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Based on the intrabeam scattering theory of Bjorken-Mtingwa, the general expressions
for the growth rates of the horizontal, vertical and longitudinal emittances are expressed in
the simple form of elliptic integrals. Using this analytical approach, the blow-up of a
bunched heavy ion beam in the proposed HIRFL storage ring is simulated. The time
evolution of transverse emittances and momentum spread is obtained. A comparison of
the results with those obtained from the extended Piwinski theory exhibits a maximum
discrepancy of 300/0.
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1 INTRODUCTION

Intrabeam scattering (IBS) often dominates the resolution limits of a
cooled ion beam in a storage ring. 1 In order to perform reliable theo
retical forecasts, the original Piwinski2 IBS theory was extended to
include the variations of betatron functions and momentum dispersion
function along the lattice by Sacherer, Mohl, Piwinski and Martini,3
whose results were summarized in the paper by Martini.3 Meanwhile,
Bjorken and Mtingwa4 (hereafter abbreviated B-M) also worked out the
general formulae through a scattering matrix formalism, considering
the variations ofbetatron and dispersion functions. The sum ofthe three
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growth rates derived by B-M was expressed in the form of elliptic
integrals. However, the growth rate in each of the 3 dimensions was still
expressed in complicated integral forms. The peculiarities of the inte
grands bring difficulties for a practical application, although approxi
mations were made for ultra-relativistic energy4 (, 2: 10) and lower
energy5 (, ~ 3.77) beams respectively.

In this paper, following B-M, we extend the derivations ofIBS growth
rate formulae. We find the expression of the growth rate in each of the
3 dimensions in the form of elliptic integrals which can be evaluated
quite easily in practical applications. These formulae are adopted to
simulate the blow-up process for a bunched beam of Ar1S+ of 30 MeVlu
in the proposed HIRFL Cooler-Storage Ring (HIRFL-CSR).6 The
continuous enlargements of beam emittances and momentum spread
obtained from the simulations are shown as a function of time, and are
compared with predictions? based upon the extended Piwinski theory.

2 INTRABEAM SCATTERING GROWTH RATES

For convenience, we summarize the B-M growth rates for the transverse
emittances (la) Ch, Cv and the longitudinal phase ellipse area (la) Cl [see
Eq. (3.4) of Ref. 2]

1 Idc' \1 00

A
1

/
2

·dA { ( 1 )- - __J - r Tr L· . Tr --
Tj-Sjdt- 0 IL+AII 1/ 2 [(1)] L+AI

-3Tr[Lr (L~AI)]}), j=h,v,l. (1)

Here the brackets (... ) denote an average around the ring, Tr denotes
the trace of the matrix, and IL + All denotes the determinant of the
matrix L (defined below) plus A times the unit matrix, where A is the
variable of the integration.

For an unbunched beam,

(2)

in which ri == (q? / Ai) . rp is the classical radius of the ion with charge
state qi and mass number Ai, rp = 1.547 x 10-1S m is the classical proton
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radius, (J"p is the rms relative momentum spread, {3i, "'Ii are the usual
relativistic factors, Ii is the beam current in Ampere, and Lc is the
Coulolnb logarithm (taken as L c == 20 throughout our calculation).

For a bunched beam,

(3)

In Eq. (3) N i is the number of particles in the bunch, c is the speed of
light, and O"s is the rms bunch length.

The matrices Lj for the horizontal, vertical and longitudinal dimen
sions respectively are given as follows

(4)

and L is given by the sum L = L h +Lv +Lt. Here m == 1 for an unbun
ched beam and m == 2 for a bunched beam, ¢ == D~ - (3~Dh/(2{3h), Dh is
the horizontal dispersion, (3~ == d({3h) / ds and D~ == d(Dh)/ ds are deri
vatives of {3h and D h with respect to the longitudinal coordinate s
respectively. The vertical dispersion is neglected.

A simple expression for the total growth rate obtained by summation
over j == h, v, I and expressed already in the form of elliptic integrals was
given by B-M. However, the growth rate in each of the 3 dimensions
is of tnajor concern in our application, so we start the derivations
from Eq. (1).

