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Abstract

One of the drawbacks of conventional grand uni�cation scenarios has been

that the uni�cation scale is too high to permit direct exploration. In this pa-

per, we show that the uni�cation scale can be signi�cantly lowered (perhaps

even to the TeV scale) through the appearance of extra spacetime dimensions.

Such extra dimensions are a natural consequence of string theories with large-

radius compacti�cations. We show that extra spacetime dimensions naturally

lead to gauge coupling uni�cation at intermediate mass scales, and moreover

may provide a natural mechanism for explaining the fermion mass hierarchy

by permitting the fermion masses to evolve with a power-law dependence on

the mass scale. We also show that proton-decay constraints may be satis�ed in

our scenario due to the higher-dimensional cancellation of proton-decay ampli-

tudes to all orders in perturbation theory. Finally, we extend these results by

considering theories without supersymmetry; experimental collider signatures;

and embeddings into string theory. The latter also enables us to develop sev-

eral novel methods of explaining the fermion mass hierarchy via D-branes. Our

results therefore suggest a new approach towards understanding the physics of

grand uni�cation as well as the phenomenology of large-radius string compact-

i�cations.
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1 Introduction and basic idea

One of the most widely investigated proposals for physics beyond the Minimal Su-

persymmetric Standard Model (MSSM) is the possible appearance of a grand uni�ed

theory (GUT). There are several profound attractions to the idea of grand uni�cation.

Perhaps the most obvious is that GUT's have the potential to unify the diverse set of

particle representations and parameters found in the MSSM into a single, comprehen-

sive, and hopefully predictive framework. For example, through the GUT symmetry

one might hope to explain the quantum numbers of the fermion spectrum, or even

the origins of fermion mass. Moreover, by unifying all U(1) generators within a

non-abelian theory, GUT's would also provide an explanation for the quantization of

electric charge. Furthermore, because they generally lead to baryon-number violation,

GUT's have the potential to explain the cosmological baryon/anti-baryon asymmetry.

By combining GUT's with supersymmetry in the context of SUSY GUT's, it might

then be possible to realize the attractive features of GUT's simultaneously with those

of supersymmetry in a single theory. Indeed, there is even a bit of \experimental"

evidence for the idea of grand uni�cation, for the three MSSM gauge couplings ap-
pear to unify when extrapolated towards higher energies within the framework of the

MSSM, with a uni�cation scale MGUT � 2 � 1016 GeV. The phenomenon of gauge
coupling uni�cation thus sets the natural energy scale for grand uni�cation.

Unfortunately, because this energy scale is so high, it proves rather di�cult to

probe the physics of grand uni�cation directly at low energies. There are, of course,
numerous indirect probes of such high-scale GUT physics, most notably through rare

decays such as proton decay. However, all of these tests are ultimately limited by the
remoteness of the GUT scale.

In this paper, we shall investigate whether it is possible to bring grand uni�cation

down towards more accessible energy scales by lowering the uni�cation scale itself. Of
course, it hardly seems possible to consider a uni�cation of the MSSM gauge groups at
any lower scaleM �MGUT at which their couplings have not yet uni�ed. Therefore,

in order to sensibly contemplate the possibility of an intermediate-scale GUT, we
are forced to consider whether it is possible to achieve gauge coupling uni�cation

at scales M � MGUT. It is immediately clear that adding arbitrary extra matter

states to the MSSM cannot achieve the desired e�ect, for in general such extra matter
not only tends to raise (rather than lower) the uni�cation scale, but also tends to

drive the theory towards strong coupling. What we require, therefore, is a di�erent
mechanism.

The underlying reason that gauge coupling uni�cation is delayed until such a

high energy scale is essentially that the one-loop MSSM gauge couplings run only
logarithmically with energy scale � (or linearly versus log �). Thus, given the di�erent

values of these couplings at the weak scale, one must extrapolate upwards over many
orders of magnitude in energy before they have a chance of unifying. Clearly, if there

were a way to change the running of the gauge couplings so that they ran more
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quickly (e.g., exponentially rather than linearly), we would have a chance to achieve

a more rapid uni�cation.

What physical e�ect could cause the running of gauge couplings to be exponential

rather than linear? Remarkably, there does exist a simple way in which such an

exponential running can arise: the appearance of extra spacetime dimensions. Since

extra spacetime dimensions are naturally predicted in string theory (both through

the need to compactify as well as through various non-perturbative e�ects), we expect

that such a scenario might �nd a natural home within the context of string theory.

However, as we shall see, such a scenario can be discussed in purely �eld-theoretic

terms.

Of course, there is one subtle complication with this na��ve picture: in �eld theory,

extra spacetime dimensions lead to a loss of renormalizability. Thus, strictly speaking,

quantities such as gauge couplings do not \run" in the usual sense. However, our

basic idea is nevertheless correct, and as we shall see, the \exponential running" is

more correctly described as an exponential dependence on the cuto� pertaining to

high-scale physics (such as the appearance of a fundamental string theory) at energy

scales beyond those we shall be considering. Moreover, as we shall demonstrate, even
though our theory is non-renormalizable, there exists a renormalizable theory which,
for our purposes, is essentially equivalent to our non-renormalizable theory. Thus,

our basic intuitive idea of exponential \running" remains intact.
Given this motivation, in this paper we shall undertake a general analysis of the

e�ects of extra spacetime dimensions on the MSSM. We shall begin, in Sect. 2, with

a discussion of various issues that arise when attempting to extrapolate the MSSM
to higher dimensions. Then, in Sect. 3, we shall discuss the e�ects of extra spacetime

dimensions on ordinary gauge coupling uni�cation. Quite remarkably, we shall �nd
that within the MSSM, the appearance of any number of extra spacetime dimensions
at any intermediate scale always preserves gauge coupling uni�cation | indeed, we

shall �nd that the e�ect of the extra dimensions is simply to shift the uni�cation scale
downwards towards lower energies, as desired. Thus, within the MSSM, we �nd that

the appearance of extra spacetime dimensions naturally leads to an intermediate-scale

grand uni�ed theory.
In Sect. 4, we shall then consider the e�ects of extra spacetime dimensions of

the proton-lifetime problem, and propose that to all orders in perturbation theory,

proton-decay amplitudes are exactly cancelled as the result of new Kaluza-Klein

selection rules corresponding to the extra spacetime dimensions. This is therefore an

intrinsically higher-dimensional solution to the proton-decay problem.

In Sect. 5, we shall then turn our attention to the e�ects of extra spacetime

dimensions on the evolution of the fermion Yukawa couplings. We shall �nd that extra

dimensions cause the Yukawa couplings to run exponentially as well, and thereby show

that this exponential running for the Yukawa couplings has the potential to explain

the fermion mass hierarchy.

In Sect. 6, we shall then consider the e�ects of extra dimensions on the non-
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supersymmetric Standard Model, and show that once again it is possible to obtain

gauge coupling uni�cation at relatively low energy scales, even without supersymme-

try. Thus, if the uni�cation scale is su�ciently low, we can actually avoid the gauge

hierarchy problem.

In Sect. 7, we shall then discuss how our scenario can be embedded into string

theory, and make some general remarks concerning the manner in which the ap-

pearance of extra spacetime dimensions and intermediate-scale grand uni�cation can

be incorporated and interpreted in terms of the mass scales expected within string

theory. We shall also consider various non-perturbative D-brane realizations of our

scenario. Then, in Sect. 8, we shall revisit the fermion mass hierarchy problem using

some of these non-perturbative D-brane insights, and we shall propose several new

D-brane methods for addressing the fermion mass hierarchy problem which do not

rely on the ad hoc introduction of extra low-energy matter states or 
avor-dependent

couplings. The mechanisms we propose in this section might therefore be of general

use for the phenomenology of Type I model-building.

In Sect. 9, we shall discuss how our our work relates to prior work in the literature,

and in Sect. 10 we shall discuss some of the experimental consequences of our scenario.
As we shall see, our scenario can be expected to lead to numerous exciting collider
signals; it can also have important cosmological implications. We will then conclude

in Sect. 11 with a summary of our results, and as well as future prospects and
rami�cations. Three Appendices contain ancillary calculations which justify the basic
approach that we shall be following in this paper. Note that an abbreviated discussion

of some of the ideas in this paper can also be found in Ref. [1].

2 Preliminaries

How can we incorporate extra spacetime dimensions into a �eld-theoretic analysis

of the MSSM? In this section, we shall provide a discussion of some of the issues that
arise, including the appearance and proper treatment of Kaluza-Klein modes as well

as the resulting lack of renormalizability that a�icts higher-dimensional �eld theories.
Throughout, we shall focus on taking a \bottom-up" approach, and seek the \min-
imal" scenarios that consistently embed the MSSM into higher dimensions. Thus,

our approach will necessarily be part of any larger structure that may ultimately be

derived from a more complete high-energy theory such as string theory.

2.1 Incorporating extra dimensions into the MSSM

Given that the observed low-energy world consists of only four 
at dimensions, the

only rigorous way in which to discuss the appearance of extra spacetime dimensions

is to assume that they are compacti�ed. For this purpose, we shall begin by assuming
that they are simply compacti�ed on a circle of a certain �xed radius R, where R�1

exceeds presently observable energy scales. Thus �0 � R�1 sets the mass scale at
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which the extra dimensions become signi�cant.

The appearance of extra dimensions of radius R implies that a given complex

quantum �eld �(x) now depends on not only the usual four-dimensional spacetime

coordinates x � (x0; x1; x2; x3), but also the additional spacetime coordinates y �
(y1; y2; :::; y�) where � � D � 4 is the number of additional dimensions. We shall

denote these coordinates collectively as x = (x;y). Demanding periodicity of �(x)

under

yi ! yi + 2�R (2.1)

then implies that �(x) takes the form

�(x) =
1X

n1=�1

1X
n2=�1

� � �
1X

n�=�1

�(n)(x) exp(in � y=R) (2.2)

where n = (n1; n2; :::; n�), with ni 2 ZZ. The \four-dimensional" �elds �(n)(x) are the

so-called Kaluza-Klein modes, and ni are the corresponding Kaluza-Klein excitation

numbers (with pi � ni=R serving as the Kaluza-Klein momenta). In general, the
mass of each Kaluza-Klein mode is given by

m2
n
� m2

0 +
n � n
R2

(2.3)

where m0 is the mass of the zero-mode. At energies far below R�1, we expect our

extra dimensions to be unobservable. However, in this limit, none of the non-zero
Kaluza-Klein modes can be excited, and we will observe only the zero-mode �eld

�(0)(x). Thus, the zero-mode �eld corresponds to the usual four-dimensional state,
and the appearance of the extra spacetime dimensions is felt through the appearance
of an in�nite tower of associated Kaluza-Klein states of increasing mass.

How then do we incorporate extra spacetime dimensions into the MSSM? It might
initially seem that for every MSSM state of mass m0, there will exist a correspond-
ing in�nite tower of Kaluza-Klein states with masses given by (2.3), each of which

exactly mirrors the zero-mode MSSM ground state. Since R�1 is presumed to exceed
presently observable energy scales, we are free to neglect m0 in (2.3).

However, it turns out that not every MSSM state can have Kaluza-Klein excita-

tions that exactly mirror the MSSM state itself. This complication arises because it
is necessary for Kaluza-Klein excitations to fall into representations that permit suit-

able Kaluza-Klein mass terms to be formed. This issue is particularly important for
us because a chiral MSSM state (such as a quark or lepton) by itself cannot be given

a Kaluza-Klein mass. Thus, we cannot have an in�nite tower of chiral Kaluza-Klein

excitations. Instead, we have two choices: either a given chiral MSSM representation
will not have Kaluza-Klein excitations, or the corresponding Kaluza-Klein excitation

will consist of not only the original MSSM representation but also its chiral-conjugate
mirror. Both cases are also consistent with the situation in string theory.

In this paper we shall consider a variety of di�erent cases. Speci�cally, we shall

let the variable � denote the number of generations of MSSM chiral fermions that we
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shall permit to have Kaluza-Klein excitations. Of course, the simplest scenario is one

for which � = 0 | i.e., no chiral MSSM fermions having Kaluza-Klein excitations.

Thus, in this scenario, only the non-chiral MSSM states (namely the gauge bosons

and Higgs �elds) will have Kaluza-Klein excitations, while the quark and lepton

representations will be assumed not to have Kaluza-Klein excitations. We shall refer

to this as the \minimal scenario", and as we shall see it has a number of special

properties. However, in the expectation that string theory will ultimately give rise

to various mixtures of con�gurations, in this paper we shall also consider the cases

with � = 1; 2; 3.

It is important to consider the exact form of the Kaluza-Klein excitations that

the Higgs �elds, gauge bosons, and chiral fermions will have. In the case of the

Higgs �elds, for each set of non-zero Kaluza-Klein momenta fnig the corresponding
Kaluza-Klein state will be a chiral N = 1 multipletH(n) � (H(n);  

(n)
H
). Note that the

structure of these chiral multiplets does not depend on whether they are massless or

massive. Since the MSSM contains two separate Higgs �elds, we thus �nd that at each

Kaluza-Klein mass level there will be two massive chiral N = 1 supermultiplets H1;2.
As we shall see, it will prove convenient to combine these two N = 1 supermultiplets

to form a single N = 2 hypermultiplet H:

H(n) =

 
H

(n)
1 H

(n)
2

 
(n)
H1

 
(n)
H2

!
(2.4)

where we have suppressed gauge and Lorentz indices.
A similar situation exists for the gauge bosons. An ordinary massless gauge boson

is an N = 1 vector supermultiplet. However, a massive gauge boson is represented
by a massive N = 1 vector supermultiplet, which is equivalent to an N = 1 massless

vector supermultiplet A � (A; �) plus an additional N = 1 chiral supermultiplet
A0 � (�;  ). Together, these form a massive N = 2 vector supermultiplet:

V (n) =

�
A(n) �(n)

�(n)  (n)

�
: (2.5)

One of the real scalar �elds in the chiral supermultiplet A0 becomes the longitudinal
component of the massive gauge boson, while the other real scalar �eld and the Weyl
fermion remain in the spectrum at the massive level. Thus, once again, we see that

our Kaluza-Klein towers of states are e�ectively N = 2 supersymmetric.�

�Strictly speaking, the extra Kaluza-Klein towers of states will e�ectively be N = 2 supersym-

metric only for � = 1 or 2. For higher values of �, the situation can be more complicated | e.g., for

� = 6 we na��vely expect our Kaluza-Klein towers of states to be N = 4 supersymmetric. In general,

the enhanced supersymmetry for the excited Kaluza-Klein arises because the minimum number of

supersymmetries in higher spacetime dimensions (as counted in terms of four-dimensional gravitino

spinors) grows with the spacetime dimension. Thus, since the higher number of supersymmetries

must be always restored in the limit R ! 1, we see that our Kaluza-Klein towers must exhibit a

5



Finally, in the cases � � 1 for which we allow certain chiral fermions to have

Kaluza-Klein excitations, these excitations will have the form

F (n) =

 
�
(n)
1 �

(n)
2

 
(n)
1  

(n)
2

!
(2.6)

where F (n)
1 � (�

(n)
1 ;  

(n)
1 ) are the Kaluza-Klein excitations of the original fermion �eld

F , and where F (n)
2 � (�

(n)
2 ;  

(n)
2 ) are the Kaluza-Klein excitations of the correspond-

ing mirror fermion. Together, (2.6) forms an N = 2 hypermultiplet (like the Higgs

�eld).

For the purposes of this paper, it will not often be necessary to use N = 2 language

to describe these towers of Kaluza-Klein states. But the main point is that we shall

give Kaluza-Klein excitations to the gauge bosons, to the Higgs �elds, and to only �

generations of the MSSM fermions, where � = 0; 1; 2; 3. Thus, the e�ects of the extra

dimensions are restricted to only the corresponding subset of the MSSM.

At �rst glance, this may seem to be an inconsistent situation because of two wor-
ries. First, how can we have Kaluza-Klein towers of gauge-boson states that fall into

N = 2 representations when we know that their zero-modes (their corresponding
observable states at low energies) are only N = 1 supersymmetric? How is it possi-

ble to \decouple" the gauge-boson zero-modes from the excited states in this way?
Second, we may also ask how can we have Kaluza-Klein excitations for some �elds,
while forbidding them for other �elds. How can this be reconciled with the presence

of additional spacetime dimensions, which are presumed to apply to the entire theory
at once?

To understand both of these points, let us consider the case of a single additional
dimension (i.e., � = 1) for simplicity, so that our spacetime coordinates are x � (x; y)
where x � (x0; x1; x2; x3). Note that we can recast (2.2) into the form �(x) =

�+(x) + i��(x), where

�+(x) =
1X
n=0

[�(n)(x) + �(�n)(x)] cos(ny=R)

��(x) =
1X
n=1

[�(n)(x)� �(�n)(x)] sin(ny=R) : (2.7)

higher number of supersymmetries than the ground states, even at �nite R. However, by making

suitable choices of orbifolds (as we shall see will be necessary in any case), it is always possible to

project the relevant Kaluza-Klein towers down to representations of N = 2 supersymmetry, even

if � > 2. Hence, without loss of generality, we shall consider N = 2 supersymmetric Kaluza-Klein

towers for arbitrary values of �.

In this context, we also remark that (2.4) is not the only way in which we might have constructed

an N = 2 supermultiplet from the MSSM Higgs �elds. Rather than combining the two MSSM Higgs

�elds into a single N = 2 multiplet, another possibility would have been to augment each Higgs

�eld separately into its own N = 2 multiplet. This would therefore have required the introduction

of even more �elds. We shall adopt the \minimal" approach of (2.4) in this section, and defer a

discussion of the remaining possibilities to Sect. 7.
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Note that ��(x) are generally complex �elds. Of course, if �(x) were a real �eld,

then only �+ would be non-zero. However, even if �(x) is complex, it is possible to

distinguish between �+ and �� through their properties under the ZZ2 transformation

y ! � y : (2.8)

Speci�cally, we have

�+(x;�y) = +�+(x; y)

��(x;�y) = ���(x; y) : (2.9)

What is particularly useful about the decomposition (2.7) is that ��(x) lacks a zero-

mode. Thus, even though our Kaluza-Klein tower of states for the gauge bosons are

N = 2 supersymmetric, as in (2.5), we can ensure that their corresponding zero-

mode is only N = 1 supersymmetric (as appropriate for the MSSM) by additionally

demanding that A and � transform as even functions under (2.8), while � and  

transform as odd functions.

