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Abstract

Acoustic shock waves passing through colliding cold neutron stars can cause repet-

itive superconducting phase transitions in which the proton condensate relaxes to its

equilibrium value via coherent oscillations. As a result, a resonant non-thermal produc-

tion of gamma rays in the MeV energy range with power up to 1052±1 erg/s can take

place during the short period of time before the nuclear matter is heated by the shock

waves.
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The recent discovery of the afterglow associated with the gamma ray bursts (GRB) [1]

has provided convincing evidence that the GRB originate at redshift z ∼ 1 from an event

that releases of order 1052 erg in photons (assuming the spherical symmetry of emission).

A number of theoretical attempts to explain the phenomenon invoked a small energetic

fireball [2]. Although many astrophysical events, for instance, neutron star collisions,

can release the required amount of energy, it is extremely difficult to reconcile the optical

thickness of a fireball with the short duration and the high energy of the gamma ray

burst it is supposed to produce. In this Letter we describe a new mechanism for the

gamma-ray production by the colliding cold neutron stars prior to the eruption of a

fireball. We comment on the possible connection of this phenomenon with the observed

GRB.

We will show that powerful acoustic shock waves passing through a neutron star can

cause repetitive superconducting phase transitions during which the relaxation of the

order parameter is accompanied by a resonant non-thermal production of photons with

energies of order MeV and the total power up to 1052±1 erg s−1. These gamma-rays are

copiously produced due to a coherent motion of the superconducting proton condensate.

Such oscillations can be powered by the density waves generated, for example, in the

collision of two neutron stars. The production of gamma rays continues until the medium

is heated to the temperature comparable to Tc, the superconducting phase transition

temperature.

When two neutron stars collide, the kinetic energy is transfered into the shock waves

that propagate through the nuclear matter and eventually dissipate their energy into

heat. The density variations in a relativistic shock wave are much slower than the time

scale of nuclear interactions. The interior of the neutron star is a superconductor because

it contains the superfluid proton condensate [3]. An acoustic wave excited by the initial

impact of a collision, or by some precursory tidal effects, causes large variations of density

in some macroscopic domains of the size of order the wavelength. The proton energy gap

depends on the density [4] as shown in Fig. 1; the shock wave can drive it to zero in some

formerly superconducting regions, or vice versa. Suppose a surge (or an ebb) of density
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Figure 1: Proton energy gap ∆0 at zero temperature as a function of density ρ and the
Fermi momentum p

F
of protons; based on Ref. [4].

destroyed superconductivity in some macroscopic region of the star. At a later time, as

the sound wave moves on, the original density is restored and the phase transition to

a superconducting phase takes place. The proton condensate φ changes from zero to

the value φ0, which minimizes the free energy. This relaxation process is described by

the generalized, time-dependent Ginzburg-Landau (GL) theory [5]. In nuclear matter

Tc ∼ 0.5 MeV. At low temperature T � Tc, φ oscillates until it settles in the minimum

(Fig. 2).

Coherent oscillations of the order parameter result in a non-thermal production of

electromagnetic radiation. We will see that such emission is very effective because it

occurs through a parametric resonance that produces some very large occupation num-

bers of photons in the MeV energy band. A resonant emission of Bose particles by a

coherently oscillating scalar field has been studied intensely in quantum field theory, in

particular, in application to cosmology [6]. We will adopt a very similar approach to a

semiclassical description of the gamma-ray emission via parametric resonance.

Eventually, the star is heated to the temperature above Tc by the acoustic shock

waves. At this time the proton condensate is destroyed, the resonant emission of photons

seizes, and the fireball erupts.
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Now we estimate the energy associated with the coherent motion of the proton con-

densate. As shown in Fig. 1, the energy gap depends sharply on density. Let us consider

a propagation of an (ultra-relativistic [7]) acoustic shock wave of sufficiently high am-

plitude through the interior of the neutron star. Density waves are characterized by the

time scale τa ∼ 10−7...10−3 s [8], and are very slow in comparison to the relaxation time

of the proton condensate which is of order MeV, or 10−20 s. The surge of density in

the acoustic wave converts the protons from the superconducting to the normal state.

As the density subsides, the superconducting transition takes place. The energy change

associated with proton condensation in the volume V is [9]

δE = V
m∗pF
4π2

∆2
0, (1)

where m∗ is the effective proton mass in nuclear matter, m∗ ≈ 0.6mp [4]; ∆0 is the

proton energy gap; and p
F

is the Fermi momentum. For density ρ ∼ 1014...1015 g cm−3,

p
F
∼ 102 MeV and ∆0

<
∼ 0.8 MeV [4]. This yields δE/V ∼ 103(MeV)4.

