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Experimental Evidence for a Large Collinear Electric Field Gradient of Ir in hcp-Co
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Measurements of quadrupole-interaction-resolved NMR on oriented nuclei were performed on
188]r in a hcp-Co single crystal. The magnetic and electric hyperfine interaction frequencies were
determined as function of the anglebetween the electronic magnetizatioh and the single crystal
¢ axis. A large collinear electric field gradient (CEFG) (principal axis paraM®l was found,
eq© = —0.378(7) X 10'7 V/cn?. Within the series of theéd elements Ir, Pt, Au, and Hg this is
exceptional: The experimental CEFG'’s of Pt, Au, and Hg in hcp-Co are atdenstders of magnitude
smaller and consistent witty(©) = 0. [S0031-9007(98)05894-3]

PACS numbers: 76.60.Jx, 75.50.Bb, 76.60.Gv, 76.80.+y

It is well known that an electric field gradient (EFG) fcc-Co, eq(©(AuFe) = —0.113(5) X 10'7 V/en? [5],
exists at the nuclear site of atoms dissolved as dilute impueg(©)(AuCo"®) = (-)0.11(3) x 10'7 V/ecm? [7], one
rities in the cubic ferromagnetic hosts Fe, Ni, and fcc-Camight conclude that the CEFG of Au in hcp-Co is zero be-
[L-10]. The existence of an EFG in a cubic ferromagneticause of a symmetry of the local electronic wave function.
host lattice has been attributed to an unquenched orbitéh order to clarify whether the CEFG’s are comparably
momentum caused by the spin-orbit interaction of dldle  small for all 54 elements, we performed measurements on
electrons [4,8,9]. The principal axes system of this EFGPt, Hg, and Ir in hcp-Co. Actually, for Pt and Hg in hcp-
is given by the direction of the magnetization; the electricCo a similar behavior was found as for Au: The CEFG
and magnetic hyperfine interactions are thus collinearis—if at all existent—extremely small and consistent with
Especially for5d4 elements the collinear EFG (CEFG) zero, too: |eq©(PtCo"P)| = 0.008 X 10'7 V/cn?,
eq'©) is relatively large. Experimental data exist foFlr  |eq©)(HgCo™P)| < 0.013 X 10'7 V/cn? [6]. For Ir
[1,4,10], INi [1,4], AuFe [5], AuNi [6], AuCo™® [7],  in hcp-Co, however, now completely unexpected, a very
PtFe [6], and PCo ") [6]. As the CEFG originates from large CEFG was found. These experiments are pre-
the spin-orbit interaction of thed electrons at the impu- sented here.
rity site, such a CEFG could exist also fed elements The hyperfine interaction of radioactive isotopes at
as dilute impurities in hcp-Co. In hcp-Co, however, asubstitutional lattice sites in ferromagnetic hcp-Co con-
relatively large EFG exists because of the noncubic latticsists of a magnetic-dipole and an electric-quadrupole
structure, which we denote in the following as lattice EFGcontribution:

(LEFG) eq'l). Both contributions can be separated due (i) The magnetic hyperfine fiel#yr is parallel (an-

to the different transformation properties against rotationiparallel) to the electronic magnetizatiai, the absolute

of the magnetization/ with respect to the crystal axis  magnitude depending (slightly) on the angle betweén
Whereas the CEFG is (to first approximation) invariantand the single-crystat axis. The magnetic interaction
against rotation of the magnetization, the LEFG hadrequency is given by

second-order-tensor transformation properties. Actually, Viae = | h||Bur + Bol 1
for CoCo™<P) the existence of a small rotation-invariant s g'uf// HE ob (1)
EFG has been reported in the literature [11,12]. Thus, By = Bext — Baem (2)

taking into account that the CEFG’s 6# elements in Fe where B, is the applied external magnetic fielBy is
and Ni are by~2 orders of magnitude larger than thosethe (effective) external magnetic field at the nuclear site,
of the 3d elements, a moderately large CEFG was to beandBg.r, is a demagnetization field, which depends on the
expected for5d elements in hcp-Co. First experiments geometry of the sample.