What are the implications of making such additional requirements? By demand-
ing that our wavefunctions exhibit certain symmetry properties under the transfor-

mation (2.8), we are not, strictly speaking, compactifying on a circle. Instead, we
are implicitly making the additional ZZ2 identi�cation y � �y. Such an identi�cation

changes the circle into a so-called ZZ2 orbifold , so what we are really doing is compact-
ifying on a ZZ2 orbifold rather than on a circle. The fact that we are compactifying
on an orbifold is what allows us to demand speci�c symmetry properties under the

orbifold relation (2.8). Such orbifold choices are completely natural from the point
of view of string theory, and are therefore completely consistent with an ultimate

embedding of our scenario into string theory.y

Let us now consider our second question: in the scenarios with � < 3, how can
we ensure that 3 � � generations of MSSM fermions lack Kaluza-Klein excitations

altogether? Once again, it is the fact that we are compactifying on an orbifold
which provides the explanation. For such an orbifold compacti�cation, we see that

there are two special points, y(A) = 0 and y(B) = �R, which are invariant under

the orbifold relation (2.8) in conjunction with the circle relation (2.1). Such special
points are called �xed points of the orbifold. The existence of such �xed points implies

that rather than having a mode expansion of the form (2.2), a perfectly consistent

alternative mode-expansion would be

�(x) = �(A)(x) �(y) + �(B)(x) �(y � �R) : (2.10)

yIn this regard, it is also important to note that in this paper we are considering only the

Kaluza-Klein momentum states for which mn � n=R. These are the states which are appropriate

for a �eld-theoretic treatment of extra spacetime dimensions. In string theory, however, there are

also Kaluza-Klein winding-mode states for which mw � wM2
stringR, where w is the Kaluza-Klein

winding number and Mstring is the string scale. This will cause no inconsistency for us because we

will ultimately take R�1 �Mstring in our scenario. Thus, winding-mode states will play no role in

the �eld-theoretic limit.
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Generalizations to higher spacetime dimensions are obvious. Note that such mode-

expansions also respect the symmetries of the orbifold. However, such mode-

expansions do not give rise to in�nite Kaluza-Klein towers because such states exist

only at the �xed points of the orbifold. Thus, it is possible to ensure that a given

MSSM fermion will have no Kaluza-Klein excitations by requiring that it be situated

only at the �xed points of the orbifold. Once again, this is completely natural from

the point of view of string theory. In string theory, the act of \twisting" by the

orbifold element (2.8) naturally gives rise to so-called \twisted string sectors", and

the physical states that arise in such twisted sectors will precisely be of the \�xed

point" variety. Note that it will not matter whether these fermions are located at

y = 0 or y = �R.

Strictly speaking, we remark that this orbifold \�xed point" mechanism is valid

only for closed string theories (such as the heterotic string). For open string theories,

by contrast, an analogous mechanism will involve D-branes and will be discussed in

Sect. 7.

Thus, putting the pieces together, we see that our higher-dimensional MSSM must

be described in terms of a spacetime consisting of four 
at dimensions along with a
certain number of extra dimensions compacti�ed on orbifolds of radius R. At the
massless (zero-mode) level, our particle content will consist of the full MSSM. At

the higher Kaluza-Klein levels, however, we will have in�nite towers of Kaluza-Klein
states associated with the Higgs �eld, the gauge-boson states, and � generations of
the chiral MSSM fermions, where � = 0; 1; 2; 3. The remaining 3 � � generations of

chiral fermions will not have Kaluza-Klein states, and will instead be restricted to
the �xed points of the orbifold.

Let us now consider how this system behaves at di�erent energy scales. At energy
scales much smaller than �0 � R�1, the energy of the system is less than the mass
of the lowest Kaluza-Klein excitations, and the existence of the Kaluza-Klein states

(and indeed that of the extra dimensions) can be ignored. Thus, in this limit, our
theory reduces to the usual four-dimensional MSSM. For �� �0, by contrast, exci-

tations of many Kaluza-Klein modes become possible, and the contributions of these

Kaluza-Klein states must be included in all physical calculations. For example, these
contributions must be included in the running of gauge couplings, and they tend to

accelerate this running, ultimately changing the scale-dependence of the gauge cou-

plings from logarithmic to power-law as a function of �. This re
ects the fact that

beyond the scale R�1, a certain subset of the MSSM is essentially higher-dimensional,

and the e�ective radius R of these extra dimensions appears to be in�nite relative to

the energy scale �. Indeed, in this limit, the new spacetime dimensions that appear

are e�ectively 
at. Thus, we see that the e�ect of the extra Kaluza-Klein excita-

tions is essentially to make the spacetime appear to be D-dimensional rather than

four-dimensional for the appropriate subset of the MSSM.

At certain points in this paper, we shall need to make recourse to a slightly

modi�ed description of the extra dimensions. Strictly speaking, we know that our

8



theory contains in�nite towers of Kaluza-Klein states. However, it is clear that only

the lowest-lying Kaluza-Klein states can possibly play an important role in the physics

because the contributions of the very heavy Kaluza-Klein states are suppressed by

their large masses. Thus, in some cases it will prove useful to retain only a �nite

number of low-lying Kaluza-Klein states in the theory. The point at which the

Kaluza-Klein towers are truncated will ultimately depend on the energy scale at

which we wish our theory to apply, but for our purposes it will always be possible to

choose such a �xed truncation point. We shall refer to this as the \truncated" Kaluza-

Klein description of the extra spacetime dimensions. As we shall see in Sect. 3, this

truncated description will prove very useful.

The appearance of extra spacetime dimensions has an important e�ect on the

gauge couplings of the theory. In four spacetime dimensions, the gauge couplings gi
are quantities of zero mass dimension (i.e., pure numbers). In D spacetime dimen-

sions, however, the gauge couplings ~gi accrue a classical mass dimension

[~gi] = 2� D

2
=) [~��1

i
] = D � 4 = � (2.11)

where � � D�4. It is therefore important to understand the connection between the
higher- and lower-dimensional couplings. However, since our extra spacetime dimen-
sions have a �xed radius R, we can follow the standard compacti�cation procedure

to �nd that the four- and D-dimensional gauge couplings are related to each other
via

�i = R�� ~�i : (2.12)

2.2 Renormalizability and the interpretation of cuto�s

Finally, we conclude this section with a few important comments regarding the
renormalizability of these higher-dimensional theories.

As is well-known, higher-dimensional �eld theories are non-renormalizable be-

cause of their enhanced divergence structure. This non-renormalizability stems from
the presence of in�nite towers of non-chiral Kaluza-Klein states which circulate in

the loops of all quantum-mechanical processes. Even if we choose to ignore these

Kaluza-Klein states by treating the non-chiral sector of the MSSM as being in D 
at

spacetime dimensions, the resulting description is still non-renormalizable because of

the need to integrate over D dimensions' worth of uncompacti�ed loop momenta in

such sectors.
Given the non-renormalizable nature of such higher-dimensional �eld theories, it

therefore makes no sense to talk of a \running" of gauge couplings as a function of a


oating energy scale �. Instead, for a non-renormalizable theory, we must introduce

an explicit cuto� parameter �. Consequently, strictly speaking, the values of phys-

ical parameters such as gauge couplings do not \run" | they instead receive �nite

quantum corrections whose magnitudes depend explicitly on the value of this cuto�
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parameter. Therefore, in the language appropriate to a non-renormalizable �eld the-

ory, we do not seek to calculate the \running" of the gauge or Yukawa couplings; we

instead seek to calculate the one-loop-corrected values of the gauge couplings �i(�)

as functions of the value of this cuto� parameter �.

In many cases, this mathematical dependence on the cuto� is identical to the

scale-dependence that we would have na��vely calculated if the theory had been renor-

malizable. Therefore, we will occasionally continue to use words such as \running",

even in our non-renormalizable context, to describe the dependence on the cuto�.

There is, however, one profound distinction that arises due to the fact that our

theory is non-renormalizable. Since our theory is non-renormalizable, it can only be

viewed as an e�ective theory, valid up to some even higher mass scale M . Thus,

throughout this paper, our higher-dimensional theory will be interpreted in precisely

this way, as an e�ective theory requiring the emergence of an even more fundamental

theory (such as a string theory) at an even higher energy scale. Indeed, given our

results, we shall see that this interpretation will be particularly natural.

In itself, this is not a problem. However, this then broaches the question: just

how can we interpret the cuto� parameter � which will appear throughout our cal-
culations? It is important to resolve this issue because such a cuto� � is not a
physical parameter with intrinsic meaning. Indeed, such a cuto� ultimately depends

on the form of the regulator in which it is presumed to appear and thereby on the
normalization that is used for de�ning � within this regulator.

It might seem natural, of course, to associate the cuto� parameter � with the

physical mass scaleM at which we presume new physics to appear beyond our higher-
dimensional non-renormalizable theory. This would seem to make sense because,

as we stated above, we must ultimately assume that our higher-dimensional non-
renormalizable theory is only an e�ective description of physics for energy scales
below some new fundamental mass scale M . In general, such an association works

well. However, this is not always the case. For example, it has been pointed out [2]
that in certain situations one may obtain misleading results, essentially due to poor

choices of cuto� and regulator variables. In such a case, the value of the cuto� �

gives no information about the underlying mass scale M . Moreover, it is not even
straightforward to recognize the situations in which such misleading results will arise.

Fortunately, in our case we will be able to completely sidestep all of these issues

by making a crucial observation. As we have stated, the lack of renormalizability can

be attributed to the fact that our towers of Kaluza-Klein states are in�nite. However,

for calculational purposes it is often unnecessary to include all of the Kaluza-Klein

states | indeed, one may often truncate the tower at a suitable energy level without

seriously altering the results of a given calculation. However, because this tower of

states is truncated, this description of the physics has the potential to give rise to

a completely renormalizable �eld theory . This issue will be discussed in more detail

in Appendix B. In such cases, we then have a remarkable situation: Although our

full underlying theory is non-renormalizable, there will exist a fully renormalizable

10



�eld theory which gives essentially the same results for certain calculations. This

in turn implies that any ambiguities or uncertainties that might arise in relating �

to M in the full theory can be completely resolved by making recourse to the fully

renormalizable approximation. Therefore, by making recourse to our renormalizable

approximate description of the physics, we shall be able to formulate a clear relation

between the cuto� parameter � and the corresponding physical mass scale M . This

will thereby enable us to interpret our cuto� �, and likewise determine our new

fundamental mass scale M , without ambiguity.

3 Extra dimensions and gauge coupling uni�cation

Let us now begin by considering how extra spacetime dimensions a�ect the Stan-

dard Model gauge couplings and their uni�cation.

In ordinary four-dimensional �eld theory, gauge couplings gi are dimensionless

quantities and their evolution as a function of the mass scale � is given by the usual

one-loop renormalization group equation (RGE)

d

d ln�
��1
i
(�) = � bi

2�
(3.1)

for which the solution is given by

��1
i
(�) = ��1

i
(MZ) �

bi

2�
ln

�

MZ

: (3.2)

This is the usual logarithmic running of the gauge couplings. Here �i � g2
i
=4�, the

bi are the MSSM one-loop beta-function coe�cients

(bY ; b2; b3) = (11; 1;�3) ; (3.3)

and we have taken the Z-massMZ � 91:17 GeV as an arbitrary low-energy reference

scale. At this scale (and within the MS renormalization group scheme), the gauge

couplings are given by

��1
Y
(MZ)jMS � 98:29� 0:13

��12 (MZ)jMS � 29:61� 0:13

��13 (MZ)jMS � 8:5� 0:5 (3.4)

and we shall henceforth de�ne �1 � (5=3)�Y and b1 � (3=5)bY . As is well-known, an

extrapolation of these low-energy couplings according to (3.2) leads to the celebrated

uni�cation relation

�1(MGUT) = �2(MGUT) = �3(MGUT) �
1

24
(3.5)
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at the uni�cation scale

MGUT � 2 � 1016 GeV : (3.6)

Let us now consider how this picture is modi�ed in the presence of extra spacetime

dimensions. Recall that, as discussed in Sect. 2, we shall take our spacetime to consist

of four 
at spacetime dimensions and � additional dimensions of radiusR. This results

in the appearance of in�nite towers of Kaluza-Klein states of masses mn � n�0,

n 2 ZZ
+, where �0 � R�1. Recall that, in general, these Kaluza-Klein states will be

assumed to appear for the gauge bosons, the Higgs �elds, and � generations of chiral

fermions of the MSSM, where we shall consider the cases � = 0; 1; 2; 3. By contrast,

the remaining 3� � generations of MSSM quarks and leptons will be assumed not to

have Kaluza-Klein excitations.

Below �0, we may ignore the e�ects of the Kaluza-Klein states, and simply treat

our higher-dimensional theory as equivalent to the ordinary four-dimensional MSSM.

We shall show in Appendix A that this is an excellent approximation. Thus, for

� � �0, we may assume that the gauge couplings run in the usual fashion described

above.

Above �0, however, we must take into account the full spectrum of Kaluza-
Klein states. Because these towers of Kaluza-Klein states are in�nite, our higher-
dimensional theory is non-renormalizable. Thus, for � � �0, we cannot talk of the

\running" of these gauge couplings. Rather, as we discussed in Sect. 2, the gauge
couplings instead receive �nite corrections which depend on the appropriate cuto�s in

the theory. In the present case, we have both an infrared cuto� �0 (below which the
physics is e�ectively described by the usual four-dimensional MSSM with no Kaluza-
Klein states), and an ultraviolet cuto� � (which marks the scale at which some new

physics beyond our higher-dimensional theory is presumed to emerge).
The corresponding corrections to these gauge couplings can then be calculated in

the usual manner by evaluating the same one-loop diagrams (particularly the wave-

function vacuum polarization diagram) that renormalize the usual gauge couplings in

four dimensions. Denoting the value of this diagram as ���(k) where k is the overall

momentum 
owing through this diagram, and using gauge invariance to write

���(k) = (k�k� � g��k
2) �(k2) ; (3.7)

we then �nd the approximate one-loop result

�(0) =
g2
i

8�2

"
(bi � ~bi) ln

�

�0
+ ~bi �

��
0

X�

�

�
�� � ��0

�#
: (3.8)

In this expression, gi is the original, uncorrected gauge coupling, � � D� 4, and the
numerical coe�cient X� will be discussed below. The beta-function coe�cients bi are

those of the usual MSSM given in (3.3), which correspond to the zero-mode states,
while the new beta-function coe�cients ~bi are given by

(~b1;~b2;~b3) = (3=5;�3;�6) + � (4; 4; 4) : (3.9)
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These beta-function coe�cients correspond to the contributions of the appropriate

Kaluza-Klein states at each massive Kaluza-Klein excitation level. As discussed in

Sect. 2, at each mass level these Kaluza-Klein states consist of two Higgs chiral N = 1

supermultiplets as well as the massive gauge-boson multiplets, each of which consists

of one vector and chiral N = 1 supermultiplet. They also include � generations of

chiral MSSM fermions, along with their appropriate mirrors.

It is easy to interpret the form of the one-loop correction (3.8). The second term

re
ects the contributions from the in�nite towers of Kaluza-Klein states correspond-

ing to the MSSM states that feel the extra dimensions, with beta-function coe�cients
~bi. If the states in the excited levels of these Kaluza-Klein towers had matched the

zero-mode states in our theory, this term (which e�ectively combines both the zero-

modes and all the excited modes) would have been su�cient. However, as we have

seen, the states at the zero-mode level of our theory actually di�er from those at

the excited levels. The �rst term in (3.8) therefore compensates for this di�erence

between the zero-mode states and the excited states. Moreover, as we discussed

above, at energy scales above �0 we may treat the sector of the MSSM which has

Kaluza-Klein excitations as being e�ectively in D 
at spacetime dimensions. The
powers of � and �0 that appear in the second term of (3.8) thus result from the
higher-dimensional loop-momentum integration. Equivalently, these powers may be

viewed as the \classical scaling" behavior that we expect the gauge couplings to ex-
perience due to their enhanced classical mass dimensions in (2.11). The factor ��1

in (3.8) ensures that the formal � ! 0 limit of the second term reproduces the ex-

pected logarithmic behavior, and the overall factor of ���0 is required on dimensional
grounds.

In Appendix A, we shall provide a rigorous expression for �(0) which does not
make the approximation of using D 
at dimensions for the appropriate subsector of
the MSSM, but which instead incorporates the e�ects of in�nite towers of Kaluza-

Klein states at all energy scales. This will enable us to explicitly demonstrate that
our approximation (3.8) for �(0) is an excellent one.

Perhaps the most subtle feature of (3.8) is the coe�cient X� that appears in the
second term. Note that this coe�cient can be interpreted as providing a normaliza-

tion for the cuto�s � and �0 that appear in the D-dimensional integrations. Thus,

it becomes immediately apparent that within the context of our non-renormalizable

�eld theory, the coe�cient X� is essentially cuto�- and regulator-dependent. Even
if we assume that our cuto� � is to be associated with an underlying physical mass

scale M , as discussed in Sect. 2, the relation between � and M would still involve an
overall unknown proportionality constant which would pollute any value of X� that

we might otherwise calculate via phase-space arguments. Thus, in some sense, all

of the uncertainties inherent in working with a non-renormalizable �eld theory can
ultimately be embodied in our inability to determine a precise value for X�.

Fortunately, as we discussed in Sect. 2, we can circumvent this problem completely
by making recourse to our \equivalent" truncated Kaluza-Klein theory. In this way
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we are then able to make a direct comparison between the two theories in order to

precisely calculate X� in (3.8). As we shall show in Appendix B, this leads to the

result

X� =
��=2

�(1 + �=2)
=

2��=2

��(�=2)
(3.10)

where � is the Euler gamma function satisfying �(n) = (n � 1)!, �(1) = 1, and

�(1=2) =
p
�. Thus, X0 = 1 (as expected), while X1 = 2, X2 = �, X3 = 4�=3, and

so forth. In fact, X� is nothing but the volume V� of a �-dimensional unit sphere!

Thus, in the remainder of this paper, we shall use this precise value for X�. This will

enable us to interpret � literally as the physical mass scale M at which new physics

appears beyond our e�ective D-dimensional �eld theory.