Due to symmetry, the matrices Lj and L may be written as
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(5)

Accordingly, eigenvalues of the matrix L are given by

Al = ~ [(TI + T3) + V(TI - T3)2 + 4Ti] ,

A2 = ~ [(TI + T3) - V(TI - T3)2 + 4Ti] ,

A3 == T4

and then Eq. (1) can be written in the form

In Eq. (7) the F 1j, F2j are related to the matrix elements by

(6)

(7)

F1j == 2(Slj + S3j + S4j)(Tl + T3+ T4)

- 3(SljT3+ SljT4 - 2S2jT2 + S3jT1+ S3jT4+ S4jT1+ S4jT3),

F2j == (Slj + S3j + S4j)(T3 T4+ Tl T4 + T1T3 - Ti)

- 3(SljT3T4 - 2S2jT2 T4+ S3jT1T4 + S4jTl T3 - S4j Ti). (8)

Whenever ¢ # 0, the eigenvalues An (n == 1, 2, 3) cannot be all equal.
This happens at almost all points around a strong-focusing lattice. For
the most general case, let Al > A2 > A3' we can express analytically the
integrals in terms of elliptic integrals [see Appendix]
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where E(~, k) and F(~, k) are the elliptic integrals of the first and second
kinds, i.e.

and the coefficients An, Bn and en (n == 1,2) are expressed as below:

Al = 2V (1 + V)k 4 + (V - 3)k Z + 2
Ai .U3/2 . (1 - V)7/2 k 4 (1 - k 2)2 '

B _ 2V (2 - V)k 2 - 2
1 - Ai .U3/2 . (1 _ V)7/2 k 4 (1 - k 2) ,

CI= 2V .(-V)(k
Z +1).VI -V

Ai .U3/2 . (1 - V)7/2 k 2(1 - k 2)2 U '

2 (-2)[(V2 -V+l)k4 -(2-V)k2+1]
A2 == -------

Ai . U 3/2 . (1 - V)7/2 k 4 (1 - k 2)2

B _ 2 (V2 -2V+l)k4 +(2V-3)k2+2
2 - Ai. U 3/2 . (1 _ V) 7/2 k 4 (1 - k 2 ) ,

Cz = 2 . V[(2V - I)k
Z + 1] . VI - V

Ai. U3/2. (1 - V)7/2 k 2 (1 - k 2 )2 U

in which

Substituting Eqs. (9) and (10) into Eq. (7), we finally obtain the
growth rates in 3 dimensions:

~ = r( (FljAI + FzjAz)E(t"k) + (FljBI +FzjBz)F(t"k)
}

+ (FljCI +FzjCz) ). (13)
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In the special case of Al > A2 == A3' we can also analytically evaluate

roo A3/ 2 dA

Jo (A + Al)3/2(A + A2)3

== 2(1- U)-3 [~U~ +~~ -~JU(1- U) _ U JU(1- U)]
AiJU(1 - U) 2 8 8 4 '

(14)

roo A1/ 2 dA

Jo (A + Al)3/2(A + A2)3

2(1 - U) -3 [ 1 1
= Ai UJU(1 - U) -U(1 + U)~ +8~ +8JU(1 - U)

+7~ J U( 1 - U)] .

3 APPLICATIONS

(15)

As a first check, we apply the calculation to the Antiproton Accumulator
(pA) at Fermilab using the beam and lattice parameters given in Ref. 4,
especially

Ii == 0.041 A, '"'Ii == 9.53.

The resulting growth rates (Eq. (13)) at 24 lattice locations are listed in
Table I (labeled by "Present Values"), together with the results given
by B-M. We obtain consistently faster growth rates than B-M by 22%
because B-M neglected two terms in their results.

As the main application, a computer program has been written to
simulate evolution of an ion beam in a storage ring under the influence
ofIBS. It has been used to study the case of a bunched beam ofAr18+ at
30 MeVlu in the proposed HIRFL-CSR. The results are compared with
predictions obtained from the INTRAB program? which is based upon
the extended Piwinski model.
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TABLE I Comparison of IBS growth rates

Lattice 7h1 (h-1) 7;1 (h- 1) 7
1
- 1 (h-1)

locations
B-M Present B-M Present B-M Present
values values values values values values

1 0.252 0.308 -0.00267 -0.00326 0.920 1.125
2 0.235 0.287 -0.00275 -0.00336 0.857 1.048
3 0.231 0.283 -0.00273 -0.00334 0.842 1.030
4 0.226 0.277 -0.00271 -0.00332 0.823 1.007
5 0.202 0.247 -0.00261 -0.00319 0.731 0.894
6 0.188 0.230 -0.00314 -0.00383 0.683 0.836
7 0.188 0.230 -0.00322 -0.00393 0.683 0.836
8 0.191 0.233 -0.00316 -0.00386 0.695 0.850
9 0.194 0.238 -0.00310 -0.00379 0.708 0.866