on "8 AuCo®cP), however, gave evidence that the CEFG (ii) Because of the hexagonal symmetry of hcp-Co, an
for Au in hcp-Co is extremely small and consistentaxially symmetric lattice electric field gradient (LEFG)
with zero,eq©(AuCo ™) = —0.002(3) x 107 V/cm?  eq) exists, the principal axis being given by the single-
[13]. Comparing this with the CEFG of Au in Fe and crystalc axis. In addition, a CEFG¢'©) may exist, the
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principal axis being given by the direction 8f;r. The ,,gs") - ,,g’is"), (9)
strength of the electric interaction is described by the , ‘
. . . (c,L) (anis) (L) (c,anis)
gquadrupole interaction frequenmeé = +v . (10)
g = e2q Do /h, (3)  Experimentally,»,"” and »y"" are best obtained from

where ¢Q is the nuclear spectroscopic quadrupole mo-neasurements ofAv(#) for § = 0° (Avp) and 90
ment. For IFe, it was found recently that the CEFG de- (Avj). Actually, aSlyg)l < Vmag is not fulfilled here,
pends on the direction of magnetization with respect tahere is asmall deviation from theP,(cos#) dependence
the crystallographic axes [10]. Such a directional depenof the effective lattice quadrupole interaction. In the data
dence of the CEFG might also occur for hep-Co; it is—if analysis this has been taken into account properly. In the

existent—in first ord‘er describgd by absence of a CEFG\ Vyz/AVé — —2is expected.
V(QC) = yg’ls") + yg’anls)pz(cose), (4) In the NMR-ON method the resonant absorption of an
applied radio frequency (rf) field is detected via nuclear

whered is the angle between the electronic magnetizatior}adiation [14]. The angular distributioW (s) of y rays

M and the single crystal axis. L . emitted in the decay of oriented nuclei at the temperature
In the absence of an external magnetic fiBlg,, or if T is given by

Bex. is applied parallet, M andf?HF are parallel to the:

axis, which is the direction of spontaneous magnetization.  w(g9) = 1 + Z AyBi(a,)Pr(cos®) Oy , (11)

We denote this as ‘O geometry.” By applying an & ‘even

external magnetic field... perpendicular to the axis  \yhere all parameters have their conventional meaning

(“90° geometry”), the direction of the magnetization can[1s]. |n the present work the “anisotropy”

be turned away from the axis (Be: = 0) towards . .

the direction of the external magnetic field, which is e = W(0°)/W(90°) — 1 (12)

reached foBy = By (Bext = Bi + Baem), WhereBy = has been analyzed.

13.5 kG is the perpendicular anisotropy field. The angle Samples of'88IrCo®P) were prepared at the mass-

6 betweenM andc can be adjusted betweeri 8nd 90  separator ISOLDE/CERN!38Hg, obtained from the spal-

via Bey: It is obtained from the minimum of the total |ation reaction of 1 GeV protons on a liquid Pb target, was

energy implanted withE = 60 keV into a hcp-Co single crystal
Ew = K Si 0 + Kysirt 0 — M(6)B,. (5) disk (® = 10 mm; thickness 0.25 mm; axis parallel to

. the surface). The following decay chain is relevant:
where K; and K, are the known anisotropy constants . : 188 _
for Co. Hg(T1/2 = 3 min) — “°Au(T} 2, = 9 min)

The energy eigenvalugs,, of the nuclear spin system 188pt(T1/2 = 10.2d) — 188|r(T1/2 = 41.5h) — '380s.

are calculated by diagonalization of the Hamiltonian, . I . . .
y diag Using a’He-*He-dilution refrigerator with a top-loading

() (L) - .
H=Hy+Hy +DO)Ho D7'(0), facility, the samples were cooled to temperatures near
j{M = _thagIz > (6) 10 mK.
5 For O° geometry, measurements were performed for
apeh _ o) 3 — 10 + 1) ten different values oB.,, between 0 and 20 kG. Fig-
0 0 4121 —1) ure 1 shows both subresonanegsandr, as measured at

where D (9) is the normally used rotation matrix and Bext = 10 KG. The resonance shift of both resonances

is the nuclear spin. A set aff subresonance frequencies Was in perfect agreement with the expectation accord-

Vmomi1 = |Emt1 — Enl/h is obtained. ing to the knowng factor. The subresonance separation
In the following we confine ourselves fo= 1 (!88r). ~was—as expected—independent By,; the final aver-

Then two subresonances with frequenciggndy, exist.  a9¢€ value is

Let us, for a simplified discussion, first assume that the Avl = —38.08(1) MHz.

lattice quadrupole interaction is small compared to the . .
maanetic interaction ieIV(L)l < Then. first- The top part of Fig. 2 shows the result of a °90
9 r =h0 mag: ! geometry measurement fdB.,, = 18 kG, from which

order perturbation theory yields that the effective lattice® _ ) I N
quadrupole interaction follows B,(cos§) dependence: ~ Avg = +9.06(12) MHz s obtained. Thudwg/Avg =
—4.20(6), which is strongly different from-2 as expected
V) = viae(0) — iAV ) (7)  forapure lattice quadrupole interaction.