Our next step is to resum these vacuum polarization diagrams in order to obtain

the full one-loop-corrected gauge couplings gi(�). This resummation proceeds as in

the usual case, yielding

gi(�) =

 
1

1� �(0)

!1=2

gi ; (3.11)

or equivalently

��1
i
(�) = ��1

i
� bi � ~bi

2�
ln

�

�0
�

~biX�

2��

2
4 �

�0

!�

� 1

3
5 : (3.12)

The second and third terms on the right side are the �nite one-loop corrections which

depend explicitly on the cuto� �.
Finally, we impose our matching condition that �i, the uncorrected value of

the e�ective four-dimensional coupling, must agree with the value of the true four-
dimensional coupling �i(�0) at the scale �0. Substituting for �

�1
i (�0) from (3.2) then

yields our �nal result, valid for all � � �0:

��1
i
(�) = ��1

i
(MZ) �

bi

2�
ln

�

MZ

+
~bi

2�
ln

�

�0
�

~biX�

2��

2
4 �

�0

!�

� 1

3
5 : (3.13)

Although this result bears a resemblance to a renormalization group equation, we

stress that its physical interpretation is entirely di�erent. Rather than describe the
higher-dimensional \running" of a higher-dimensional gauge coupling, this equation

instead expresses the dependence that such a coupling exhibits on the value of the
cuto� �. Thus, given any values for �0, �, and � (which are the parameters that

describe the underlying non-renormalizable theory), and given any value for � (a

parameter which is external to the theory and which is interpreted as the energy
scale at which a new theory is presumed to appear), ��1i (�) is the value of the

one-loop corrected e�ective four-dimensional coupling.
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It is clear from (3.13) that the presence of the extra dimensions clearly has a

profound e�ect on the values of these gauge couplings. Remarkably, however, it

turns out that there always exists a value of � for which the gauge couplings unify!

Indeed, this property is robust, occurring independently of the number � of extra

dimensions, independently of the scale �0 at which they appear, and independently

of the number � of chiral MSSM generations that feel these extra dimensions!

This uni�cation is illustrated in Figs. 1, 2, 3, and 4. For � < �0, we are plotting

the usual running four-dimensional gauge couplings. For � > �0, however, we are

treating � as the cuto� � and plotting the values of the gauge couplings as functions of

this cuto�. It is our matching condition at �0 which guarantees that this procedure

results in continuous curves of dimensionless numbers. We see that below �0, the

gauge couplings run in the usual logarithmic fashion. Above �0, by contrast, the

appearance of the extra spacetime dimensions causes this \running" to accelerate,

quickly leading to a uni�cation.

It is natural to wonder if this uni�cation might simply be an artifact of our ap-

proximation of treating the physics as being in four 
at dimensions below the scale

�0 and in D 
at dimensions above this scale, all while ignoring Kaluza-Klein modes.
However, it is possible to do a rigorous calculation which assumes only four 
at di-
mensions at all energy scales and which explicitly allows the complete in�nite towers

of Kaluza-Klein states to circulate in the one-loop wavefunction renormalization di-
agram. The details of this calculation are given in Appendix A, and the results are
virtually identical to those in Figs. 1 and 2. Thus, we see that our conclusion is

unaltered: gauge coupling uni�cation continues to occur.
It is possible to understand physically why this gauge coupling uni�cation occurs.

Let us �rst imagine that it had been the case that ~bi = bi for all i. This would have
occurred, for example, if all of the MSSM states had had Kaluza-Klein excitations
that exactly matched the zero-modes, with masses mn given in (2.3). If this had been

the case, then each energy level fnig would have e�ectively provided a heavier dupli-
cate copy of the entire chiral MSSM particle content. However, within the MSSM,

gauge coupling uni�cation is independent of the number of generations because each

generation provides extra matter in complete SU(5) multiplets. Therefore, we would
have found that gauge coupling uni�cation is preserved regardless of the number of

extra dimensions or the scale at which they appear.

Of course, in the present case we do not have Kaluza-Klein excitations for all of

the MSSM states, and consequently ~bi 6= bi. However, in order to preserve uni�cation,

we need not demand that ~bi = bi: we simply need to demand that the ratios

Bij �
~bi � ~bj

bi � bj
(3.14)

be independent of i and j. In other words, we want

B12

B13

=
B13

B23

= 1 : (3.15)
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Figure 1: Uni�cation of gauge couplings in the presence of extra spacetime dimensions.

We consider four representative cases: �0 = 105 GeV (top left), �0 = 108 GeV (top right),

�0 = 1011 GeV (bottom left), and �0 = 1015 GeV (bottom right). In each case we have

taken � = 1 and � = 0.
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Figure 2: Uni�cation of gauge couplings in the presence of extra spacetime dimensions.

Here we �x �0 = 1012 GeV, � = 1, and we vary �. For this value of �0, we see that the

uni�cation remains weakly coupled for all �.

It is easy to check that although these relations are not satis�ed exactly in our case,
they are nevertheless approximately satis�ed:

B12

B13

=
72

77
� 0:94 ;

B13

B23

=
11

12
� 0:92 : (3.16)

This remains true independently of the value of �, which shifts all ~bi by a �xed

amount.� Thus, we expect that gauge coupling uni�cation will continue to hold to

a good degree of accuracy. In fact, it is apparent from Fig. 1 that the uni�cation

is quite precise. Thus, given the large experimental uncertainties in the measured

value of �3(MZ) quoted in (3.4), we see that the uni�cation is essentially preservedy

�We thank C. Wagner for questions and comments that prompted us to investigate the general

� scenario.
yIn fact, given the well-known (slight) discrepancy between the measured low-energy value of

�3(MZ) and the value required for uni�cation within the MSSM, we might even be a bit bolder and

hypothesize that it is the MSSM beta-function coe�cients which lead to a failure of uni�cation, and

that our scenario actually �xes uni�cation! Similarly, light SUSY threshold e�ects might also be

accommodated more naturally in our scenario than in the usual MSSM.
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Figure 3: The ratio of the uni�cation scaleM 0
GUT to the scale �0 at which � extra spacetime

dimensions appear, as a function of �0. This ratio describes the size of the energy range

over which our e�ective higher-dimensional �eld theory is meant to apply. This curve is

independent of the value of �. The limit of the usual four-dimensional MSSM is indicated

with a dot.

for all values of �0, �, and �. It is also easy to see why the uni�cation scale is
independent of �: increasing the value of � simply amounts to adding extra complete

SU(5) multiplets to the spectrum at each excited Kaluza-Klein mass level. However,
adding extra complete SU(5) multiplets always preserves the uni�cation scale to one-

loop order, and only shifts the uni�ed coupling towards stronger values. This then

explains the behavior shown in Fig. 2.

We shall refer to the value of � or � for which this gauge coupling uni�cation

occurs as the \new uni�cation scale" M 0
GUT. Indeed, it is natural to interpret such a

cuto� � for which the gauge couplings unify as the energy scale at which we would

expect a more fundamental grand-uni�ed theory to appear. In any case, as we have

mentioned, we are always free to pass to a description in terms of our equivalent

renormalizable truncated Kaluza-Klein theory. In such a case, these �gures can

indeed be interpreted as describing the running of gauge couplings in the usual sense,

and M 0
GUT can indeed be interpreted as the scale of uni�cation. Thus, we see that

our scenario naturally predicts the emergence of a D-dimensional GUT at the scale
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Figure 4: The uni�ed coupling (�0GUT)
�1 as a function of the uni�cation scale M 0

GUT, for

� = 0; 1; 2; 3. This curve is independent of the number of extra spacetime dimensions, and

the limit of the usual four-dimensional MSSM is indicated with a dot. Note that the uni�ed

coupling is independent of the uni�cation scale for � = 1, while it is weaker than the MSSM

value for � = 0 and stronger for � > 1. It is also clear from this �gure that there are natural

lower bounds on the possible radii of extra dimensions in the � = 2; 3 cases if we wish the

couplings to unify before diverging. These bounds correspond to M 0
GUT

>
�
100 TeV and

M 0
GUT

>
�
3� 1010 GeV for � = 2; 3 respectively.

M 0
GUT.

Despite the interpretation of M 0
GUT as a potential grand-uni�cation scale, it is

evident from Fig. 1 that this new uni�cation scale M 0
GUT is generally not the usual

uni�cation scaleMGUT � 2�1016 GeV that appears in the ordinary MSSM. Instead,

it is a good deal lower. In order to solve the equations (3.13) for the uni�cation
parameters, let us �rst de�ne

B � 1

3
(B12 +B23 +B13) =

233

336
� 0:69 (3.17)

where the Bij are de�ned in (3.14). We will then make the approximation that Bij =

B for all (i; j), as required by our assumption of uni�cation. With this assumption,

it is then possible to solve (3.13) at the uni�cation point. For any value of �0 and �,
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we �nd that M 0
GUT is approximately given by

M 0
GUT � �0 f

1=� (3.18)

where f is an exponential enhancement factor, de�ned as

f � 1 +
�

X�B
ln
MGUT

�0
� 1 : (3.19)

As � ! 0 or as �0 ! MGUT, we see that f ! 1 and M 0
GUT ! MGUT as well. This

is the MSSM limit. In all other cases, however, we see that our new uni�cation scale

M 0
GUT can be reduced relative to the usual MGUT, and ultimately depends on the

chosen values of � and �0. This behavior is shown in Fig. 3.

The new uni�ed coupling �0GUT also generally di�ers from its MSSM value �GUT �
1=24. We �nd the approximate analytical result

(�0GUT)
�1 � ��1GUT +

2

�B
(1� �) ln

MGUT

M 0
GUT

: (3.20)

This behavior is shown in Fig. 4. Thus, we see that in the � = 0 \minimal" scenario,
�0GUT is always less than �GUT | i.e., our theory is always more weakly coupled
than the usual MSSM. Likewise, for � = 1, the theory is always exactly as weakly

coupled as the usual MSSM, and the uni�ed coupling exhibits an intriguing invariance
under changes in the uni�cation scale (a sort of \conformal" symmetry). For � = 2,

the theory is more strongly coupled than the usual MSSM, and in fact the uni�ed
coupling becomes in�nite near M 0

GUT � 100 TeV. Thus, for � = 2, we see that there
is a natural lower bound on the radii of the extra dimensions if we wish to have the

gauge couplings unify before they diverge. Similarly, for � = 3, the theory hits an
in�nite uni�ed coupling at M 0

GUT � 3� 1010 GeV, which again determines a natural
lower bound on the radii of extra dimensions in this scenario. Note that this behavior

for �0GUT as a function of M 0
GUT is independent of �.

One might worry that our calculation has only been performed to one-loop order,

and that higher-loop corrections might destabilize the uni�cation of gauge couplings

that we have achieved. Indeed, this worry is particularly signi�cant in the case of our
higher-dimensional theory because the gauge couplings have power-law rather than

logarithmic behavior. Thus, two- and higher-loop e�ects might be expected to be
particularly large. Moreover, there are also various subtleties involved in assessing

the perturbativity of a higher-dimensional theory: although the uni�ed gauge cou-

pling is small in our minimal � = 0; 1 scenarios, the actual expansion parameter of
the higher-dimensional perturbation series is typically the gauge coupling multiplied

by the e�ective number of Kaluza-Klein states in the theory. Thus, once again, one
might suspect that higher-loop corrections to the uni�cation might be sizable. How-

ever, it is easy to see that all higher-order corrections to the gauge couplings are at

most logarithmic. This is because the excited Kaluza-Klein states fall into N = 2
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supermultiplets, thereby guaranteeing that the corresponding power-law corrections

to the gauge couplings must vanish identically beyond one-loop order.z Indeed, the

only corrections that might exist beyond one-loop order are the logarithmic correc-

tions that come from the zero-modes. Thus, all higher-loop corrections to the gauge

couplings will be small (as they are in the usual MSSM), and consequently our gauge

coupling uni�cation can be expected to survive beyond one-loop order.

Thus, to summarize this section, we see that the appearance of extra spacetime

dimensions o�ers the interesting possibility of having gauge coupling uni�cation at

scales that are reduced, in some cases substantially, relative to the usual GUT scale.

In particular, we see that it is no longer necessary for gauge coupling uni�cation to

occur at the usual, comfortably remote energy scale MGUT. Moreover, we see that

the uni�ed gauge coupling in our \minimal" � = 0 scenario is always less than its

value within the usual MSSM. Thus, for all values of �0 and �, the \minimal" theory

is even more weakly coupled than the MSSM. Similarly, the � = 1 scenario is always

exactly as weakly coupled as the MSSM, and even the � = 2 and � = 3 scenarios can

lead to weak uni�ed couplings for suitable values of �0.

Such scenarios can be expected to have a variety of striking implications, ranging
from new mechanisms for suppressing proton decay to possible explanations for the
fermion mass hierarchy. We shall therefore now turn our attention to these important

issues.

4 Extra dimensions and proton decay

Perhaps the most immediate question that arises in our scenario is the question

of proton decay. In this section we shall show that for the \minimal" scenario with
� = 0, there is a higher-dimensional mechanism involving Kaluza-Klein selection
rules which enables us to cancel the usual proton-decay diagrams to all orders in

perturbation theory. We shall also show that the non-minimal scenarios with higher
values of � also lead to higher-dimensional suppression mechanisms for proton decay.

In our scenario, MGUT is lowered by an amount which depends on �0 (the scale of

new dimensions) and � (the number of extra dimensions). However, in our minimal

� = 0 scenario, the uni�ed gauge coupling is weaker. Thus, a priori , relative to the

usual supersymmetric GUT amplitude, the leading amplitude for proton decay in our
scenario is larger by a factor of 

�0GUT
�GUT

!  
MGUT

M 0
GUT

!2

� f�2=�
�
1 +

X�

12��
(f � 1)

��1
exp

"
�

X�B
(f � 1)

#
(4.1)

zFor this purpose, it is necessary to verify that the orbifolding procedure discussed in Sect. 2

actually preserves the N = 2 supersymmetry of the excited Kaluza-Klein states. This in turn

depends on certain model-dependent details concerning the manner in which the MSSM is embedded

into higher dimensions. This issue will be discussed further in Sect. 7. However, as we shall see, it is

not di�cult to ensure N = 2 supersymmetry at the massive Kaluza-Klein levels. We shall therefore

assume unbroken N = 2 supersymmetry at the massive levels, both here and in subsequent sections.
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where M 0
GUT, f , X�, and B are de�ned in (3.18), (3.19), (3.10), and (3.14) respec-

tively. Using the experimental bounds on the proton lifetime, we can then derive

bounds on �0 and �. We obtain �0 >� 1� 1014 GeV for � = 1, �0 >� 3� 1014 GeV for

� = 2, and �0 >� 8� 1014 GeV for � = 3. Thus, as long as �0 is su�ciently large, the

usual proton decay bounds can be satis�ed in each case.

The above calculation exactly mimics the usual calculation of proton decay, and

solves the proton decay problem by pushing the scale of grand uni�cation back up to

the usual neighborhood near 1016 GeV. However, this would then ruin much of the

attractiveness of our scenario. Is there a better way?

One observation is that above the scale �0, the physics (and in particular our

presumed grand-uni�ed theory) is higher-dimensional. Thus, it may be possible to

take a course that cannot be followed within the usual MSSM, namely to �nd an

intrinsically higher-dimensional solution to the proton-decay problem.

Let us now see how such a higher-dimensional mechanism might work. As we have

already discussed in Sect. 2, we can embed the MSSM into higher dimensions only

by compactifying our higher-dimensional theory on an orbifold . In the case of a ZZ2

orbifold, this requires that we decompose all of our higher-dimensional quantum �elds
�(x) into even and odd functions ��(x) of these extra coordinates, as in (2.7). Given
that such an orbifold is already necessary on the grounds of the MSSM alone, let us

now consider how this same orbifold might be exploited in the case of proton decay.
Let us begin by separating all of the quantum �elds of our grand-uni�ed theory into
two groups depending on whether they are present in the MSSM alone, or whether

they appear only in the full GUT theory. In a purely schematic notation, we shall
denote by �(x) any �eld which is present in the MSSM alone, and use 	(x) to denote

any �eld which only appears at the level of the GUT. Thus, for example, the quarks,
leptons, gluons, W�, Z, and Higgs doublets are all �elds of the �(x) variety, while
the 	(x) �elds include X-bosons and Higgs triplets. It is the appearance of the 	(x)

�elds that leads to proton decay.
We have already discussed in Sect. 2 what the symmetry properties of the � �elds

must be with respect to the compacti�ed coordinates yi, i = 1; :::; �. The fact that we

do not expect to see the 	 �elds at low energies (for which we demand only the MSSM
gauge group and spectrum) suggests that we take the 	 �elds to be odd functions

of the yi, so that we retain only the �elds 	� as in (2.7). This choice preserves the

gauge symmetries of the MSSM while simultaneously re
ecting the breaking of the

GUT symmetry below M 0
GUT, and guarantees that the 	 �elds have no zero-modes

which could be observable at low energies. Thus, with this choice, all of the �elds

that mediate proton decay will be odd functions of these extra spacetime coordinates.

This fact has dramatic consequences for proton decay. Let us consider some

typical diagrams that can mediate proton decay, as illustrated in Fig. 5. We have

already seen in Sect. 2 that in the \minimal" � = 0 scenario, the MSSM fermions

are restricted to the �xed points of the orbifold. However, if the 	� �elds are odd

functions of the compacti�ed coordinates, then their wavefunctions vanish at the
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Figure 5: Typical diagrams that can mediate proton decay. Here the external lines cor-

respond to the MSSM (s)quarks and leptons, while the internal 	 �elds correspond to

X-bosons (as in the diagram on the left) and Higgsino �elds (as in the diagram on the

right). We choose the wavefunctions of the 	 �elds to be odd (�) functions of the extra

spacetime coordinates. With this choice, all vertices between the 	 �elds and the chi-

ral MSSM fermions vanish identically in the \minimal" � = 0 scenario, and all possible

proton-decay diagrams vanish to all orders in perturbation theory.

orbifold �xed points. Indeed, this property holds for all of the Kaluza-Klein modes of
the 	� �elds. Thus, to all orders in perturbation theory, there is simply no coupling
of the 	� �elds to the low-energy quarks and leptons of the MSSM. In other words, all

such perturbative proton-decay diagrams, such as those in Fig. 5, vanish identically.
Note that this result holds not only to all orders of perturbation theory, but also

independently of the number of extra dimensions or the energy scale at which they
appear.

Implicit in this proposal is also a solution to the famous doublet-triplet splitting

problem. Rather than make the Higgs triplets much heavier than the Higgs doublets,
which is the situation required in the usual GUT scenarios, we instead can allow

the Higgs triplets to remain relatively light because they simply do not couple to

the chiral MSSM fermions. As with the X-bosons, the Higgs triplets do not couple
because their wavefunctions vanish at those locations in the �fth dimension at which

the chiral MSSM fermions are located. Thus, no large mass \splitting" is required at

all.
It is tempting to think of this suppression mechanism as simply Kaluza-Klein

momentum conservation. After all, such an argument would state that the 	� �elds
have no zero-modes, whereas the MSSM fermions are essentially zero-mode states.

Thus, conservation of the Kaluza-Klein momentum at the vertex would seem to

imply that any such tree-level vertex must vanish. However, such an argument is
ultimately incorrect: we cannot impose Kaluza-Kleinmomentum conservation at such

vertices because we have explicitly broken translational invariance with respect to
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the compacti�ed coordinates yi when we introduced our orbifold relations yi ! �yi.
Indeed, as we have seen, this action results in �xed points yi = 0 and yi = �R which

are not translationally invariant. Moreover, even if we could impose Kaluza-Klein

momentum conservation, such a simple mechanism would at best suppress only tree-

level proton-decay diagrams; the simplest one-loop box diagram would easily evade

such a constraint. Our wavefunction mechanism, by contrast, is more robust, for it

completely decouples the low-energy quarks from all of the proton-decay mediating

e�ects of the full GUT theory to all orders in perturbation theory. Indeed, as we

shall see in Sect. 7, this mechanism continues to work even in the more general cases

of open-string theories.