The proton condensate must dissipate energy δE in each cycle of the acoustic “pump-

ing” that repeat after time τa. Therefore, the power dissipated by the condensate in

volume V ∼ (4π/3)R3, where R ≈ 10 km is the radius of a neutron star, is

P =
δE

τa
≈
(

0.1µs

τa

)
1052 erg s−1. (2)

Analysis of the oscillation spectra of the neutron stars [8] gives the range of values for

the periods of various eigenmodes:

10−2µs <
∼ τa <

∼ 0.1s (3)

for magnetic field ∼ 1012 G. A larger magnetic field would give rise to modes with shorter

periods τa. Clearly, the higher-frequency modes provide more frequent pumping, forcing

the condensate to dissipate more energy.

If a sizeable fraction of the energy (2) stored in the motion of the proton condensate

at the onset of a phase transition is radiated away with gamma rays, the power of the
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Figure 2: After the phase transition, the order parameter oscillates around the minimum
of the effective potential.

resulting signal is consistent with that of observed GRB for the range of τa given by (3).

We will now describe the resonant emission of photons by the condensate.

Superconducting condensed-matter systems out of equilibrium display a number of

interesting phenomena related to time dependence of the order parameter. However, in

the case of a neutron star, the specific relative values of parameters, the MeV energy

scales, and the sharp dependence of the energy gap on density make it difficult to find

a close condensed-matter analogue. Nevertheless, one can use the general formalism

developed for nonequilibrium superconductivity.

In the presence of a magnetic field, the phase transition is first order [3]; it proceeds

through nucleation of bubbles that grow and coalesce. This process is described by

a time and coordinate dependent GL order parameter φ(x, t) [5]. For simplicity, we

will neglect the effects of magnetic field on the motion of the proton condensate after

the nucleation of the initial bubbles, whose t = 0 profile, φ(x, 0), serves as the initial

condition for the equation of motion (4) written below. This is a good approximation as

long as the magnetic field H is well below the critical value Hc. If the potential barrier

(Fig. 2) is much smaller than δE/V in equation (1) (which again requires H � Hc), the

maximal value of the field inside the critical bubble, φe ≡ maxx φ(x, 0) is not close to φ0.

The subsequent relaxation of the order parameter φ (assumed to be real) is described

by a partial differential equation [5]
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φ̈+
8ε

F

3c
φ̇−

2ε
F

3cm∗
∇2φ+

∂U(φ)

∂φ
= 0. (4)

Here φ(x, t) = (np/2m∗)
1/2
(

∆(x,t)
∆0

)
is the order parameter proportional to the energy gap

∆(x, t); ∆0 is the equilibrium value (Fig. 1) that corresponds to φ0 = (np/2m∗)
1/2 ≈

20 MeV. (Note that we have included the proton mass m∗ in the normalization of φ, so

as to make its dimension one in mass units; the GL order parameter is often normalized

differently [5, 9], in which case m∗ reappears in the gauge coupling.) ε
F

is the Fermi

energy; c = (28ζ(3)/3π3)ε
F
/Tc; np = Ypρ/mp is the total number density of protons,

which make up a fraction Yp ≈ 0.03 of all baryons. The GL potential can be written as

U(φ) = −aφ2 + (b/2)φ4.

According to Ref. [5], equation (4) is valid for T � Tc, which is the regime we are

considering. The same equation is also valid [5] for T ≈ Tc if the characteristic frequency

ω of time variations of the order parameter is greater than the energy gap, ω > ∆0. This

condition is automatically satisfied for nuclear matter, where we find ω ∼ 3 MeV, while

∆0 < 0.8 MeV (Fig. 1).

Equation (4) has a solution φ ∝ sin(ωt) oscillating around the minimum of the

effective potential U(φ). These oscillations are damped by the “friction” term in equa-

tion (4) that contains (φ̇). The effect of damping depends on the relative magni-

tudes of 8ε
F
/3c ≈ 7.4Tc ≈ 4.2∆0 and the frequency of oscillations ω. The Fermi

energy ε
F

= p2
F
/2m∗ ≈ 0.2 to 20 MeV for ρ = 1014 to 1015 g cm−3. The oscilla-

tion frequency is determined by the effective mass ω =
√
U ′′(φ0) around the minimum

φ0 =
√
a/b of U(φ). Requiring that U(φ0) = −δE/V from equation (1), one obtains

ω = ∆0

√
2m∗pF /πφ0 ≈ 3–5 MeV for ∆0 = 0.4–0.8 MeV. Since (8ε

F
/3c)/ω ≈ 0.6, neither

the first, nor the second term in equation (4) can be neglected in our case.

A coherent state of photons is described by the electromagnetic field Aµ. The Cooper

pair of protons has charge 2e. In the unitary gauge, in which the scalar field φ is real,

the coupling of the gauge field to φ is Lint = (2e)2φ2(Aµ)2.