In principle, a deviation oAv,/Avg from —2 could
be due to an angular dependence of the principal com-
ponent of the LEFG. This could be due to an angular
(8) dependence of the Sternheimer effect. (The Sternheimer

(iso) (anis)

3
vy — v = Avp(0) = E[VQ + vg P(cosd)],
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FIG. 1. NMR-ON spectra of!®IrCo®er) measured in 0 W 0.00 k- R

geometry. Fory; the y anisotropy is reduced, whereas it is
enhanced for,. The latter is due to the population transfer
from the m = 0 sublevel to the energetically higher = 1

sublevel. Thus, with respect to thermal equilibrium, the sum -0.05
of populations of then = +1 and —1 states is enhanced by 4
the resonance absorption ai, which is accompanied by an

AN,
N

AN\
NS

increase of they anisotropy. 4
0.00 m .
factor takes into account the (anti)shielding of an externa —0.05 F |188 Bext = 13 kG ]
EFG—here the LEFG—by thiecal electrons at the im- ) IrCo ¥
purity site.) Then,vg) in Eg. (10) has to be replaced by +‘H
vo (0) = vy'[1 + a5’ Pa(cosh)], (13) 0.00 F i -
(L)

wherea, ~ is an anisotropy constant for the LEFG.
Thus, there are two extreme scenarios within which ¢
deviation ofAvlé/Avé from —2 can be explained, the : . . . .

-0.02 [ Bexr = 11 kG .

existence of a large CEFG or an angular dependenc 225 230 235 240 245
of vy'. These can be distinguished by a measurement ¢ Frequency (MHz)

Avy(0) as a function o). Whereas the zero passage of a8 (he )
Avp () occurs atd = 54.7° for the scenario of a pure /G- 2. NMR-ON spectra of "IrCo P} measured in 90
0 @ .. geometry for different values oB.,. It is obvious that the
angular-dependent;,, it is expected at = 64.0(1)° for  effective quadrupole interaction changes sign betwBgn =
the scenario of the large CEFG. 13 and 11 kG.
Therefore we measured the angular dependence of
the subresonance frequencies in° @@ometry. Several . - I 1
spectra are shown in Fig. 2. The resonance cemteamd 'S Proven that the strong deviation &t /Avg from —2
V> VS Bey are shown in Fig. 3. All data of the®0and must F’e duelstgo the existence of a large CE(EG'
90°-geometry measurement together were analyzed with Taking Q('*Ir) = +0.484(6) b [16] anda, "~ = 0, the
a least-squaredit, in which the isotropic and anisotropic final values for the EFG'’s of Ir in hcp-Co are
parts of the magnetic and the electric hyperfine _inte_racti_on eqD) + eqle™i® = —1790(23) x 10" V/cn?,
were free parameters, as well as the demagnetization field A .
and the exact angle betweernc andB.. For each value eq ) = —0.378(7) % 107 V/cn?.

of By, the angled was determined via Eq. (5). Figure 4 1q anisotropic part of the CEFG—if existent—cannot

shows Avy as function of 6. It is evident that the e geparated experimentally from the LEFG. The result
theoretical curves as obtained from theast-squaredit ¢, the isotropic part is, however, unique. In comparison
(full lines in Figs. 3 and 4) describe the experimental daty 51 known CEFG’s of3d. 4d. and 54 elements in

perfectly. The zero passage &%, occurs at 64.4(1.2) Fe, Ni, fcc-Co, and hcp-Co the CEFG ofCls(®eP) is
The least-squaredit result for the anisotropy constant of exceptionally large.

. (L) . L, . .
the LEFG isa; = ;0-02(7)- Thus the scenario of an  Summarizing, we have investigated the quadrupole
angular-dependent,,” can definitely be ruled out, and it interaction of 54 elements in hcp-Co to answer the
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question whether a collinear EFG acts, similar to those
known for the5d elements in Fe, Ni, and fcc-Co. The
situation for hcp-Co was found to be completely different:
Whereas the CEFG of Pt, Au, and Hg is very small—
the experimental results are consistent with zero—a very
large CEFG was found for Ir in hcp-Co. These findings
should stimulate theoretical work on this subject.
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FIG. 3. Dependence on the external magnetic field of the
subresonanceg; and v, in 90° geometry. The solid lines
are the result of deast-squaredit. The resonance crossing
(Avgy = 0) occurs atBe = 12.2 kG.
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