Thus, we conclude that by making a judicious choice for the modings of the GUT

�elds with respect to the ZZ2 orbifold that produces our N = 1 MSSM states in the

� = 0 minimal scenario, it is possible to exploit the higher-dimensional nature of the

grand-uni�ed theory in such a way as to completely eliminate proton decay to all

orders in perturbation theory. This is clearly a symmetry argument which relies on

the presence of extra compacti�ed dimensions, and thus has no analogue in ordinary

four-dimensional grand uni�cation.
Finally, let us brie
y consider the cases with � � 1. In such cases, not all of

the chiral MSSM generations are restricted to orbifold �xed points (or the \three-

branes" of an open string theory), and consequently there can be couplings between
these fermions and the 	� �elds that mediate proton decay. However, for � < 3, there
will typically be new, large, higher-dimensional suppression factors associated with

proton-decay amplitudes. For example, let us consider the case � = 1, and assume
that only the third generation has Kaluza-Klein excitations. In this case, the 	�

�elds can couple only to the fermions of the third generation, and therefore proton
decay can proceed only through a higher-order diagram which will be suppressed not
only by extra loop factors but also by products of small CKM matrix elements. Thus,

the � = 1 scenario probably does not have a problem with proton decay for �0 >� 1012

GeV. Similar arguments (leading to a more stringent bound) would also apply to

the � = 2 case. In any case, we point out that within the context of string theory,
it is also possible to circumvent problems of proton decay through other model-
dependent mechanisms, such as the selection rules corresponding to hidden-sector

discrete symmetries.

5 Extra dimensions and the fermion mass hierarchy

We now address the question of understanding the fermion mass hierarchy within

the context of our extra-dimensional theory. In fact, it is in attempting to explain

the fermion mass hierarchy that our scenario is particularly powerful, for (unlike
the situation with the gauge couplings) we now are faced with attempting to unify

a set of Yukawa couplings whose values at low energies di�er by many orders of

magnitude. Speci�cally, if we let yF (F = u; d; s; c; b; t; e; �; �) denote the di�erent
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Yukawa couplings for the quarks and leptons and de�ne �F � y2
F
=4� in analogy with

the gauge couplings, we are faced with the task of explaining (i.e., approximately

unifying) low-energy values ranging in order of magnitude from ��1t � 1 to ��1
e
�

1012. This is extremely di�cult to reconcile within the context of the usual grand-

uni�cation scenario in which the Yukawa couplings run only logarithmically.

Once again, our fundamental idea is that the presence of extra dimensions causes

the Yukawa couplings to evolve exponentially rather than linearly as a function of

log�. Under the proper conditions, this exponential evolution might therefore be

capable of producing a relatively large fermion mass hierarchy over a relatively small

energy scale interval.

We begin by recalling how the nine Yukawa couplings yF (with F =

e; �; �; u; d; s; c; b; t) run within the usual four-dimensional MSSM. These Yukawa cou-

plings are de�ned in relation to the corresponding fermion masses mF via

mF = yF � v �
�
cos � for down-type quarks and leptons

sin � for up-type quarks
(5.1)

where v � 174 GeV and where tan� is the usual ratio of up- and down-type Higgs

VEV's in the MSSM. These couplings then appear in the superpotential, which takes
the generic form

W =
X
F

yF FF Hu;d : (5.2)

If we de�ne �F � y2
F
=4�, then just like the gauge couplings �i in (3.1), these Yukawa

couplings run in the usual MSSM according to a one-loop RGE of the form

d

d ln�
��1
F
(�) = � bF (�)

2�
: (5.3)

Indeed, the only di�erence relative to the gauge couplings is that the one-loop beta-

function \coe�cients" bF (�) are not constants, but instead depend on the scale �
through extra terms that depend on the couplings themselves. For example, within

the usual MSSM, bt(�) is given by:

bt � 6 +
1

�t

�
�b + 3�u + 3�c �

16

3
�3 � 3�2 �

13

15
�1

�
; (5.4)

and each of the other bF (�) has a similar form.

It will be important for us to recall how (5.3) is derived. Since the Yukawa coupling

yF describes the Higgs/fermion/anti-fermion interaction term (5.2), the renormaliza-
tion of �F depends on the wavefunction renormalization factors Zi of each of these

three �elds:

��1
F
(�) = ZHZFZF

��1
F
(�0) : (5.5)

These three wavefunction renormalization factors Zi are calculated by evaluating

diagrams such as those shown in Fig. 6. In general, we obtain a result of the form

Zi = 1 � 
i

2�
ln

�

�0
(5.6)
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t
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Hu,d

Hu,d Hu,d

t,b

t,b

(a)

(c)

(b)

(d)

Figure 6: Typical classes of super�eld wavefunction renormalization diagrams in the MSSM.

Diagrams (a,b) contribute to Zt and Zt, while diagrams (c,d) contribute to ZHu;d
.

where 
i is the anomalous dimension of the �eld i. For example, in the case of the
Higgs and top quarks, we �nd


t = �t + �b �
1

30
�1 �

3

2
�2 �

8

3
�3



t

= 2�t �
8

15
�1 �

8

3
�3


Hu
= 3�t + 3�c + 3�u �

3

10
�1 �

3

2
�2 : (5.7)

Combining these factors within (5.5) and keeping terms at most linear in the loga-
rithms then yields (5.3), with

�F bF � 
F + 

F
+ 
Hi

: (5.8)

Let us now consider how this calculation is modi�ed in the presence of extra
spacetime dimensions. As before, we shall assume that a certain number � of extra

spacetime dimensions appear at an energy scale �0 � R�1, and for simplicity we shall

concentrate on the \minimal" scenario with � = 0. Below the scale �0, the Yukawa
couplings run according to (5.3), as in the usual four-dimensional MSSM. Above the

scale �0, however, the Yukawa couplings instead receive �nite one-loop corrections

whose size is a function of the cuto� �. By comparison with our prior results for the
gauge couplings, it is straightforward to write down the expected general form for

these corrections:
��1
F
(�) = ZHZFZF

��1
F
(�0) (5.9)

where now we expect our wavefunction renormalization factors to have the general
form

Zi = 1 � 
i(�0)� ~
i(�0)

2�
ln

�

�0
� ~
i(�0)

2�

X�

�

2
4
 
�

�0

!�

� 1

3
5 : (5.10)
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In this expression for Zi, the power-law term is expected to arise from the summation

over Kaluza-Klein states in the loops of the diagrams in Fig. 6, re
ecting the higher-

dimensional nature of such contributions. In general, the anomalous dimensions

~
i corresponding to the excited Kaluza-Klein modes can di�er from the anomalous

dimensions 
i corresponding to the zero-mode ground states. This di�erence would

then give rise to the logarithm term in (5.10).

One important di�erence relative to the gauge coupling case concerns the scale-

dependence of these anomalous dimensions 
i (or equivalently the \beta-functions"

bF ). Note that in (5.9) and (5.10), these coe�cients are evaluated at the �xed scale

�0. This is because we are working within the context of a non-renormalizable theory

and calculating corrections to quantities evaluated at the �xed scale �0.

Given these general expressions, the task then remains to calculate the functions ~
i
which parametrize the one-loop contributions from each massive level in the Kaluza-

Klein tower. Let us begin by considering a diagram of the form shown in Fig. 6(a).

Within the loop, we have both a fermion and a Higgs �eld. However, as we discussed

in Sect. 2, the MSSM fermions do not have Kaluza-Klein towers in the minimal

� = 0 scenario, so the only fermion in the loop is the zero-mode MSSM fermion itself.
Furthermore, at each excited level, the Kaluza-Klein tower corresponding to the Higgs
�elds exactly mirrors the MSSM Higgs (zero-mode) ground state. Consequently,

the contribution to ~
F from this diagram is exactly the same as it is in the usual
four-dimensional MSSM. Turning our attention to diagram in Fig. 6(b), we see that
a similar situation exists here too. Only the zero-mode MSSM fermion itself can

propagate in the loop. Likewise, although the Kaluza-Klein towers for the gauge
bosons are N = 2 supersymmetric, only their N = 1 supersymmetric components can

couple to the MSSM fermions. This restriction arises because, as discussed in Sect. 2,
the wavefunctions of the additional � and  �elds which �ll out the N = 2 gauge-
boson Kaluza-Klein tower are odd functions of the compacti�ed coordinates; these

wavefunctions thus vanish at the orbifold �xed points at which the chiral MSSM

fermions are found. Thus, once again, the contribution to the fermion anomalous

dimension from this diagram is exactly the same as it is in the usual four-dimensional
MSSM. We therefore �nd

~
F = 
F ; ~

F

= 

F
: (5.11)

for all fermions F .
Finally, let us consider the anomalous dimensions of the Higgs �elds. These

diagrams are shown in Figs. 6(c,d). In Fig. 6(c), only the chiral MSSM fermions can

propagate in the loop; there are no excited Kaluza-Klein states which can propagate.
Thus, this diagram is immune to the e�ects of the extra dimensions, and makes no

contribution to ~
H . In Fig. 6(d), by contrast, the fullN = 2 set of Kaluza-Klein states
for both the Higgs �elds and the gauge bosons can propagate in the loop. Note that we

must impose Kaluza-Klein momentum conservation at each of these vertices. Because

the appropriate Kaluza-Klein states for this diagram fall into N = 2 supermultiplets,
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there is again no net contribution to ~
H . (This is a consequence of the general fact

that in unbroken N = 2 supersymmetric theories, hypermultiplets do not receive any

wavefunction renormalizations.) Consequently, combining our contributions, we �nd

~
Hi
= 0 : (5.12)

The Higgs wavefunction renormalization is therefore completely immune to the e�ects

of the extra spacetime dimensions.

Given the results (5.11) and (5.12), we can now examine the evolution of the

Yukawa couplings in the presence of extra spacetime dimensions. Below the scale

�0 � R�1, the Yukawa couplings run logarithmically, as in the usual four-dimensional

MSSM. Above this scale, however, the form of the fermion and anti-fermion Z-factors

in (5.10) implies that the Yukawa couplings start evolving with a power-law depen-

dence on the energy scale (cuto�) �. Because the anomalous dimensions ~
i tend to

be dominated by their gauge contributions, we typically �nd ~
i(�0) < 0. Thus the Z-

factors in (5.9) each tend to be positive and grow quickly with �. This in turn drives
the Yukawa couplings dramatically towards extremely weak values. Speci�cally, for

�� �0 and neglecting the logarithmic contributions to ZHi
in (5.9), we �nd

�F (�)

�F (�0)
� 4�2


F
F

 
�

X�

!2  
�

�0

!�2�
: (5.13)

Thus, we see that the e�ect of the extra dimensions is to drive all of the Yukawa
couplings (including the Yukawa coupling of the top quark) towards weak values.

This e�ect might be extremely useful for various phenomenological purposes (e.g.,
avoiding the Landau poles that often arise in the usual MSSM). Unfortunately, how-
ever, it is easy to see that this e�ect cannot be used to explain the fermion mass

hierarchy . According to (5.13), the ratio between any two Yukawa couplings for
di�erent fermions evolves as

�F1(�)

�F2(�)
�

 

F2
F2

F1
F1

!
�F1(�0)

�F2(�0)
(5.14)

for �� �0. Thus, the hierarchy is a�ected only by scale-independent factors of order

one.

In order to do better, let us now consider a slight generalization of the previous

scenario. Let us imagine that in addition to the usual MSSM Yukawa terms, there

also exists a new N = 1 chiral gauge-singlet scalar super�eld S which couples to the

Higgs �elds via a superpotential term of the form

W = �HuHdS : (5.15)

Here � is a coupling which we can make arbitrarily small. For the purposes of this

discussion, we shall consider S to be a light �eld which lacks Kaluza-Klein excitations
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(e.g., this �eld might arise from a string twisted sector and therefore exist only at

orbifold �xed points). We shall also ignore the running of �, and consider this to

be a �xed parameter; this assumption will not a�ect the qualitative features of our

results.

Hu,d

Hu,d

Hu,d S

Figure 7: New super�eld diagram, where S is a light N = 1 scalar singlet super�eld.

This diagram allows the Higgs wavefunction renormalization to feel the extra spacetime

dimensions, which in turn causes the fermion Yukawa couplings to become strong.

Because of the extra dimensions, such a coupling (no matter how weak) has a

profound e�ect. There is a new diagram, as shown in Fig. 7, which must also be
considered. Because the scalar �eld lacks a Kaluza-Klein tower, this component of

the diagram is only N = 1 supersymmetric. Thus, the Higgs hypermultiplet can
now experience wavefunction renormalization. Moreover, thanks to the Kaluza-Klein
tower of Higgs �elds, this diagram leads to non-zero power-law corrections to ZHi

.

Speci�cally, we now �nd
~
Hi

= �2=4� : (5.16)

Note that ~
Hi
is strictly positive. This means that ZHi

decreases from unity, and

rapidly vanishes.
This in turn implies that all of the fermion Yukawa couplings quickly become

strong rather than weak! We stress that this change in behavior occurs regardless

of how small we take �, since power-law behavior always eventually dominates over

logarithmic behavior. Indeed, if we neglect the logarithmic contributions to ZHi

entirely, we see that the power-law contributions to ZHi
have the right signs and

magnitudes to bring all of the Yukawa couplings simultaneously to a common Landau
pole scale. This can be explicitly seen in Fig. 8, for which we have taken �0 =

R�1 = 100 TeV and �2=4� � 1=4. It is clear that above the scale �0, the power-

law term coming from the Kaluza-Klein states dominates the evolution, and the

Yukawa couplings tend towards a common large Yukawa coupling (e.g., towards a

common Landau pole de�ned by the equation ZHi
= 0). Note that because the power-

law corrections for each fermion are not coupled to those of the other fermions, as

would have been the case for the usual renormalization group equations, each fermion

independently tends towards the common Landau pole. Moreover, for appropriate

values of the coupling �, this Yukawa \uni�cation" scale agrees precisely with the

scale M 0
GUT at which the gauge couplings unify.
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Figure 8: The evolution of the Yukawa couplings ��1
F
� 4�=y2

F
within the singlet-enhanced

MSSM, assuming the presence of a single extra dimension at �0 = R�1 = 100 TeV. We

have taken mt = 180 GeV and tan� = 3 as a representative case. Note that we are plotting

the Yukawa couplings on a logarithmic scale in order to display them all simultaneously. It

is evident that all of the Yukawa couplings simultaneously and independently approach a

common Landau pole which precisely agrees with the scale at which the gauge couplings

unify.

This behavior might also be interesting for a number of phenomenological pur-
poses. However, to what extent does this \uni�cation" actually solve the fermion
mass hierarchy problem? Once again, because the behavior of the extra dimensions

is universal for all fermions, it might seem that no relative fermion hierarchy can

be explained. This is not true, however: certain partial hierarchies can indeed be
explained. To see this, let us consider the precise positions of the Landau poles. For

each fermion, the position of the Landau pole is determined as the solution to the
equation

ZHi
= 0 (5.17)

for the appropriate Higgs �eld. However, thanks to their di�erent logarithmic con-

tributions to ZHi
, the position of the Landau pole for the up-type quarks is slightly

shifted relative to that for the bottom-type quarks and leptons. Ordinarily, this

might seem to be an insigni�cant observation. However, in the presence of extra
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dimensions, this di�erence amounts to a huge relative shift in the Yukawa couplings

between (up/down)-type pairs of fermions. This allows pairs of up-type and down-

type Yukawa couplings to intersect, thereby providing a true uni�cation of pairs of

Yukawa couplings and completely eliminating the mass hierarchy between the corre-

sponding fermions. Some of these dramatic uni�cations are shown in Fig. 9. Note

that all of these uni�cations occur while the corresponding Yukawa couplings are still

weak, so perturbation theory remains valid.

Figure 9: Two representative pairwise uni�cations of Yukawa couplings within the singlet-

enhanced MSSM. In both cases we have taken a single extra dimension at �0 = R�1 = 100

TeV, with mt = 180 GeV and tan � = 3. Once again, we plot the Yukawa couplings on a

logarithmic scale. It is clear from these plots that extra spacetime dimensions can explain

hierarchies of many orders of magnitude, and produce Yukawa coupling uni�cations while

still in the perturbative regime.

Even though we have managed to achieve pairwise Yukawa coupling uni�cations
in this way, we still seek a more complete solution to the fermion mass hierarchy

problem. It is clear, of course, that the only true way to explain a fermion mass hier-

archy is through a 
avor -dependent coupling (which we have so far not introduced).

Extra dimensions, by themselves, cannot be expected to achieve this since they are

universal, and a�ect all fermions equally in the \minimal" � = 0 scenario. However,

even if we must introduce a 
avor-dependent coupling, this 
avor-dependence need
not be very strong, for the power-law e�ects of the extra dimensions can easily en-

hance or amplify the e�ects of even a relatively mild 
avor-dependence. Thus, by

introducing a relatively mild 
avor-dependent coupling, we can exploit the e�ects of

extra dimensions in order to achieve a complete explanation of the fermion masses.

In order to illustrate this point, we shall consider one �nal scenario. Let us go
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back to the usual MSSM, and assume the existence of an additional heavy MSSM-

singlet scalar �eld � which modi�es the form of the Yukawa interactions from (5.2)

to

W =
X
F

ŷF �
nF FFHu;d (5.18)

where nF 2 ZZ. Here ŷF are a set of dimensionful Yukawa couplings, and we shall

assume that � is endowed with a corresponding N = 2 supersymmetric tower of

Kaluza-Klein states. For the purposes of our discussion, the precise mass of � is not

important as long as it exceeds observable bounds; for convenience we may assume

m� � �0. The important point is that the exponents nF will be assumed to be


avor-dependent, taking di�erent values for di�erent fermions. This will serve as the

\input" 
avor-dependence that is ultimately required for addressing the fermion mass

hierarchy. Although this setup is reminiscent of the Froggatt-Nielsen scenario [3], we

will see that the role of � is di�erent: for example, we shall make absolutely no

assumptions about its vacuum expectation value, and in particular we shall treat �

as a fully dynamical �eld above the scale �0. Rather, our goal will be to see how
extra dimensions themselves can amplify this 
avor-dependence into a fermion mass

hierarchy.

Hu,dt

t,b

Φ
Φ
Φ

t

Figure 10: The generalization of Fig. 6(a) in the presence of a superpotential of the form

(5.18).

