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Fracture functions and their evolution equation are reviewed. Some phenomeno-

logical applications are brie
y discussed.

Fracture functions 1 have been introduced to extend the usual QCD im-

proved parton picture of semi-inclusive deep inelastic processes to the low

transverse momentum region of phase space, where the target fragmentation

contribution becomes important. Trentadue and Veneziano 1 proposed to de-

scribe such contribution as a convolution of a new phenomenological distribu-

tion, the fracture function, with a hard cross section

�T =

Z
dx0

x0
M i

AA0(x0; z; Q2)�̂i(x=x
0; Q2): (1)

The fracture function M i
AA0

(x; z;Q2) represents the probability of �nding the

parton i in the hadron A with momentum fraction x while observing the

hadron A0 in the inclusive �nal state with momentum fraction z. In the case

in which the momentum transfer t = j(pA � pA0)2j is measured we de�ne 3

Mi
AA0

(x; z; t; Q2), a t-dependent (extended) fracture function.

The same idea of fracture functions implies the existence of a new factor-

ization theorem which allows to write eq. (1). In the case of inclusive DIS one

can use OPE but in semi-inclusive processes the straightforward application

of OPE fails. The problem comes from the fact that OPE gives a predic-

tion for amplitudes, whereas we need an expansion for cross-sections, i.e. cut

amplitudes. A possible way out is to use cut vertices.

The cut-vertex expansion 2 is a generalization of OPE where local oper-

ators are replaced by non-local objects, i.e. cut vertices. Such an expansion

allows to treat more general processes. Let us consider semi-inclusive DIS in
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(�3)6, that is the scattering reaction p+ J(q)! p0 +X where J = 1=2 �2. In

the region p0t � Q or equivalently t � Q2, the relevant diagrams are those in

Fig.1:
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Figure 1: Relevant decomposition in the region t� Q2

W (p; p0; q) =
X
�

Z
T�(p; p

0; k)H� (k̂; q)
d6k

(2�)6
(2)

where, given a vector k, k̂ = (k+;0; 0). De�ne:

v�(p; p
0; �x) =

Z
T�(p; p

0; k)�x�

�
�x�

k+

p+ � p0+

�
d6k

(2�)6
(3)

C� (x;Q
2) = H� (k

2 = 0; x; q2) (4)

where �x = x=(1� z). By taking moments we can write

W�(p; p
0; q) '

X
�

v��(p; p
0)C�

� (Q
2) � v�(p; p

0)C�(Q
2): (5)

Here v�(p; p
0) is a new cut vertex which contains the long distance dependence

of the cross section, whereas C�(Q
2) is a coe�cient function which is calculable

as usual in perturbation theory. The expansion is technically obtained 4 by

constructing an identity so as to isolate the leading term from the remainder,

and care has to be taken to remove the UV divergences hidden in eqs.(3)

and (4). Eventually one has to prove that the leading term is really leading.

This is not obvious since there is no Weinberg theorem for cut amplitudes.

Nevertheless, in order to �nd the leading behavior in the large Q2 limit one

can look at the singularities 5 at p2, p02, t ! 0. We �nd that the leading

singularities are given by diagrams of the kind of Fig.1, and so we can say

that the cut-vertex expansion really gives the leading contribution. In QCD

one has the complication that soft gluon contributions are not suppressed as

in (�3)6 by power counting. However, by using gauge invariance, it can been

shown that they cancel out 6.
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The coe�cient function appearing in the cut-vertex expansion is exactly

the same as in the inclusive case since it comes from the hard part of the graphs.

This means that the Q2 evolution is dictated by the anomalous dimension of

the same minimal twist local operator. By using renormalization group we can

write eq. (5) in QCD as

Wn(z; t; Q
2) =

X
i

M
i
n(z; t; Q

2) Ci
n(1; �S(Q

2)) (6)

where we have de�ned 3

M
j
n(z; t; Q

2) � V i
n(z; t; Q

2
0)

"
e

R �S(Q2)

�S
d�


(n)(�)

�(�)

#
ij

(7)

just in terms of the cut vertex V i
n(z; t; Q

2
0). It follows that the evolution equa-

tion for t-dependent fracture function is a standard DGLAP equation

Q2 @

@Q2
M

j
A;A0

(x; z; t; Q2) =
�S(Q

2)

2�

Z 1

x

1�z

du

u
P
j
i (u)M

i
A;A0(x=u; z; t; Q2): (8)

In the perturbative region of t we can give a de�nition 8 of M
j
AA0

(x; z; t; Q2)

based on Jet Calculus 7
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Figure 2: Perturbative de�nition of the t-dependent fracture function

M
j
AA0

(x; z; t; Q2) =
�S(t)

2�t

Z 1�z

x

dr

r

Z 1

z+r

dw

w(w � r)
F i
A(w; t)P̂

kl
i

� r
w

�
�

� Dl;A0

�
z

w � r
; t

�
E
j
k(x=r; t; Q

2) (9)
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where P̂ kl
i is the real splitting function and E

j
k(x; t;Q

2) is the evolution kernel

from the scale t to Q2. If we de�ne the ordinary fracture function as an integral

up to a cut o� of order Q2, say �Q2, the inhomogeneous evolution equation 1

for fracture functions is recovered up to log � corrections

Q2
@

@Q2
M

j
A;A0

(x; z;Q2) =
�S(Q

2)

2�

Z 1

x

1�z

du

u
P
j
i (u)M

i
A;A0(x=u; z;Q2)

+
�S(Q

2)

2�

Z x

x+z

x

du

x(1� u)
F i
A(x=u;Q

2)P̂
jl
i (u)Dl;A0

�
zu

x(1� u)
; Q2

�
:(10)

Fracture functions are now measured at HERA and the scaling violations ob-

served in experimental data are consistent with the evolution pattern presented

here 9.

Fracture functions give the possibility of selecting interesting channels.

This fact could be used to test target independence of suppression of the �rst

moment of the polarized proton structure function 10. Another interesting

possibility could be to select a gluon by requiring a proton in the inclusive

�nal state and study correlations with heavy quark production.

What about hadron-hadron scattering? One would like to use HERA

data on fracture functions to give predictions for hadron-hadron scattering.

However the general claim is that the factorization theorem for di�ractive

hadron-hadron scattering fails to hold, since the cancellation at work in the

inclusive case does not apply here. Nevertheless we believe that further work

is needed to asses this conclusion.

Summing up, we can say that fracture functions and their evolution equa-

tions are now well understood. We have given them an interpretation based

on a formalism which is a direct generalization of OPE. Having proved the

factorization theorem, fracture functions can now be reliably used to describe

semi-inclusive hard processes in the target fragmentation region.
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