When φ oscillates around the minimum, the effective photon mass,
√

2(2e)2φ2, is
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time-dependent. This causes a parametric resonance manifest in the appearance of ex-

ponentially growing solutions for the gauge field Aµ interpreted as a copious non-thermal

particle production (cf. Ref. [6]). We will assume a simple form for the oscillations of

the field φ around the minimum, φ = φ0 + Φ sin(ωt), Φ � φ0 ≈ 20 MeV, and neglect

the back-reaction of photons on the motion of φ. To see which modes are amplified, we

consider a Fourier decomposition of Aµ(x, t). The equation of motion for a mode A(k)
µ (t)

with the wavenumber k is

∂2

∂t2
A(k)
µ + [k2 + 2(2e)2φ2

0 + 4(2e)2φ0 Φ sin(ωt)]A(k)
µ = 0. (5)

The Matheiu equation (5) has exponentially growing solutions A(k) ∝ exp{µkωt/2}

that describe a copious production of the gamma-quanta with momenta in some spectral

band. The stability chart (see, e. g., Ref. [10]) is used to determine the values of the

momenta for which the resonant production takes place. The corresponding instability

band is usually specified [10] in terms of a parameter ak ≡ 4[(k2 + 8e2φ2
0)/ω2]. If the

parameter q ≡ 32e2φ0Φ/ω2 is small, only a narrow band around ak = l2, where l is some

integer number, is in resonance; the best-amplified mode has k = ω/2 and µk = q/2.

If, however, q > 1, the parametric resonance is broad. A detailed discussion of particle

production through the parametric resonance can be found in Ref. [6].

For the proton condensate inside a neutron star, φ0 ∼ 20 MeV and ω ∼ 5 MeV. If the

amplitude of oscillations Φ is between 1 and 10 MeV, then q ≈ 2–20, respectively. This

corresponds to a broad and, hence, very efficient resonance. The exponentially growing

modes satisfy the resonance condition

k2 =
1

4
ω2ak − 8e2φ2

0, (6)

where the resonant values of ak and the corresponding exponents µk can be read off the

instability chart [10]. For the ranges of the parameters quoted above, a broad band is

in resonance; the exponents µk can take relatively large values. This signals a copious

production of gamma rays, whose occupation numbers increase exponentially already
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during the first few oscillations of the field φ. As the amplitude of the oscillations

subsides, the system enters into a narrow-resonance regime, in which only the modes

around k = ω/2 ∼ a few MeV are further amplified. Given the efficiency of the resonance

and the absence of thermal excitations at T � Tc that could dissipate the energy stored

in the condensate, it is reasonable to assume that a substantial fraction of the power P

in equation (2) is transfered to photons.

Because the electrons are highly degenerate, the gamma quanta cannot decay via

the pair production γ → e+e− unless the final-state electrons have energy in excess

of the Fermi momentum p
F
>
∼ 100 MeV. Therefore, a decay of the MeV-energy gamma

photons is forbidden by the Pauli exclusion principle (applied to the final-state electrons).

Compton scattering off the electrons and protons near the Fermi surface is kinematically

suppressed but is not forbidden. It increases the temperature of the electrons and makes

the spectrum of the gamma rays somewhat more thermal by the time they reach the

surface of the star. Comptonization preserves the number of photons. It can cause some

de-coherence effects that take place over the distances of order 10−9 cm, much greater

than the wavelength. A coherent wave-packet passing through neighbouring regions with

oscillating scalar condensate may undergo further amplification. The thin outer crust

of a neutron star is optically opaque. It is not clear, however, whether it can withstand

the photon pressure corresponding to the energy in equation (2) and prevent the gamma

rays from leaving the star.

The duration τ of resonant photo-production depends on how soon the nuclear matter

is heated to the temperature of order Tc. It would seem that the detailed studies of

coalescing neutron stars [11] predict a typical time scale of a few milliseconds for the

acoustic shock waves to heat the nuclear matter. However, for technical reasons, these

simulations [11] started with non-zero initial temperatures to reduce the sensitivity of

their results to small variations of the internal energy at T = 0. In addition, these

analyses do not take into account the possible cooling effects of the resonant gamma-

emission which, as seen from equation (2), can be very significant and can delay the

eruption of a thermal fireball. Therefore, one can take 1 ms as a very conservative lower
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bound on the duration of the resonant production of gamma rays. If a more detailed

analysis shows that τ can be as long as 1 s, the mechanism we described can explain

the origin of the observed GRB. If τ � 1 s, one can look for a signature of resonant

emission during the first milliseconds of each GRB, assuming they originate from some

events that involve vibrating cold neutron stars.

In summary, we have described a mechanism that can lead to a short burst of gamma

rays with power up to 1052±1 erg s−1 from a jolted neutron star (for instance, in the

event of a neutron star collision). The resonant emission of gamma rays is a result of a

non-thermal photo-production by the acoustically-powered coherent oscillations of the

superconducting proton condensate. The duration of the pulse is uncertain and depends

on the details of the heat transport. It is possible that the observed gamma-ray bursts,

or at least the signal during the short time interval in the beginning of some bursts, may

be explained by this mechanism.

The author thanks A. De Rújula, R. Kamien, V. Kuzmin, G. Segrè, and M. Sha-

poshnikov for helpful discussions.
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