How does the presence of the �eld � a�ect the analysis? Above the scale �0, the
usual diagrams in Fig. 6 must be replaced by new diagrams in which the dynamical

� �eld also propagates in loops. For example, Fig. 6(a) is replaced with Fig. 10,
where there are nF independent � propagators. Because the � �eld is endowed with

in�nite towers of Kaluza-Klein states, we see that we now have a total of (nF + 1)�

independent towers of Kaluza-Klein states that can propagate in the loop. These
consist of the � towers for each compacti�ed direction for the Higgs �eld, and nF �

towers for each compacti�ed direction of each of the nF di�erent � propagators.
Thus, the e�ective number of extra spacetime dimensions felt by such a diagram is

32



shifted in a 
avor-dependent way:

� ! �F � (nF + 1) � : (5.19)

Of all the diagrams in Fig. 6, this is the dominant shift that arises. (For example, there

is also a contribution from the generalization of Fig. 6(c), but this contribution has

fewer internal Kaluza-Klein propagators.) This in turn implies that the wavefunction

renormalization factors ZF will have the dominant form

ZF = 1 � cF (�0)

2�

X�F

�F

2
4 �

�0

!�F

� 1

3
5 ; (5.20)

where we have neglected possible logarithmic contributions. Here

cF (�0) � �2nF [�̂F (�0) + :::] > 0 (5.21)

is a (dimensionless) anomalous dimension which must be computed in the presence

of the � �eld, and whose precise value is irrelevant for our purposes. Note, however,

that cF (�0) scales as the cuto� �2nF . This is evident from simple power-counting

in the (nF + 1)-loop diagram of Fig. 10, since there are nF + 1 internal loop four-
momenta pi and nF + 2 internal super�eld propagators (each of which contributes
p�2i ).

The result (5.20) implies that the Yukawa couplings ŷF will evolve according to
the general power-law form

�̂�1
F
(�) = �̂�1

F
(�0)�

ĉF

2�

X�F

�F

2
4
 
�

�0

!�F

� 1

3
5 (5.22)

where ĉF (�0) � cF (�0)=�̂F (�0) � �2nF (1 + :::) is a dimensionful beta-function coef-

�cient and where we are again neglecting possible logarithmic contributions. Thus,
we see that the presence of the extra dimensions (i.e., � 6= 0) is capable of pro-

ducing a 
avor-dependent power-law hierarchy! Speci�cally, since cF (�0) is positive,
our Yukawa couplings are all once again driven towards a simultaneous Landau pole
at which �̂�1

F
(�) ! 0. However, unlike the previous case, these Yukawa couplings

approach the Landau pole in a 
avor-dependent manner, and have the potential to

actually unify on the way. Equivalently, assuming a uni�cation near the Landau pole

and solving for �̂�1
F
(�0) from (5.22), we �nd

�̂�1
F
(�0) �

ĉF (�0)

2�

X�F

�F

2
4
 
�

�0

!�F

� 1

3
5 : (5.23)

Identifying the physical Yukawa coupling yF (�0) at the scale �0 via yF (�0) �
�nF0 ŷF (�0) then yields the result

��1
F
(�0) �

X�F

2��F

 
�

�0
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�

�0

!�F

� 1

3
5 � X�F

2��F

 
�

�0

!�F+2nF

: (5.24)

33



Thus, we see that as a simple result of having extra spacetime dimensions (� > 0),

the 
avor-dependent coupling (5.18) has now been ampli�ed, ultimately producing a

large power-law Yukawa mass hierarchy with total exponent

�F + 2nF = nF (2 + �) + � : (5.25)

This exponent can also be interpreted physically as the mass dimension of the Yukawa

coupling �̂�1
F

in 4 + � 
at spacetime dimensions.

Note that this scenario di�ers from the usual Froggatt-Nielsen scenario [3] in that

we were not forced to introduce an arbitrary small number to parametrize the VEV

of the � �eld. In our scenario, by contrast, the hierarchy is generated purely as a

result of a smooth power-law evolution of Yukawa couplings between the scale of the

extra dimensions and the uni�cation scale. Indeed, because the Yukawa couplings

are driven to strong coupling in this scenario, it is even possible to imagine that more

re�ned results could be obtained using a �xed-point analysis. Finally, we note that

because of the naturally large exponent (5.25), the Yukawa coupling hierarchy can be

explained without the a priori large values of nF that would have been needed in the
usual Froggatt-Nielsen scenario. For example, taking � = 1 and �0 in the TeV range
implies (see Fig. 3) that �=�0 � 20. We can therefore explain the entire hierarchy

factor of 1012 between the electron and the top quark simply by taking nt = 0 and
ne = 3.

Finally, we remark that the possibility of extra spacetime dimensions also opens
up new mechanisms for generating a fermion mass hierarchy which do not require the
arbitrary introduction of low-energy 
avor-dependent couplings, or the introduction

of new low-energy matter �elds. Such possibilities exist for the \minimal" � = 0
scenarios as well as the non-minimal � > 0 scenarios. Such new mechanisms rely on
the non-perturbative behavior of open-string theories in the presence of extra large

dimensions, and will be discussed in detail in Sect. 8.

6 Uni�cation without supersymmetry

Until this point, our discussion has focused on the e�ects of extra large spacetime

dimensions in theories with supersymmetry. However, given that the observed low-

energy world is non-supersymmetric, and given that our extra dimensions can appear

at a scale which is comparable (and perhaps even lower) than the superpartner scale,

it also makes sense to consider the corresponding non-supersymmetric situation. In-
deed, two of the primary motivations for introducing supersymmetry at all are the

gauge hierarchy problem and the uni�cation of gauge couplings within the MSSM.

However, if new dimensions populate the desert between the electroweak scale and

the usual GUT scale, then the gauge hierarchy problem is greatly ameliorated, and

(in the case of TeV-scale extra dimensions) no longer exists. Thus, it remains to
consider whether extra dimensions can also give rise to gauge coupling uni�cation

when supersymmetry is absent.
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A priori , embedding the Standard Model into higher dimensions is more straight-

forward than embedding the MSSM. This is because our Kaluza-Klein states no longer

need to form N = 2 multiplets. As a \minimal" scenario, we shall assume (as we did

for the MSSM) that the gauge bosons and Higgs �eld have Kaluza-Klein excitations,

while the chiral Standard Model fermions do not. Note that at each excited Kaluza-

Klein level, this requires the introduction of an additional real scalar transforming in

the adjoint of each gauge group (in order to make the corresponding gauge bosons

massive). This then implies the beta-function coe�cients

(b1; b2; b3) = (41=10;�19=6;�7)
(~b1;~b2;~b3) = (1=10;�41=6;�21=2) (6.1)

where as before we have de�ned b1 � (3=5)bY .

Unfortunately, this simple-minded scenario does not lead to gauge coupling uni-

�cation. However, it is not hard to �nd extended scenarios that do. For example,

let us imagine adding three extra real scalar �elds transforming in the adjoint of
SU(2). We shall assume that the wavefunctions of these extra scalar �elds are odd
functions of the coordinates yi of the compacti�ed dimensions. Indeed, such sorts of

extra states are extremely natural from the point of view of string theory, and the
fact that they are odd functions of yi guarantees that they have no light zero-modes.
We then have

(~b1;~b2;~b3) = (1=10;�35=6;�21=2) ; (6.2)

which leads to the intermediate-scale gauge coupling uni�cation shown in Fig. 11.

Of course, this scenario is not unique. In principle, there may exist other combi-
nations of extra matter that can also lead to gauge coupling uni�cation without su-
persymmetry. We may even choose to associate the scale �0 with the supersymmetry-

breaking scale, e.g., by implementing a Scherk-Schwarz supersymmetry-breaking
mechanism [4] using the same orbifold that prevents our chiral fermions from hav-

ing Kaluza-Klein excitations. One �nds that the resulting string spectrum always
exhibits a hidden \misaligned supersymmetry" [5] which is responsible for maintain-

ing the fundamental �niteness properties of the string, even without supersymmetry.

Indeed, such supersymmetry-breaking scenarios using the ZZ2 Scherk-Schwarz mecha-
nism have been investigated in a number of contexts [6, 7]. Moreover, note that just
as for the MSSM, we are free to consider non-minimal scenarios with � > 0, since

increasing � does not disturb the uni�cation at � = 0.

However, the important point is that even without supersymmetry, it is the power-

law evolution of the gauge couplings, induced by the extra spacetime dimensions, that
enables such extra matter to produce perturbative gauge coupling uni�cation at such
low energy scales. Thus, through extra large spacetime dimensions, it may well be

possible to contemplate a scenario in which perturbative gauge coupling uni�cation is

preserved and the gauge hierarchy problem is eliminated, all without supersymmetry.
Indeed, one can even contemplate explaining the Standard Model fermion masses at
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Figure 11: Gauge coupling uni�cation without supersymmetry can also be achieved at

very low energy scales. Here we have considered a \minimal" embedding of the non-

supersymmetric Standard Model into �ve dimensions, supplemented with three real scalars

transforming in the adjoint of SU(2). We have taken our single extra dimension to have

radius R�1
� �0 = 1 TeV. Thus this scenario also avoids the gauge hierarchy problem.

the same time, again through the power-law behavior induced by the extra spacetime
dimensions.

7 Embedding our scenario into string theory

In this paper, we have studied the e�ects of extra large spacetime dimensions

from a strictly �eld-theoretic point of view. Even though we have borrowed certain

ideas from string theory (e.g., the notion of orbifolds), we have limited ourselves to
questions that are �eld-theoretic in nature, and for which a purely �eld-theoretic

analysis su�ces. For example, we have concentrated on Kaluza-Klein momentum

states but neglected winding-mode states (which is a valid approximation in the �eld-

theory limit, since our radii are presumed large); we have not worried about ensuring

that the orbifold is a symmetry of the full theory (since we have not constructed a

full string theory); and we have not considered any extra states beyond the MSSM

(although string theory generically predicts such states). We have not addressed
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these sorts of issues because they tend to be extremely model-dependent.

There are also various questions that are generic. For example, one of the at-

tractive features of the conventional GUT paradigm is that the uni�cation scale

MGUT � 2� 1016 GeV is close to (though not equal to [8]) the perturbative heterotic

string scale Mstring � 5 � 1017 GeV. This suggests that we might identify these two

scales, and imagine that our grand uni�ed theory might be directly embedded into

string theory. However, in this paper we have seen that extra large spacetime dimen-

sions can lower the uni�cation scale quite substantially. How then do we go about

embedding our scenario into string theory?

In this section, we shall address a number of these questions. Rather than attempt

to construct a given realistic string model which incorporates our scenario, we shall

limit the following discussion to general comments concerning various issues that

come into play when attempting to embed our scenario into string theory.

7.1 Implementing the orbifold projection

We begin with a general comment concerning the orbifolding projection discussed

in Sect. 2. As we have seen, it is necessary to compactify our extra dimensions on
orbifolds rather than circles for two reasons: we need the orbifold to break the N = 2
supersymmetry of the excited Kaluza-Klein states down to N = 1 supersymmetry

for the observable MSSM ground states; and we need to ensure, in our \minimal"
scenario, that the chiral MSSM fermions do not have Kaluza-Klein towers. Once this
scenario is embedded into a full string theory, it becomes necessary to ensure that

the ZZ2 orbifold action on the compacti�ed coordinates yi ! �yi is a symmetry of
the full string theory.

It turns out that the \minimal" scenario that we examined in Sects. 2 and 3
does not have this property, and must be extended if it is to embedded into string
theory. Speci�cally, although we have joined the two N = 1 supersymmetric MSSM

Higgs doublets together in (2.4) to form a single N = 2 supermultiplet, it is actually
necessary for one of these Higgs �elds to be odd under the orbifold action yi ! �yi
in order for this action to be a symmetry of the full theory. This then prevents one

of the Higgs �elds from having a light zero-mode. Of course, this need not cause any

logical inconsistency, for it may well be that the remaining MSSM Higgs �eld arises

in a \twisted" sector. Alternatively, one of the MSSM Higgs �elds might arise as the
�rst excited Kaluza-Klein state of the odd tower, with mass m � �0. Gauge coupling

uni�cation would then be slightly altered, though not signi�cantly damaged. In any

case, string theory also predicts new so-called threshold corrections [9, 8] which can
easily accommodate such minor discrepancies.

A third alternative would be to introduce a new, separate, odd-transforming Higgs
�eld for each of the MSSM Higgs �elds. This would then imply the existence of four

Higgs �elds at each excited Kaluza-Klein level, while maintaining only two Higgs

doublets at the massless level. Unlike the previous case, this choice would have a
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considerable e�ect on the uni�cation of the gauge couplings. However, since this is

essentially a model-dependent choice that would be dictated by the string model in

question, it is quite reasonable to expect that string theory will provide even further

states that can once again restore gauge coupling uni�cation. We stress, however,

that these are model-dependent questions that can be addressed only in the context

of a fully constructed, realistic string model.

As a separate issue related to the orbifold, we remark that in our \minimal" sce-

nario, the MSSM chiral fermions were taken not to have Kaluza-Klein towers. The

orbifold manages to accomplish this because, in any closed string theory, modular

invariance must be preserved. Thus, modding out by the orbifold action necessar-

ily requires the introduction of so-called \twisted states" whose wavefunctions are

restricted to the orbifold �xed points. Hence our assertion that the MSSM chiral

fermions have no Kaluza-Klein towers is fully consistent within the context of closed

string theory. For an open string theory, by contrast, the process of orbifolding gen-

erally does not lead to such twisted sectors. This di�erence arises because modular

invariance is not required to be a symmetry of open-string theories. In such cases,

we must assume the chiral fermions to be restricted to certain \three-branes" of the
open-string theory. This will be discussed further below.

7.2 Including the extra GUT states

The second issue that we shall discuss concerns the appearance and subsequent
breaking of the GUT symmetry in string theory. Throughout this paper, we have

interpreted the phenomenon of gauge coupling uni�cation as signalling the emergence
of a grand uni�ed symmetry at the scaleM 0

GUT. Strictly speaking, this terminology is

�eld-theoretic, and implicitly assumes a conventional Higgs mechanism for breaking
the GUT symmetry. Indeed, in the terminology appropriate for the Higgs mecha-
nism, the GUT symmetry can be said to exist above the scale of uni�cation, and to be

broken below this scale. However, as is clear from the discussion in Sect. 4, in this pa-
per we are actually imagining that the GUT symmetry is broken in a string-theoretic
manner , namely through the orbifold that acts on the compacti�ed dimensions.

This fact has a number of consequences. The most important of these concerns

the extra GUT states that are part of the GUT symmetry but which are not present

in the MSSM itself. These include, for example, the X and Y gauge bosons and the
colored Higgs triplets; these are the states which we collectively denoted 	 in Sect. 4.

Of course, despite their odd symmetries under yi ! �yi, these states still continue
to exist in the string spectrum, with masses m � n=R, n 2 ZZ, with n � 1. As we
stressed in Sect. 4, this does not cause a problem for proton decay because these

states do not couple to the chiral MSSM fermions. However, the presence of such
states with masses n�0 means that these states | and indeed their entire Kaluza-

Klein towers | should actually be included in the evolution of the gauge couplings

between �0 and M
0
GUT.
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It may seem very counter-intuitive that we must include the e�ects of the X and

Y bosons and colored Higgs triplets in the running of gauge couplings below the

uni�cation scale. However, this is precisely the consequence of breaking the GUT

symmetry via an orbifold projection. Indeed, if we break a GUT symmetry in string

theory via an orbifold associated with a radius scale �0 � R�1, it makes no sense at all

to think of the GUT symmetry as being \restored" above M 0
GUT or broken below it.

Rather, our GUT symmetry is actually \restored" at the scale �0 in the sense that the

states appearing at masses m � �0 fall into GUT multiplets. Thus, strictly speaking,

the scale at which the broken GUT symmetry begins to leave particle remnants in

the string spectrum is actually �0 � R�1, not M 0
GUT. These states thus appear as

GUT \precursors".

It is easy to see that these precursor states do not upset gauge coupling uni�cation.

The zero-mode states consist, as before, of the MSSM spectrum. By themselves,

these states are well-known to lead to gauge coupling uni�cation. Starting at the

�rst excited Kaluza-Klein level, however, all additional Kaluza-Klein states appear

in complete GUT multiplets. As is well-known, this cannot disturb an already-

present uni�cation. Thus, even when we take into account the Kaluza-Klein towers
corresponding to the X and Y bosons and Higgs triplets, we see that rapid gauge
coupling uni�cation is preserved. Note that this property holds regardless of the

GUT group in question, whether a minimal SU(5) or SO(10), or a larger group such
as E6.

7.3 Interpreting the mass scales

Another issue that we face, upon embedding our scenario into string theory, is the

origin and interpretation of the di�erent mass scales. How, in particular, might such a
small mass scale �0 = R�1 arise in string theory, and how can it be implemented when
constructing a realistic string model? There are actually two classes of possibilities.

The more traditional class of possibilities is the perturbative one: we simply
construct a weakly coupled heterotic string with a large radius of compacti�cation.
In such a scenario, the fundamental string scale is tied to the Planck scale, and

remains at the perturbative heterotic string value 5�1017 GeV. This is essentially the
approach taken in Ref. [6] (although the gauge couplings of the speci�c string models

of Ref. [6] do not feel the extra dimensions, and consequently do not evolve with
power-law behavior or experience any intermediate-scale gauge coupling uni�cation).

However, if we now attempt to join this perturbative framework with our

intermediate-scale grand uni�cation, we cannot explain why the scale of gauge cou-
pling uni�cation should be so much lower than the Planck scale. Indeed, it is well-

known [8] that weakly coupled heterotic strings naturally lead to gauge coupling
uni�cation near the Planck scale. Moreover, there also remains the question of the

dynamical origin of this large scale.

Given our recent understanding of the strong-coupling dynamics of string theory,
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however, several more attractive possibilities arise for interpreting the reduced uni�-

cation scale. Speci�cally, we might attempt to interpret the uni�cation scale as the

string scale itself , so that we have a direct embedding into string theory immediately

at the reduced uni�cation scale M 0
GUT! It may seem, at �rst, that this is impossible,

for it is well-known that for weakly coupled heterotic strings, the tree-level string

scale Mstring is irrevocably tied to the Planck scale MPlanck through a relation of the

form

Mstring � gstringMPlanck (7.1)

where gstring is the string coupling at uni�cation. This relation holds regardless of the

dimensionality of the spacetime (i.e., regardless of how many of the ten spacetime

dimensions are compacti�ed), and regardless of their volume (radii) of compacti-

�cation. For heterotic strings at strong coupling, however, this behavior changes.