10 0.126 0.154 -0.00311 -0.00380 0.758 0.928
11 0.127 0.155 -0.00309 -0.00378 0.762 0.932
12 0.0692 0.0846 -0.00314 -0.00384 0.801 0.980
13 0.0701 0.0858 -0.00312 -0.00381 0.810 0.991
14 0.0703 0.0860 -0.00313 -0.00383 0.812 0.994
15 0.0709 0.0868 -0.00320 -0.00391 0.818 1.001
16 0.0187 0.0229 -0.00320 -0.00391 0.828 1.013
17 0.0187 0.0229 -0.00318 -0.00389 0.828 1.013
18 -0.00287 -0.00351 -0.00287 -0.00351 0.825 1.009
19 -0.00281 -0.00344 -0.00284 -0.00347 0.823 1.008
20 -0.00293 -0.00358 -0.00290 -0.00355 0.827 1.011
21 -0.00322 -0.00394 -0.00325 -0.00397 0.874 1.070
22 -0.00315 -0.00385 -0.00321 -0.00392 0.889 1.088
23 -0.00269 -0.00329 -0.00282 -0.00344 1.060 1.300
24 0.347 0.424 -0.00209 -0.00256 1.270 1.550
Average 0.117 0.143 -0.00297 -0.00363 0.830 1.016
values

Figure 1 shows the time evolution of transverse emittances, momen-
tum spread and bunch length for the Ar18+ beam obtained from the
formulae given in this paper, and from the extended Piwinski theory. The
lattice taken is described in Ref. 8, and the initial parameters of the ion
beam are

chO == cvO == 1.0K mm . m rad, tJ..p = ±1.0 X 10-4 ,
p

bunch full length == 3.84m, Ni == 5 X 108 ions/bunch.

The transverse emittances, momentum spread and bunch length are
defined as 1a distribution, so that,

a~v
ch,v ==~,

,uh,v
bunch length == as.
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FIGURE 1 Time evolution of beam emittances, momentum spread and bunch length
due to the IBS.

It can be seen from the Figure 1 that increase of the transverse
emittances based upon the B-M theory is approximately 20% lower
than that obtained from the extended Piwinski model, whereas for the
longitudinal degree offreedom, the B-M approach shows higher growth
by roughly 300/0. The fact that the Coulomb logarithm was considered
as independence of the beam characteristics and taken as a constant 20
throughout the B-M derivations may be one source of this discrepancy.
However, both theories show that the beam does not tend to an equi
librium, but displays a continuous blow-up in all three planes. This is
explained by the transfer of beam kinetic energy into transverse and
longitudinal energy spreads.

4 CONCLUSION

We have shown that the general expressions ofB-M can be brought into
analytical form expressed in terms of the elliptic integrals which can
readily be resolved. Comparison of results from these formulae with
those obtained from the extended Piwinski theory exhibits a maximum
deviation of 30%

•
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APPENDIX

We consider an analytical evaluation of the integral

for the general case Al > A2 > A3' Setting U == A2/AI, V == A3/)'1 and
x == A/AI, we get

1 roo x 3/ 2 . dx

Int = Ai Jo (x + 1)3/2(x + U)3/2(x + V)3/2'

Letting x == Vtan2 ¢ and 1 - V/U == k 2(1 - V), we have

2V 17r
/
2 sin4 ¢. cos3¢. d¢

Int==---Ai .U3/2 0 [1 - (1 - V) sin2¢]3/2 . [1 - k 2(1 - V) sin2¢]3/2

2V· (1 - V)2 . yIf=v
Ai .U3/2

rl/~ x4[1 - x2(1 - V)] . dx

x Jo [1 - x2 (1 - V)2]3/2 . [1 - k2x2(1 _ V)2]3/2

2V rl y4.(I- y2)·dy

- A2 . U3/2 Jo [1 - (1 - V)y2]3/2 . [1 - k2(1 _ V)y2]3/2 .

Letting y == sin ()/ yIf=v, sin ~ == yIf=v, we get
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Through partial integration, we have

so that

We can express the integrals in terms of the elliptic integrals of the first
and second kinds9 by

(~ tan
2

() . d()= _1_
2
[J1 - k 2 sin2 ~ . tan ~ - E(~, k)], (A3)

Jo J 1 - k 2 sin2 () 1 - k
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Substituting Eqs. (A2), (A3) and (A4) into (AI), and combining the
corresponding coefficients of E(~, k) and F(~, k), we eventually obtain

in which

A _ 2 V . _(I_+_V_)_k_4 _+_(V_-_3_)k_
2

_+_2
1 - Ai. U 3/2 . (1 _ V)7/2 k 4 (1 _ k 2)2

B _ 2V (2 - V)k 2
- 2

1 - Ai. U3/2. (1- V)7/2 k 4(I-k 2) ,

2V (-V)(k 2 + 1) ~
C1 = Ai" U 3/ 2 " (1- V)7/2" k 2(I_k 2)2 "V------r;-"

In a similar manner, we can also obtain Eq. (10).
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