmology equations, and which is simultaneously com-
patible with COBE and with higher values of the axion
mass, as illustrated in Fig. 2.

Consider the gravi-dilaton string effective action, with
zero dilaton potential, but with the contribution of addi-
tional matter fields (strings, membranes, Ramond forms,
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...) that can be approximated as a perfect fluid with an
appropriate equation of state. As discussed in [29], the
cosmological equations can in this case be integrated ex-
actly, and the general solution is characterized by two
asymptotic regimes. In the initial small-curvature limit,
approaching the perturbative vacuum, the background is
dominated by the matter sources. At late times, when
approaching the high-curvature limit, the background be-
comes instead dilaton-dominated, and the effects of the
matter sources disappear. The time-scale marking the
transition between the two kinematical regimes (and thus
the duration of the second, dilaton-dominated phase) is
controlled by an arbitrary integration constant.

In order to provide an explicit example of this class of
backgrounds, we can take, for instance, a 4 + n manifold
and we set

gµν = diag
(

1,−a2δij ,−b2δmn

)

,

T ν
µ = diag ρ

(

1,−γδj
i ,−ǫδn

m

)

,

a ∼ |t|α1 , b ∼ |t|α2 , φ = Φ − n ln b. (4.13)

Here Φ is the unreduced, (4+n)-dimensional dilaton field
and we have called a and b, respectively, the external and
internal scale factors, while γ and ǫ define the external
and internal equations of state. In the initial, matter-
dominated regime (η < ηs), the string cosmology equa-
tions lead to [29]:

r =
5γ − 1

1 + 3γ2 + nǫ2 − 2γ
− 1

2
. (4.14)

In the subsequent dilaton-dominated regime (η > ηs) the
equations give [30]

β =
1 − 3α1

1 − α1
− 1

2
, α2

1 =
1

3

(

1 − nα2
2

)

, (4.15)

where α1, α2 depend on γ, ǫ, and on arbitrary integration
constants.

The value r = −3/2, required for a flat low-frequency
branch of the spectrum, is thus obtained provided inter-
nal and external pressures are related by:

nǫ2 = −3γ(1 + γ). (4.16)

On the other hand, an appropriate equation of state, mo-
tivated by the self-consistency of this background with
the solutions of the string equations of motion [29,31],
suggests for γ the range −1/3 ≤ γ ≤ 0. This range, to-
gether with the condition (4.16), also guarantees the va-
lidity of the so-called dominant energy condition, ρ ≥ 0,
for the whole duration of the low-energy pre-big bang
phase. Near the singularity, when the background enters
the dilaton-dominated regime, the kinematics, and then
the value of β, depends on the integration constants. For
a particularly simple choice of such constants (xi = 0 in

the notation of [29]), one finds α1 =
√

−γ/3, and the
value of β becomes completely fixed by γ as

β =
1 +

√−3γ

1 +
√

−γ/3
− 1

2
. (4.17)

With γ ranging from −1/3 to 0, β ranges from −1/2
to 1/2. It is thus always possible, even in this simple
example, to implement the condition β < 1, in such a
way as to satisfy the properties required by the allowed
region of Fig. 2.

V. CONCLUSION

In this paper we have discussed, in the context of the
pre-big bang scenario, the possible consistency of a pseu-
doscalar origin of the large-scale anisotropy, induced by
the fluctuations of non-relativistic Kalb–Ramond axions,
with masses up to the 100 MeV range. The enhancement
of the low-energy tail of the axion spectrum, due to their
mass, has been shown to be possibly balanced by the de-
pletion induced by a steeper slope at high frequency. We
have provided an explicit example of background that
satisfies the low-energy string cosmology equations, and
leads to an axion spectrum compatible with the above
requirements.

The discussion of the reported example is incomplete
in many respects. For instance, the class of models that
we have considered could be generalized by the inclusion
of additional cosmological phases; also, an additional re-
heating subsequent to the pre-big bang → post-big bang
transition could dilute the produced axions, and relax
the critical density bound; and so on. In this sense, the
results discussed in Sect. IV are to be taken only as in-
dicative of a possibility.

In this spirit, the main message of this paper is that
in the context of the pre-big bang scenario there is no
fundamental physical obstruction against an axion back-
ground that fits consistently the anisotropy observed by
COBE, with “realistic” masses in the expected range of
conventional axion models [7] – [11].

For a given axion mass, the corresponding anisotropy
is only a function of the parameters of the pre-big bang
models. If the axion mass were independently deter-
mined, the measurements of the CMB anisotropy might
be interpreted, in this context, as indirect observations
of the properties of a very early cosmological phase,
and might provide useful information about the high-
curvature, strong-coupling regime of the string cosmol-
ogy scenario.
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