Speci�cally, it turns out that various (closed) heterotic strings at strong coupling can

be equivalently described as (open) Type I strings at weak coupling. Thus, many non-

perturbative features of heterotic string theory can be studied by analyzing weakly

coupled Type I strings. Remarkably, Type I string theory o�ers the interesting pos-

sibility [10] of lowering the fundamental string scale, for (7.1) no longer continues to
apply. Instead, we �nd the relation

Mstring � e�=2 ggaugeMPlanck (7.2)

where � represents the so-called ten-dimensional dilaton �eld and where ggauge is the
Type I gauge coupling. Thus, simply by adjusting the VEV of the ten-dimensional
dilaton, one can lower Mstring relative to MPlanck. Of course, the value of the dilaton

indirectly a�ects the values of the gauge and gravitational couplings, so that ggauge
and MPlanck themselves change their apparent values when the dilaton is changed.
However, using other string relations it is possible to eliminate this dependence al-

gebraically, and relate Mstring and MPlanck directly to each other without exhibiting
the dependence on the dilaton. We then �nd the general relation

Mstring �
s

1

�gaugeMPlanck

V �1=4 (7.3)

where �gauge � g2gauge=(4�) and where (2�)6V is the (normalized) six-dimensional

volume of compacti�cation. In writing (7.3), we have ignored (and will continue to
ignore) all numerical factors of order one, since our goal will merely be to obtain order-

of-magnitude estimates. The relation (7.3) thus represents the non-perturbative

counterpart of (7.1).
In order to embed our grand uni�cation scenario into Type I string theory, we shall

attempt to identify �gauge with �
0
GUT and Mstring with M

0
GUT. Let us assume, as we

have done throughout, that there are � extra dimensions of radius R � ��10 . As usual,

these are the dimensions that cause the gauge and Yukawa couplings to experience

power-law corrections. Given the relation (7.3), we can now easily determine the
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required common radius r for the remaining 6� � compacti�ed dimensions. Writing

the normalized compacti�cation volume as

V � R� r6�� ; (7.4)

we �nd
M 0

GUT

MPlanck

� �0GUT (M
0
GUTR)

�=2 (M 0
GUTr)

3��=2 : (7.5)

Let us begin by considering the case � = 1. Taking M 0
GUT = 10 TeV, we see

from Figs. 3 and 4 that M 0
GUTR � 20 and �0GUT � 1=50. This in turn implies that

M 0
GUTr � 10�6, which implies that the radius r of the �ve extra dimensions must

be smaller than the string length scale! Of course, this is not an inconsistency, but

rather a signal that we should pass to a slightly di�erent description (the so-called

Type I0 description) of the physics. Technically, this procedure of passing from one

description to the other is called a T -duality, and in general a Type I theory with a

compacti�ed radius r is the T -dual of an equivalent Type I0 theory with a compacti�ed
radius r0 � (M2

stringr)
�1:

T -duality: Mstringr $ (Mstringr
0)�1 : (7.6)

We therefore pass to a Type I0 description by T -dualizing our �ve extra dimensions.

We then �nd
(r0)�1 � 10�6M 0

GUT � 10 MeV : (7.7)

Thus, to summarize our results, we see that we can naturally associate a 10-TeV
scale of gauge coupling uni�cation with the string scale of a Type I0 theory in which

one dimension has radius R�1 � 0:5 TeV and the �ve remaining dimensions have
radii r0 � (10MeV)�1. The resulting scenario is sketched in Fig. 12. Note that extra
dimensions of this size are not ruled out experimentally, provided that the gauge

couplings do not feel their e�ects [11, 12]. Likewise, a similar calculation for the

� = 2 case yields the result r0 � (0:1GeV)�1 for the remaining four dimensions.

We note, however, that these results are dependent on the chosen uni�cation scale
(string scale) in our scenario. For example, taking M 0

GUT = 1012 GeV instead yields

essentially the same result r0 � (109GeV)�1 for both the � = 1 and � = 2 cases.

7.4 D-brane con�gurations for our scenario

Given these results, it is natural to interpret our scenario in terms of various

con�gurations of the D-branes of the Type I0 string theory. To see how this can
be done, let us begin by recalling that the original supersymmetric Type I theory

contains both nine-branes and �ve-branes. For the purposes of this discussion, we

shall label our ten spacetime coordinates as fx1; :::; x10g, with fx1; x2; x3; x4g corre-
sponding to our observed four-dimensional world. We shall concentrate on the � = 1

case, so that our gauge couplings feel a single extra large dimension with radius R
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Figure 12: Sketch of the evolution of the gauge couplings within a Type I0 realization of

our scenario. Below the uni�cation scale, the physics is described by an e�ective �eld

theory, while the full Type I0 string description is appropriate above this scale. Thus, in

this realization, the string scale coincides with the new uni�cation scale M 0
GUT � 10 TeV.

This is achieved by having the gauge couplings feel a new dimension at R�1
� �0 � 0:5

TeV, while the gravitational coupling feels �ve new dimensions at (r0)�1 � 10 MeV. We

have also indicated the corresponding e�ective number of spacetime dimensions that are

felt by the gauge and gravitational couplings at di�erent energy scales.

corresponding to x5, while the remaining �ve dimensions fx6; :::; x10g have radius r.
The nine-branes of our theory necessarily obey Neumann boundary conditions for all

ten dimensions fx1; :::; x10g, but the �ve-branes will (by de�nition) obey Neumann

boundary conditions in only six dimensions and obey Dirichlet boundary conditions

in the remaining four dimensions. The choice of which set of dimensions obeys which

set of boundary conditions amounts to a choice of the orientation of the �ve-brane
relative to the observed four-dimensional spacetime and the extra large dimension.

For reasons that will become clear shortly, we shall take our �ve-brane to obey Neu-

mann boundary conditions in the fx1; :::; x4; x6; x7g directions, and to obey Dirichlet

boundary conditions in the fx5; x8; x9; x10g directions.
As we have discussed, the fact that the �ve dimensions fx6; :::; x10g are com-

pacti�ed with a radius exceeding the Type I string scale implies that we must T -
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dualize these �ve dimensions. Operationally, this amounts to interchanging Neu-

mann and Dirichlet boundary conditions in the dualized directions. We therefore

obtain a Type I0 theory with the following branes. First, the nine-brane of the

original Type I theory becomes a four -brane with Neumann boundary conditions

in the directions fx1; :::; x4; x5g and Dirichlet boundary conditions in the directions

fx6; :::; x10g. By contrast, the �ve-brane of the original Type I theory becomes a six -
brane, with Neumann boundary conditions in directions fx1; :::; x4; x8; x9; x10g and

Dirichlet boundary conditions in directions fx5; x6; x7g.
How can we interpret this picture? Fortunately, this Type I0 brane con�guration

contains exactly what we require for our scenario. The four-brane, which extends

outwards in the directions fx1; :::; x4; x5g, can be interpreted as the spacetime of the

�ve-dimensional world that the gauge couplings feel at energy scales above R�1 � �0:

the four directions fx1; :::; x4g are taken to be completely 
at, and our �fth dimension
fx5g is compacti�ed with radius R. Thus, the MSSM Higgs �elds and gauge bosons

can be interpreted as living on the four-branes. The six-brane, by contrast, gives rise

to a separate non-perturbative gauge symmetry whose properties will not concern us

here. However, the most important feature is the presence of a non-trivial intersection
between the four-brane and the six-brane. Note that the joint Neumann directions
of this \intersection brane" are only fx1; :::; x4g. Thus, particles localized on this

three-brane feel only four spacetime directions, regardless of the size of the radii R
and r. Such states are typically said to arise in the \46-sector". These states can
therefore easily be interpreted as the chiral MSSM fermions, which are required not

to have Kaluza-Klein excitations in our minimal scenario! Note that it is crucial
that our brane con�guration give rise to such a 46-sector, for we must have a way of

localizing the chiral MSSM fermions within the context of open-string theories so that
they do not feel the extra dimensions. This, then, explains our original choice of the
orientation of the Type I �ve-brane. The resulting brane con�guration is illustrated

in Fig. 13.
It is straightforward to generalize this brane con�guration to the � = 2 case. In

this case we shall take fx5; x6g as the extra large dimensions of radius R. In the origi-
nal Type I theory, we shall orient our �ve-brane so that it satis�es Neumann boundary
conditions in the fx1; :::; x4; x7; x8g directions and Dirichlet boundary conditions in

the fx5; x6; x9; x10g directions. Upon T -dualizing the fx7; x8; x9; x10g directions, we
then obtain two distinct �ve-branes. The �ve-brane that we obtain from the Type I

nine-brane satis�es Neumann boundary conditions in the fx1; :::; x4; x5; x6g direc-

tions: this is the spacetime that the MSSM Higgs and gauge �elds experience at

energy scales exceeding �0 � R�1. The second �ve-brane, by contrast, has Neumann

boundary conditions in the fx1; :::; x4; x9; x10g directions. The intersection of these
two di�erent �ve-branes (i.e., the 550-sector) once again provides us with an e�ective

\three-brane" which can be associated with our observed four-dimensional world be-

low energy scales �0 � R�1. Thus, it is this 550-sector which is presumed to contain

our chiral MSSM fermions.

43



x1,x2,x3,x4

x6,x7,x8,x9,x10

D4-brane

D6-brane

R

x5

D4-brane

gauge 
bosons,
Higgs

ch
ira

l f
er

m
io

ns

46-sector

Figure 13: AD-brane con�guration which can accommodate our scenario within the context

of Type I0 string theory. The observed 
at four-dimensional world corresponds to the \46-

sector" (i.e., the three-brane intersection between the (cylindrical) four-branes and the

six-branes). The extra (compacti�ed) direction of the four-branes corresponds to our extra

dimension of radius R � ��10 . The MSSM Higgs and gauge �elds are presumed to lie fully

on the four-branes, while in our minimal scenario the chiral MSSM fermions are restricted

to the 46-sector and hence have no Kaluza-Klein excitations.

Thus, we see that our intermediate-scale grand uni�cation scenario has a variety
of natural interpretations and realizations within string theory, and generalizations
to higher values of � are obvious. Hence we conclude that is indeed possible to non-

perturbatively lower the string scale in such a way that it directly coincides with our
new gauge coupling uni�cation scale. This opens up the exciting possibility that our

scenario can be embedded directly into a string theory beyond the scale M 0
GUT. This

embedding into a �nite theory such as string theory would then be the \cure" for
the non-renormalizability of our e�ective higher-dimensional �eld theory between the

scales �0 and M
0
GUT.

Of course, the construction of a fully realistic string model which gives rise to

these brane con�gurations is a far more complicated task. Preliminary steps towards

such model-building have been taken in Ref. [13]. Therefore, in order to illustrate
our scenario as well as the origin of what we have called the \grand uni�ed group" in

Sect. 4, let us brie
y consider one of the explicit four-dimensional N = 1 supersym-

metric Type I models constructed in Ref. [13]. This model incorporates a ZZ3 � ZZ2

orbifold de�ned by the actions g3 and g2, where

g3(z1; z2; z3) = (!z1; !z2; !z3)

g2(z1; z2; z3) = (�z1;�z2; z3) : (7.8)

44



Here ! � e2i�=3, and (z1; z2; z3) are three complex coordinates of the three complex

planes formed from the real coordinates fx5; :::; x10g of the six-dimensional compact
space. This model contains a background B-�eld of rank 2 that arises from the NS-

NS sector, and contains both nine-branes and �ve-branes. These are taken to be at

the same �xed point. The gauge group from the open-string sector is [U(2)�U(2)�
U(4)]2, with di�erent massless matter representations coming from the 99, 55, and 59

sectors [13]. The form of the orbifold action (7.8) shows that at the massive level, the

�rst two complex planes (z1; z2) give rise to an N = 4 supersymmetric spectrum, and

the third complex plane (corresponding to z3) has anN = 2 supersymmetric spectrum

that can provide power-law corrections to the gauge and Yukawa couplings. Based on

the considerations discussed above, we take the compact coordinates corresponding

to (z1; z2) to be very large (and therefore must T -dualize them, exchanging nine-

branes and �ve-branes in the process). We likewise take the inverse radius of the z3
plane to be a factor of ten to twenty below the string scale. Close to the string scale,

we obtain a uni�ed gauge group U(8)2, one of whose factors to be interpreted as the

observable uni�ed group. This gauge group is obtained by \undoing" the ZZ3 orbifold

action for the massive Kaluza-Klein levels. The matter representations at the massive
levels form N = 2 supersymmetric representations which are obtained by simply
decomposing the massive U(8) representations with respect to a U(2)�U(2)�U(4)
Pati-Salam subgroup. Given the spectrum arising from the 99 and 95 sectors, the
power-law corrections to the gauge couplings as they evolve towards lower energy
scales can then be computed as explained in Sect. 3 or Appendix A.

8 Explaining the fermion mass hierarchy via branes

Having explained in the previous section how our intermediate-scale grand uni-
�cation scenario can be realized within the context of Type I string theory and its

associated branes, we now revisit the fermion mass hierarchy problem. In this section,
we point out that these sorts of brane con�gurations can actually provide several en-

tirely new methods of addressing the fermion mass hierarchy problem beyond those

considered in Sect. 5. We shall give two examples.

8.1 A scenario with � 6= 0

Let us begin by considering a situation in which we have two large extra spacetime
dimensions fx5; x6g of radius R. In our original Type I theory, we shall consider our

nine-brane along with two separate �ve-branes. The �rst �ve-brane will be taken

to have Neumann boundary conditions in the directions fx1; :::; x4; x5; x7g, while the
second will have Neumann boundary conditions in the directions fx1; :::; x4; x7; x8g.
All unspeci�ed directions will be assumed to satisfy Dirichlet boundary conditions.
As before, we must T -dualize the directions fx7; :::; x10g. This yields a Type I0 theory
with the following branes. The Type I nine-brane becomes a Type I �ve-brane
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with Neumann coordinates fx1; :::; x4; x5; x6g; the �rst Type I �ve-brane becomes

a seven-brane with Neumann coordinates fx1; :::; x4; x5; x8; x9; x10g; and the second

Type I �ve-brane becomes a second Type I0 �ve-brane with Neumann coordinates

fx1; :::; x4; x9; x10g. It is the �rst Type I0 �ve-brane which is to be interpreted as our

physical spacetime at energy scales above R�1.

Given this brane con�guration, let us now consider the possible locations for the

chiral fermion generations of the MSSM. One possibility is that the chiral fermions

lie directly in the �rst Type I0 �ve-brane, so that they have a complete tower of two

dimensions' worth of Kaluza-Klein excitations. These are the so-called 55 fermions,

which we shall collectively denote 	2 (because they feel two dimensions' worth of

Kaluza-Klein excitations). A second possibility is that the chiral MSSM fermions

arise from the 57-sector. It is clear, given the above con�guration, that the fermions

arising in the 57-sector feel only one dimension worth of Kaluza-Klein excitations.

We shall refer to these collectively fermions as 	1. Finally, the third possibility is

that the chiral MSSM fermions arise in the 550-sector. Thus, these fermions have no

Kaluza-Klein excitations at all, and will be denoted 	0.

Given these results, and given the power-law dependence that the corresponding
Yukawa couplings experience due to the extra dimensions (as discussed in Sect. 5), it
is then natural to explain the fermion mass hierarchy by associating one chiral MSSM

generation with each of the above sectors. This is therefore an � = 2 scenario (since
two of the chiral MSSM generations have Kaluza-Klein excitations). As we discussed
in Sect. 5, in the absence of any additional couplings for the Higgs �elds, the dominant

contributions to the evolution of the Yukawa couplings come from the diagrams in
Figs. 6(a,b). In the case of Fig. 6(b), for any external fermion of type 	i, the internal

fermion must also be of type 	i. However, in the case of Fig. 6(a), regardless of
the type of the external fermion, the internal fermion can a priori be of types 	0;1;2.
Each fermion carries with it an appropriate number of dimensions' worth of Kaluza-

Klein modes. The only constraints that govern the counting of modes for each loop
are Kaluza-Klein momentum conservation at the vertices: in general, at any vertex,

we must impose Kaluza-Klein momentum conservation in the directions for which

translational invariance is not broken. In this way, we can generate a whole variety
of powers (�=�0)

p, p = 0; 1; 2; 3; 4 for the di�erent diagrams. Thus, depending on the

fermion 	i in question, the corresponding wavefunction renormalization factors ZF

and Z
F
can feel a di�erent number power-law dependence, and this feature can be

used to explain the fermion mass hierarchy.

8.2 A scenario with � = 0

Clearly, the above scenario relies on the di�erent fermion generations feeling dif-
ferent numbers of spacetime dimensions and therefore having di�erent numbers of
Kaluza-Klein excitations. Thus, in the language of Sects. 2 and 3, this is an � 6= 0

scenario, where � is the number of MSSM fermion generations that feel the extra
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dimensions. However, as we stressed in Sect. 4, the minimal scenario with � = 0 is

actually preferable for the purposes of proton decay. It would therefore be interesting

to see if there exist brane con�gurations which have � = 0 but which nevertheless

also lead to fermion mass hierarchies.

Ψ1
Ψ2

R

Dp  -brane2Dp  -brane1
D4-brane

Figure 14: A D-brane con�guration which leads to a natural fermion mass hierarchy for the

\minimal" scenario with � = 0 (no Kaluza-Klein excitations for chiral MSSM fermions).

To do this, let us consider the � = 1 case, and imagine a set of Type I0 branes:
a four-brane (interpreted as the observable universe at energy scales above R�1);

and a variety of other branes of di�ering dimensions pi. Let us assume that each of

these other branes has a four-dimensional intersection with the four-brane, and let us

place our di�erent chiral MSSM fermions at these di�erent intersections, so that they
arise in the 4pi-sectors. Such a situation is sketched in the case of two additional
branes in Fig. 14. Because the fermions all arise in the 4pi sectors, none of them

feel extra dimensions directly or have Kaluza-Klein excitations. These are therefore

minimal � = 0 scenarios, as desired. However, because each fermion  i arises in the
4pi-sector and is restricted on the intersection of the four-brane with the pi-brane, in

principle it can carry the quantum numbers of not only the perturbative gauge group
arising from the four-brane, but also the quantum numbers of the non-perturbative

gauge group Gi corresponding to the pi-brane. Note that these extra quantum num-

bers do not a�ect the gauge coupling uni�cation that we have already observed in
Sect. 3. However, because these fermions have additional quantum numbers in dif-

ferent non-perturbative gauge groups corresponding to di�erent branes of di�erent
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dimensionalities, their corresponding wavefunction renormalization factors ZF and

Z
F
will accrue di�erent power-law exponents from the analogues of Fig. 6(b) where

we replace the internal Standard Model gauge bosons with the gauge bosons of the

non-perturbative gauge group Gi. These di�erent power-law exponents arise because

these di�erent non-perturbative gauge bosons each feel a di�erent e�ective number

of dimensions. Thus, in such scenarios, we are able to achieve natural fermion mass

hierarchies even while maintaining our \minimal" scenario with � = 0.

9 Relations to other work

Extra spacetime dimensions and their e�ects have been studied in the literature

from a variety of di�erent perspectives. For completeness, we shall brie
y highlight

the novel features of our approach and compare it with some others that have been

taken.

At the �eld-theory level, we have seen that extra spacetime dimensions are equiv-

alent to the introduction of in�nite towers of Kaluza-Klein states. It may therefore
seem that our work is somehow equivalent to prior work in which the e�ects of pos-
sible extra matter beyond the MSSM are analyzed. However, the extra matter that

is typically considered in such analyses is vector-like and �lls out complete SU(5) or
SO(10) multiplets. This then leads to non-perturbative (or at best semi-perturbative)
couplings at uni�cation [14], and does not permit a lowering of the uni�cation scale.

In our \minimal" scenario, by contrast, we have a uni�cation which remains weakly
coupled, even more so than within the MSSM itself; moreover, our uni�cation scale

is lowered rather than raised. These di�erences essentially arise because the prior
approaches all entail shifting the one-loop beta-function coe�cients bi by a common
�xed �nite amount �b:

bi ! b0
i
� bi + �b for all i : (9.1)

In our scenario, by contrast, the bi are not shifted but rather rescaled , for at each

equally-spaced Kaluza-Klein threshold we are essentially introducing another copy of
the MSSM gauge-boson and Higgs representations. Thus, our scenario can essentially

be re-interpreted in this language as one in which we continue to have logarithmic

running, but with an e�ective beta-function coe�cient that changes with the energy

scale � according to:

bi ! b0
i
(�) � (bi � ~bi) + ~biX�

 
�

�0

!�

: (9.2)

Hence the b0
i
in (9.2) are not all driven in the same direction towards positive val-

ues, as they are in (9.1). It is this feature that enables us to achieve rapid gauge

coupling uni�cation at low uni�cation scales without encountering large gauge cou-

plings. Moreover, the rescaling factor in (9.2) is itself �-dependent. This enables us
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to generate the power-law evolution for the gauge couplings which is the hallmark

of our scenario. It is also this feature, for example, which enables us to address the

fermion mass hierarchy problem.

Extra spacetime dimensions and Kaluza-Klein towers of states have also been

analyzed within the context of string theory. For example, the consequences of extra

large (TeV-scale) dimensions have been previously examined in a notable series of

papers [6]. However, this analysis was carried out within the context of string models

that were deliberately constructed in such a way that the e�ects of the extra spacetime

dimensions were shielded from the evolution of the gauge couplings. In other words,

the Kaluza-Klein towers of states were arranged to arise in only certain N = 4

supersymmetric sectors of the underlying string model so that they had no e�ect on

the running of the gauge couplings, giving rise to ~bi = 0. Thus, in these restricted

scenarios, the gauge couplings can run only in their usual logarithmic fashion, and

unify only at the usual GUT scale MGUT � 2� 1016 GeV. By contrast, it is precisely

the e�ects of these extra dimensions on the gauge and Yukawa couplings which have

been our main focus in this paper | rather than avoid these e�ects, we have exploited

them! Moreover, such e�ects can be expected to be the generic case in string theory
(the existence of certain specially constructed string models notwithstanding).

More recently, extra dimensions have also played a role in understanding the

strong-coupling behavior of various string theories. The most famous example of this
phenomenon is the ten-dimensional E8 � E8 heterotic string: at strong coupling it
has been proposed [15] that this string \grows" an eleventh dimension of �nite length

whose natural size is much larger than the eleven-dimensional Planck length, and in
particular is much larger than the presumed size of the six-dimensional manifold on

which a subsequent compacti�cation to four dimensions takes place. This leads to a
scenario in which our four-dimensional low-energy world should successively look �ve-
dimensional and then ultimately eleven-dimensional as the energy scale is increased.

However, the fundamental distinction between this scenario and our own is the e�ect
of this �fth dimension. In our scenario, the extra dimension(s) are universal, a�ecting

both gauge and gravitational couplings. In the E8 � E8 case, by contrast, the extra

�fth dimension is felt only by the gravitational couplings, and the gauge couplings
are again immune to its e�ects.

Of course, our analysis should be directly applicable to string theories which have

generic, large-radius compacti�cations. Such theories have recently been discussed in

a number of theoretical and phenomenological contexts [16].

Finally, there recently appeared a proposal [11, 12] for solving the gauge hier-

archy problem through the appearance of new millimeter-scale extra dimensions!

These new dimensions are presumed to a�ect the gravitational interaction only, and

have no e�ect on the gauge couplings. This proposal is therefore, in some sense,

the gravitational counterpart of our proposal, e�ectively reducing the Planck scale.

Of course, this proposal di�ers from ours in essentially the same way that previous

proposals have di�ered: it does not address gauge coupling uni�cation; the Standard

49



Model particles, unlike the graviton, are presumed to be essentially trapped on a

four-dimensional submanifold relative to these extra dimensions; and the Standard

Model particles are therefore once again largely immune to the e�ects of these extra

dimensions. Nevertheless, it would be very interesting to combine our scenario (in

which the gauge part of observable low-energy world feels new extra dimensions as

large as a TeV) with the scenario of Ref. [11] (in which the gravitational part of the

observable low-energy world feels extra dimensions as large as a millimeter). Such

a synthesis could proceed along the lines sketched in Sect. 7, and might well lead

to a uni�ed picture of gauge and gravitational uni�cation, all occurring at around a

TeV. Preliminary steps in realizing this possibility within the context of Type I string

theory have already been taken in Ref. [13]. Earlier discussions of such \TeV-scale

superstrings" can also be found in Ref. [17]. Likewise, recent advances in under-

standing \the universe as brane" [18] are likely to prove crucial in developing these

scenarios at both the string-theoretic and �eld-theoretic levels. Note that the gauge

hierarchy problem has also been addressed within the context of a higher-dimensional

�eld theory in Ref. [19].

10 Collider signals and cosmological implications

As might be expected, the appearance of extra large spacetime dimensions can
give rise to many interesting signals for collider experiments (see, e.g., Refs. [20, 21]).

They can also have profound implications for cosmology [22]. In this section we will
give a short sketch of some of these connections.

If the scale �0 � R�1 of the new dimensions is close to the electroweak scale,

then future colliders will be able to probe the new dimensions directly. Let us �rst
consider our \minimal" scenario with � = 0. In this scenario, only the non-chiral
MSSM states will have an in�nite tower of Kaluza-Klein excitations, and these will

be separated by an energy scale �0. The importance of such Kaluza-Klein excitations
for collider phenomenology or cosmology depends crucially on their transformation

properties under the ZZ2 orbifold action yi ! �yi, where yi are the coordinates of the
new compacti�ed dimensions. Let us �rst consider the Kaluza-Klein states whose
wavefunctions are even with respect to this action. Such states can directly couple

to the Standard-Model fermions because these fermions are located either at the

orbifold �xed points or on e�ective \three-branes"; in either case we cannot impose

Kaluza-Klein momentum conservation at the vertices because translational invariance

in the compacti�ed directions is broken. Therefore, such even Kaluza-Klein states
can be directly produced at future colliders if �0 ' O(TeV), with the lowest-lying

even Kaluza-Klein mode directly decaying into (s)fermions. Note, on the other hand,

that because the gauge bosons and Higgs particles feel the extra dimensions, Kaluza-
Klein momentum conservation continues to apply at their vertices. This feature then

prevents the lowest-lying even Kaluza-Klein modes from directly decaying into the
zero-mode gauge bosons and/or Higgs particles. Of course, the Kaluza-Klein modes
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corresponding to the gauge bosons will be more important than the Kaluza-Klein

modes corresponding to the Higgs �elds because the Higgs-�eld couplings are usually

suppressed by small Yukawa factors.

Given these observations, we see that Kaluza-Klein states corresponding to the

gauge bosons might be observable via Drell-Yan production in proton/(anti-)proton

collisions; one would seek to identify charged leptons in the �nal state. The analysis

for the lowest-lying neutral gauge boson Kaluza-Klein state is exactly analogous

to that for Z 0 bosons in E6 superstring-inspired models [23, 21]. Typically, the

branching ratio into fermion pairs is reduced by the presence of other supersymmetric

channels [24]. Thus, bounds on �0 tend to be model-dependent. However, using the

results in Ref. [21], we �nd that recent Fermilab data suggests the simple estimate

�0 � R�1 >� 500 GeV for the lower bound on the scale of the extra dimensions.

Alternatively, if the scale of extra dimensions is much larger than O(TeV), the
e�ects of the in�nite Kaluza-Klein tower can be seen at low energies via an e�ective

contact interaction. Such an e�ective contact interaction can arise, for example, from

the tree-level exchange of massive gauge-boson Kaluza-Klein modes. Let us assume,

for simplicity, that only one extra dimension exists. Then the amplitude for the
scattering process l+l� ! l+l� receives a contribution

g2R2
1X
n=1

1

q2R2 + n2
(10.1)

from the in�nite tower of even Kaluza-Klein states. At low energy scales q2 � �20,

we �nd that the above expression is approximately (�2=6)g2R2. This then gives rise
to an e�ective four-fermion contact interaction of the form

L � �2

6
g2R2 ( �	
�	)

2 (10.2)

where g is a gauge coupling and where 	 schematically denotes either quarks or

leptons. Recent bounds on four-fermion contact interactions then imply a lower

bound �0 >� 300 GeV.

On the other hand, Kaluza-Klein states that are odd under the ZZ2 orbifold action
do not couple to chiral fermions. Consequently, they can be probed at collider ex-

periments only via higher-loop processes. This implies that there are no signi�cant

bounds from collider phenomenology arising from these states. However, since the
lowest-lying odd Kaluza-Klein states are stable due to Kaluza-Klein momentum con-

servation, such states can have important cosmological implications. For example, if

the annihilation processes are su�ciently strong [25], such states might serve as ideal

dark-matter candidates.

Our \non-minimal" scenarios with � > 0 (i.e., with Kaluza-Klein excitations for
chiral MSSM fermions) can also lead to interesting collider phenomenology, provided

that proton decay is not a problem. Proton decay was discussed in Sect. 4. Mas-

sive Kaluza-Klein states for the chiral fermions will appear as heavier versions of the
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usual zero-mode fermions. If there is at least one generation of chiral fermions with

an in�nite tower of Kaluza-Klein excitations, then Kaluza-Klein momentum conser-

vation will prevent the �rst-excited gauge-boson Kaluza-Klein state from decaying

into the low-energy fermions associated with the MSSM generation that experiences

the extra dimensions. This would therefore be a unique experimental signature of

the fact that not all fermion generations have Kaluza-Klein towers (i.e., that � < 3).

Thus, by probing such signatures, one has the possibility of experimentally choosing

between viable TeV-scale string models or grand uni�cation scenarios! However, if

all three fermion generations experience the extra dimensions, then the �rst-excited

even gauge-boson Kaluza-Klein states are now stable and can also serve as suitable

dark-matter candidates.

One might worry about the fact that in a more general scenario in which gravity

experiences extra dimensions, the thermal regeneration of unstable gravitinos could

cause a problem during nucleosynthesis [26]. However, there may be solutions to this

di�culty when the e�ects of extra dimensions are taken into account in analyzing

the dynamics of the early universe [22]. A priori , there are many e�ects that come

into play in the context of a higher-dimensional cosmology. In addition to the is-
sue surrounding higher-dimensional in
ation, additional issues include the e�ects of
extra dimensions on adiabatic density perturbations, on topological defects, and on

cosmological phase transitions. Indeed, being slightly bolder, one might even imag-
ine developing a possible explanation for the dimensionality of spacetime (i.e., the
number of large dimensions) along the lines of the approach followed in Ref. [27]. All

of these issues can be expected to have a profound e�ect on our understanding of
dynamics of the early universe, and are worthy of further study.

11 Conclusions and future prospects

In this paper, we have proposed a new framework in which the physics of conven-
tional grand uni�cation might be brought down to accessible energy scales, perhaps

even as low as a TeV. Our fundamental idea involves the appearance of extra large
spacetime dimensions. The appearance of extra spacetime dimensions is a natural
feature in string theory, and their radii are generally un�xed by string dynamics.

Therefore, by postulating the appearance of relatively large extra dimensions, we

have shown that the physics of conventional grand uni�cation can be addressed in an

entirely new context. Speci�cally, we have shown that gauge coupling uni�cation is

preserved by extra dimensions, and moreover that the uni�cation scale is signi�cantly
lowered. This leads to the exciting possibility of intermediate-scale grand uni�cation.

We found that proton decay can also be avoided | even with the smaller uni�cation

scale | thanks to various new symmetry properties pertaining to the extra spacetime
dimensions. Furthermore, we showed that extra dimensions also provide a natural

setting in which to address the fermion mass hierarchy problem, for such extra di-
mensions tend to signi�cantly amplify the e�ects of relatively small 
avor-dependent
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couplings. It is also possible to consider the e�ects of extra spacetime dimensions on

the running of the soft SUSY-breaking masses.

Although we primarily applied our scenario to the Minimal Supersymmetric Stan-

dard Model (MSSM), the e�ects of extra dimensions are completely general and can

just as easily be applied in a number of other di�erent contexts. To illustrate this,

we also considered the role of extra dimensions in the non-supersymmetric Standard

Model, and found that once again they can lead to gauge coupling uni�cation at

very low energy scales. This would then be a non-supersymmetric \solution" to the

gauge hierarchy problem. We also considered the embedding of our scenario into

string theory, and found that there exist several very natural string and D-brane

settings in which our scenario can be realized. Moreover, within this context, we

also proposed a new method for addressing the fermion mass hierarchy which can be

realized in non-perturbative open-string theories and which does not require the ad

hoc introduction of low-energy 
avor-dependent couplings.

Overall, however, we stress that the most exciting aspect of this approach to

grand uni�cation is that it permits the predictions of GUT physics (and indeed even

of string theory itself) to be brought down to accessible energy scales! Thus, if this
framework is correct, we can expect to witness strong and unmistakable signals in the
next round of accelerator experiments. Such signals were discussed in Sect. 10, and in

fact experimental evidence for extra large spacetime dimensions has \already" been
found [28] in the year 2011. Moreover, our scenario should also have important and
dramatic implications for cosmology. Taken together, therefore, our results suggest

an entirely new approach towards probing | both theoretically and experimentally
| the physics of grand uni�cation as well as the phenomenology of large-radius string

compacti�cations.
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Appendix A

In this Appendix, we shall discuss the precise relation between extra spacetime

dimensions and Kaluza-Klein modes. Speci�cally, we shall exactly calculate the ef-

fects of the in�nite towers of Kaluza-Klein states on the \running" of the gauge

couplings. This will also enable us to determine the extent to which the results of

such a calculation can be approximated by the expression given in (3.8).

Before beginning our calculation, let us summarize the main idea. As discussed

in Sect. 3, the result (3.8) can be easily obtained by treating the appropriate subset

of the MSSM as e�ectively being in D 
at spacetime dimensions, where D = 4 + �.
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Of course, geometrically speaking, a spacetime consisting of four 
at dimensions and

� circles of �xed radius R = ��10 is never equivalent to a 
at (4 + �)-dimensional

spacetime. However, we expect that as the energy scale � increases, the e�ective

length scale decreases, and consequently the �xed radius R \appears" to become

large. Thus, as we shall see, there are essentially two equivalent pictures that can be

used to describe the same physics.

Our procedure will be to adopt the strict four-dimensional point of view, and to

evaluate the vacuum polarization diagram shown in Fig. 15 where we include the

e�ects of the MSSM particles as well as the appropriate Kaluza-Klein excitations in

the loops. Note that parts of our calculation are similar to a calculation in Ref. [29].

For simplicity, we shall begin by performing our calculation in the case of a single

Dirac fermion and its corresponding Kaluza-Klein excitations. Since the e�ects of

these Kaluza-Klein excitations will essentially be the same for each particle that has

Kaluza-Klein excitations, and since these e�ects are likewise universal for all theories

(whether QED or the MSSM), we can generalize our results to the full MSSM in the

�nal step.

k k

q

q+k

µ ν

Figure 15: The vacuum polarization diagram. We include the e�ects of extra Kaluza-Klein

modes in the loops.

For a single Dirac fermion with Kaluza-Klein excitations, the vacuum polarization
diagram in Fig. 15 is given by

���(k) = �
1X

ni=�1

g2
Z 1

0

d4q

(2�)4
Tr

 

�

1

6 q �mn


�
1

6 k+ 6 q �mn

!
(A.1)

where we have used the notation

1X
ni=�1

�
1X

n1=�1

1X
n2=�1

� � �
1X

n�=�1

(A.2)

to represent a summation over all corresponding Kaluza-Klein excitations with masses
m2

n
given in (2.3). In (2.3), m0 is the energy of the ground state, which we will

henceforth take to be zero for simplicity. Restricting our summation to only the

ni = 0 term therefore amounts to considering only the original fermionic state without
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its Kaluza-Klein excitations, and opposite values of ni correspond to Kaluza-Klein

states whose ith circle momenta are in opposite directions. The overall sign in (A.1)

arises due the fermion loop.

Here and throughout we shall assume the presence of a suitable ultraviolet regu-

lator with cuto� � in order to justify our subsequent manipulations. We shall discuss

our regulator explicitly when its form becomes crucial for our analysis.

Our initial steps are completely standard. Using gauge invariance to de�ne �(k2)

via (3.7), we contract the Lorentz indices and evaluate the trace to obtain

�(k2) = � 8g2

3k2

1X
ni=�1

Z 1

0

d4q

(2�)4

(
�(k + q) � q + 2m2

n

(q2 �m2
n
) [(k + q)2 �m2

n
]

)
: (A.3)

Passing to Euclidean momenta, introducing the Feynman x-parameter to combine

the propagators, and keeping only terms in the integrand that are even in q then

yields

�(k2) = � 8g2

3k2

1X
ni=�1

Z 1

0
dx
Z 1

0

d4q

(2�)4

(
q2 � x(1� x)k2 + 2m2

n

[q2 + x(1� x)k2 +m2
n
]2

)
: (A.4)

Our next step is to rewrite this expression in terms of a Schwinger proper-time
parameter t using the identity

1

A2
=
Z 1

0
dt t e�At : (A.5)

This yields

�(k2) = �8g2

3k2

1X
ni=�1

Z 1

0
dx
Z 1

0
dt t

Z 1

0

d4q

(2�)4
[q2 � x(1� x)k2 + 2m2

n
] �

� exp
n
�t[q2 + x(1� x)k2 +m2

n
]
o
; (A.6)

and performing the momentum integrations via the identities

Z 1

0

d4q

(2�)4
e�tq

2

=
1

16�2t2
;

Z 1

0

d4q

(2�)4
q2 e�tq

2

=
1

8�2t3
; (A.7)

we obtain

�(k2) = � g2

6�2k2

1X
ni=�1

Z 1

0
dx
Z 1

0

dt

t

�
2

t
� x(1� x)k2 + 2m2

n

�
�

� exp
n
�t[x(1� x)k2 +m2

n
]
o
: (A.8)

Integrating the �rst term by parts then yields

�(k2) =
g2

2�2

1X
ni=�1

Z 1

0
dx x(1� x)

Z 1

0

dt

t
exp

n
�t[x(1� x)k2 +m2

n
]
o
: (A.9)
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Let us now perform the summation over the Kaluza-Klein states. In order to do

this, we recall the de�nition of the Jacobi #3 function:

#3(�) �
1X

ni=�1

exp(�i�n2) (A.10)

where � is a complex number. This function has the remarkable property that

#3(�1=�) =
p
�i� #3(�) (A.11)

where one chooses the branch of the square root with non-negative real part. We can

thus rewrite our result (A.9) in terms of this function as

�(k2) =
g2

2�2

Z 1

0
dx x(1� x)

Z 1

0

dt

t
e�tx(1�x)k

2

�
#3

�
it

�R2

���
; (A.12)

whereupon we �nd that �(0) is

�(0) =
g2

12�2

Z 1

0

dt

t

�
#3

�
it

�R2

���
: (A.13)

At this step, we must introduce our infrared and ultraviolet regulators, along

with their corresponding cuto�s. Let us �rst recall that the ultraviolet and infrared
divergences in this expression arise from the t ! 0 and t ! 1 limits of integration

respectively. Therefore, it is simplest to render this expression �nite in both limits
by introducing upper and lower cuto�s on the t-integration:

Z 1

0
dt �!

Z
r�
�2

0

r��2
dt : (A.14)

Here � is our ultraviolet cuto�, �0 is our infrared cuto�, and the numerical coe�cient

r (which ultimately relates these cuto� parameters to underlying physicalmass scales)
is de�ned as

r � � (X�)
�2=� (A.15)

where X� is de�ned in (3.10). As we discussed in Sect. 3, such a precise value of

X� or r cannot be deduced purely on the basis of such a non-renormalizable theory

alone, and instead requires outside information. However, in Appendix B we shall

show that this is the correct relative normalization factor that relates the cuto�
parameters r��2 and r��20 in (A.14) to the underlying physical mass scales � and �0
used in Sect. 3.

Looking at (A.13), we see that the limit of the usual four-dimensional theory

without Kaluza-Klein modes can be obtained by setting #3 = 1. This is equivalent
to setting R! 0, which essentially makes all Kaluza-Klein modes in�nitely massive.

For all values of �, this then produces the expected result

�(0) =
g2

6�2
ln

�

�0
=

g2b

8�2
ln

�

�0
(A.16)
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where we have identi�ed b = 4=3 as the beta-function coe�cient of our single Dirac

fermion.

Let us now generalize this result to the present case of the full MSSM. As we

discussed in Sect. 3, not all of the MSSM states have Kaluza-Klein excitations. In-

deed, while the zero-mode states with ni = 0 correspond to the full MSSM spectrum

(for which the corresponding beta-function coe�cients are denoted bi), only some of

these �elds will have Kaluza-Klein excitations. The beta-function coe�cients ~bi cor-

responding to these Kaluza-Klein modes at each non-zero mass level fnig are given
in (3.9). Thus, generalizing (A.13) to the case of the full MSSM, we �nd that

�(0) =
g2
i
bi

8�2
ln

�

�0
+

g2
i
~bi

16�2

Z
r�
�2

0

r��2

dt

t

(�
#3

�
it

�R2

���
� 1

)

=
g2
i
(bi � ~bi)

8�2
ln

�

�0
+

g2
i
~bi

16�2

Z
r�
�2

0

r��2

dt

t

�
#3

�
it

�R2

���
: (A.17)

In the �rst line, we have explicitly separated the zero-mode contributions (which yield
the �rst term) from the higher-mode contributions (which yield the second term).

Since the #3 functions implicitly include the contributions from the zero-modes, we
have explicitly subtracted these contributions from the integrand of the second term

by writing #�3� 1. Thus, passing to the second line of (A.17), we see that the second
term represents the contributions from the complete Kaluza-Klein towers that would
have existed if the zero-mode states had matched the excited states in our theory,

while the �rst term represents the compensating adjustment that arises because the
zero-modes and excited states are actually di�erent. Taken together, (A.17) then
implies that

��1
i
(�) = ��1

i
(�0) �

bi � ~bi

2�
ln

�

�0
�

~bi

4�

Z
r�
�2

0

r��2

dt

t

�
#3

�
it

�R2

���
: (A.18)

The result (A.18) gives the exact running of the MSSM gauge couplings in the
presence of an in�nite tower of Kaluza-Klein states associated with � extra dimensions

compacti�ed on circles of radius R. Indeed, the e�ect of the Kaluza-Klein modes is

completely incorporated within the #3 function. Note that this result is true for any

mass scales � and �0 | in particular, we need not identify �0 with R
�1.

However, we expect that it is a valid description of the physics to treat the ap-
propriate subset of the MSSM as being in D 
at dimensions for energy scales much

larger than R�1. We shall now demonstrate in what sense this is true.

Let us suppose, for the moment, that �0 and � are both much larger than R�1.

(Of course, strictly speaking, we will ultimately want to identify �0 with R�1, but

we will assume �0 � R�1 for now and defer a discussion of the errors this introduces

until later.) In this case, we have t=R2 � 1, and we can approximate the #3 function
using (A.11), obtaining

#3

�
it

�R2

�
� R

r
�

t
: (A.19)
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Inserting this approximation back into (A.18) and evaluating the integral, we then

obtain

��1
i
(�) = ��1

i
(�0) �

bi � ~bi

2�
ln

�

�0
�

~biX�

2��
R� (�� � ��0) : (A.20)

If we now identify R�1 with �0, we �nd

��1
i
(�) = ��1

i
(�0) �

bi � ~bi
2�

ln
�

�0
�

~biX�

2��

2
4 �

�0

!�

� 1

3
5 ; (A.21)

in agreement with (3.12). Thus, for su�ciently high energy scales, we see that our

explicit Kaluza-Klein calculation reproduces the gauge coupling relations used in

Sect. 3.

Finally, we must discuss the validity of the approximation �0;�� R�1 that was

used in obtaining (A.19), especially in light of the fact that we ultimately wish to

identify �0 = R�1 and � = M 0
GUT. To what extent does this disturb the validity of

the above calculation? Due to the di�culty of analytically integrating the #-function,

this question is best answered numerically. However, it turns out that one cannot
discern any di�erence between Fig. 1 (in which the exact results (A.18) are plotted)
and the approximate results based on (3.12). Thus, we conclude that the assumption

of D 
at spacetime dimensions for the non-chiral sector of the MSSM at energy scales
above �0 provides an excellent approximation to the full Kaluza-Klein theory.

Appendix B

In this Appendix, we shall show that the truncated Kaluza-Klein theory is also
an excellent approximation to the full Kaluza-Klein theory for the purposes of calcu-
lating the scale-dependence of the gauge couplings and Yukawa couplings. This will

ultimately enable us to calculate the exact value of X� given in (3.10).
To do this, let us for the moment consider a simple �ve-dimensional U(1) gauge

theory along with an arbitrary spectrum of zero-mode ground states with beta-

function coe�cient b1 as well as an arbitrary tower of Kaluza-Klein excitations
with beta-function coe�cient ~b1. If the extra dimension has radius R, then this

Kaluza-Klein tower of excited states will consist of two Kaluza-Klein states of mass
� �0 � R�1, two additional Kaluza-Klein states of mass � 2�0, two more of mass

� 3�0, and so forth. There are two Kaluza-Klein states at each mass level because

there are two possible directions for the Kaluza-Klein momentum in the �fth direc-
tion.

Let us now consider the running of our U(1) gauge coupling in the presence
of this Kaluza-Klein spectrum. We shall �rst ignore the e�ects of the zero-modes

(which by themselves always give logarithmic running), and concentrate solely on

the contributions of the non-zero Kaluza-Klein excitations. Rather than consider
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all of these Kaluza-Klein states running in the loops at once (as in Appendix A),

our fundamental idea here will be to introduce these states only at their thresholds,

two each at every mass threshold mn = n�0. If our Kaluza-Klein tower has beta-

function coe�cient ~b1, then each time we cross a threshold the e�ective beta-function

coe�cient increases by 2~b1 because each threshold produces two extra massive copies

of the same Kaluza-Klein states. Thus, after n thresholds (i.e., for energy scales

n�0 � � � (n + 1)�0), our beta-function coe�cient has grown to b1 + 2n~b1. Adding

these incremental contributions together (and restoring the contribution from the

zero-modes), we thus �nd the result

��11 (�) = ��11 (MZ) �
b1

2�
ln

�

MZ

�
~b1

2�

 
2n ln

�

�0
� 2 lnn!

!
: (B.1)

In other words, for any value of �, our gauge couplings will be given by (B.1) where

we identify n � [�=�0] where [r] signi�es the greatest integer not exceeding r.

Since we are interested in physics only below the scaleM 0
GUT, in this approach we

are free to disregard Kaluza-Klein states of masses exceeding M 0
GUT. Thus, at every

step in the evolution of our U(1) gauge coupling, we have a completely renormalizable
�eld theory . Indeed, the only di�erence relative to the usual MSSM is a �nite set

of extra states whose masses are regularly spaced in multiples of �0. Note that we
have chosen to limit our attention to an abelian gauge group. This is because our
Kaluza-Klein states will necessarily include massive copies of our low-energy gauge

bosons, and it is immediately clear that abelian massive gauge bosons are consistent
with renormalizability. However, it turns out that such a truncated Kaluza-Klein

theory is renormalizable even in the case of non-abelian gauge groups; this will be
discussed in Appendix C.

Given that this theory is completely renormalizable, there are no ambiguities

regarding the interpretation of cuto�s and mass scales. Indeed, (B.1) may be regarded
as a true renormalization group equation. We can therefore compare this prediction

with that based on our non-renormalizable higher-dimensional theory in order to
resolve any numerical cuto� or mass-scale ambiguities.

To do this, let us consider the prediction (3.13) from our non-renormalizable �eld

theory, restricted to the U(1) case. For simplicity, we may formally take a derivative
of (3.13) to write

d

d ln�
��11 (�) = � b1 � ~b1

2�
�

~b1X�

2�

 
�

�0

!�

(B.2)

where we have rewritten � ! � for notational convenience. Indeed, we may regard
(B.2) as providing a de�nition for X�. Note that this result should hold, in principle,

for any value of �, no matter how large. Let us now compare this di�erential equation

with the prediction of our above discrete approach for � = 1. It is clear that our
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discrete approach gives the corresponding RGE

d

d ln�
��11 (�) = � b1 � ~b1

2�
�
~b1

�

"
�

�0

#
: (B.3)

Once again, this result should hold for any �, no matter how large. As �=�0 ! 1,

we can approximate [�=�0] � �=�0 in (B.3). We thus immediately �nd that X1 = 2.

We may also check this result numerically. Taking X1 = 2, it is straightforward to

verify that that (B.1) and (3.13) give closely matching curves, even for relatively small

values of �. In Fig. 16, we show an extreme case: we take �0 = 105 GeV, and compare

the discrete result (B.1) against the full analytical result (A.18). Moreover, for this

�gure we have arti�cially in
ated the value of ~b1 (taking ~b1 = b1 = 33=5 rather than

its true value ~b1 = 3=5) in order to magnify the di�erences between the two curves

and render these di�erences visible in Fig. 16. Even with this magni�cation, we see

that the agreement is excellent. Thus, we see that we are free to interpret � as the

physical mass scale provided we take X1 = 2.

Figure 16: Comparison between the renormalizable discrete threshold approach (upper

curve) and the full non-renormalizable approach (lower curve). We have taken �0 = 105

GeV and � = 1, and for the clarity of this �gure we have arti�ciallymagni�ed the di�erence

between the two curves by a factor of 11 (see text). We see that the agreement between

the two curves remains excellent, even in this extreme case.

Finally, let us consider the situation in higher dimensions. Once again, our discrete
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threshold approach yields the RGE

d

d ln�
��11 (�) = � b1 � ~b1

2�
�

~b1

2�
N(�; �0) (B.4)

where N(�; �0) is the number of Kaluza-Klein states with masses less than �. Note

that by de�nition, N(�; �0) is the number of solutions to the equation

�X
i=1

n2
i
�

 
�

�0

!2

; ni 2 ZZ : (B.5)

For large �=�0, this is well-approximated as the volume of a �-dimensional sphere of

radius �=�0:

N(�; �0) =
��=2

�(1 + �=2)

 
�

�0

!�

: (B.6)

Comparing with (B.2) then yields the result for X� quoted in (3.10). Thus, once
again, we �nd that we may interpret the cuto� � in Sect. 3 as a physical mass scale
provided we take the appropriate value for X�. Although our analysis in this section

is restricted to the case of a U(1) gauge group, these values for X� are universal for
all gauge groups because they re
ect nothing more than the universal enhancement

factors due to the appearance of Kaluza-Klein states and/or extra spacetime dimen-
sions. Indeed, as we shall demonstrate in Appendix C, the truncated Kaluza-Klein
theory is renormalizable even in the non-abelian case.

Finally, let us brie
y discuss the signi�cance of the fact that we can model the
scale-dependence (or cuto�-dependence) of the gauge couplings as resulting from an
e�ective renormalizable theory.� In general, since we are evolving the physics from

the infrared to the ultraviolet within the context of a non-renormalizable �eld theory,
there is always the danger that there will exist additional relevant operators at higher

scales whose e�ects we are not including. In general, this should limit the validity
of our approach. However, for the purposes of examining the evolution of gauge and
Yukawa couplings (which are ultimately wavefunction renormalization calculations),

such operators will have no e�ect. This then explains why the truncated Kaluza-

Klein theory succeeds so well in modelling the evolution of these couplings, which

has been our main focus in this paper. Nevertheless, it is possible that there will
exist physical processes for which such operators will play an important role, and for

which a renormalizable truncated Kaluza-Klein theory will not be appropriate.

Appendix C

In this Appendix, we shall provide a technical background discussion concern-

ing the renormalizability and gauge invariance of truncated Kaluza-Klein theories.

�We thank R. Rattazzi for discussions on this point.
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Speci�cally, we shall demonstrate the renormalizability of the non-abelian truncated

Kaluza-Klein theory on the ZZ2 orbifold discussed in Sect. 2 by demonstrating the close

analogy between this theory and the ordinary Higgs mechanism of four-dimensional

gauge theories (which we know preserves renormalizability).

For simplicity, we shall restrict ourselves to the pure gauge part, and begin the

discussion by considering abelian gauge �elds. For an abelian gauge theory in �ve

dimensions, the pure gauge Lagrangian is given by

L = � 1

4
FabF

ab (C.1)

where a; b = 1; :::; 5 and where Fab � @aAb � @bAa. Let us now compactify the �fth

dimension on a circle of radius R and rescale our Kaluza-Klein modes:

(A(n)
�
; A

(n)
5 ) !

p
2 (A(n)

�
; A

(n)
5 ) : (C.2)

We then obtain

L = � 1

4

1X
n=0

F (n)2
��

+
1

4

1X
n=1

(@�A
(n)
5 +

n

R
A(n)
�
)2 : (C.3)

Note that the resulting Lagrangian is gauge-invariant for any A(n)
�
, with non-linear

gauge transformations

A(n)
�

! A(n)
�

+ @��
(n)

A
(n)
5 ! A

(n)
5 � n

R
�(n) (C.4)

where �(n) is the gauge transformation parameter. It is straightforward to compare
this result with that of the usual U(1) abelian Higgs model. If we de�ne the massive
gauge �eld

B(n)
�

= A(n)
�

+
R

n
@�A

(n)
5 ; (C.5)

we see that B(n)
�

has mass n=R. We thus construct the analogy with the abelian

Higgs model by associating

e () n ; v () 1=R (C.6)

where e is the electric charge of the abelian gauge �eld in the abelian Higgs model

and where v is the VEV of the Higgs �eld. The Nambu-Goldstone boson of the

spontaneously broken U(1) associated with A(n)
�

is therefore A
(n)
5 .

In �ve dimensions, Lorentz invariance allows us to add a gauge-�xing term, and

the full pure gauge Lagrangian reads

L = � 1

4
F 2
ab
� �

2
(@aAa)

2 : (C.7)
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Note that when reduced to four dimensions, the gauge-�xing term becomes

��
2
(@aAa)

2 = � �

2

1X
n=0

�
@�A(n)

�
� n

R
A
(n)
5

�2
: (C.8)

Thus, for � = 1, we see that we obtain a four-dimensional 't Hooft renormalizable

gauge. Hence the dimensional reduction of the Lagrangian in (C.7) gives the four-

dimensional result

L = �1
4

1X
n=0

F (n)2
��

� 1

2

1X
n=0

"
(@�A(n)

�
)2 � n2

R2
(A(n)

�
)2
#

+
1

2

1X
n=1

"
(@�A

(n)
5 )2 � n2

R2
(A

(n)
5 )2

#
: (C.9)

For n � 1, this Lagrangian then leads to the propagators �(n)
��
(k) and �(n)(k) for the

gauge �elds and Nambu-Goldstone bosons respectively, where

�(n)
��
(k) =

�ig��
k2 � n2=R2 + i�

�(n)(k) =
i

k2 � n2=R2 + i�
: (C.10)

These propagators are well-behaved as k ! 1. Thus, we conclude that the whole
theory is renormalizable for any (�nite) number of Kaluza-Klein states. Of course, the
theory becomes non-renormalizable if we consider the full, in�nite tower of Kaluza-

Klein states.
Having explicitly demonstrated that the truncated abelian Kaluza-Klein theory

is renormalizable, we can now easily repeat the above steps for the non-abelian case.
Every step carries through as before. Thus, we conclude that even the non-abelian

truncated Kaluza-Klein theory is renormalizable. For completeness, we give the non-

linear realization of the gauge symmetry for the massive Kaluza-Klein levels:

�Aa(n)
�

= @��
a(n) � 1

2
fabc

X
m

h
Ab(n�m)
�

+ Ab(n+m)
�

i
�c(m)

�A
a(n)
5 = � n

R
�a(n) � 1

2
fabc

X
m

h
A
b(n�m)
5 + A

b(n+m)
5

i
�c(m) (C.11)

where fabc are the structure constants of the non-abelian gauge group and where �a(n)

are the gauge transformation parameters.
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