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Abstract

In theories with low energy supersymmetry breaking, the effective potential for squarks
and sleptons has generically nearly flat directions, V (φ) ∼M4(log(φ/M))n. This guar-
antees the existence of stable non-topological solitons, Q-balls, that carry large baryon
number, B � (M/mp)

4, where mp is the proton mass. We study the behaviour of
these objects in a high temperature plasma. We show that in an infinitely extended
system with a finite density of the baryon charge, the equilibrium state is not homo-
geneous and contains Q-balls at any temperature. In a system with a finite volume,
Q-balls evaporate at a volume dependent temperature. In the cosmological context, we
formulate the conditions under which Q-balls, produced in the Early Universe, survive
till the present time. Finally, we estimate the baryon to cold dark matter ratio in a
cosmological scenario in which Q-balls are responsible for both the net baryon num-
ber of the Universe and its dark matter. We find out naturally the correct orders of
magnitude for M ∼ 1 . . . 10 TeV: η ∼ 10−10(M/TeV)−2(B/1026)−1/2.
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1 Introduction

Take a theory containing scalar fields which carry some unbroken global U(1) charge Q.
Assume that all charged particles are massive. Suppose that the effective potential
for the U(1) charged scalar fields has a flat direction, V (φ) ∼ M4 at large φ, up to
possible logarithmic terms. Then this theory contains absolutely stable non-topological
solitons, Q-balls, that have a non-zero value of the global charge Q [1]. Flatness of the
effective potential at large φ is essential for this statement. For Q � 1, the mass of
the soliton grows as MQ ∼ MQ3/4 and becomes smaller than the mass of a collection
of free separated particles with the same charge, mQ1, independent of the relationship
between m and M . For theories without flat directions, where V (φ) grows at large φ
as φn with n ≥ 2, Q-ball solutions constructed from scalar fields can exist as well [2, 3],
but their energy scales with Q as AQ1, so that the question of their stability depends
on the mass of the lightest particle that carries the charge and on the (computable)
coefficient A.

A phenomenologically interesting example of a system with these properties is pro-
vided by supersymmetric extensions of the Standard Model. Here the role of the U(1)
charge is played by the baryon number, and the role of scalar fields by squarks. The
MSSM with unbroken supersymmetry has a lot of gauge invariant flat directions with
V (φ) = 0 carrying baryon number [4]. If supersymmetry is broken at a low energy
scale M , as in gauge-mediated scenarios [5], then the potential is lifted at φ > M in a
way that V (φ) stays constant [6, 7]. Thus, this theory contains stable non-topological
solitons which carry baryon number [8]. The generic MSSM with other types of SUSY
breaking also contains a lot of Q-ball solutions [9, 10], but with MQ ∼MQ1.

Stable Q-balls in supersymmetric theories have a number of interesting properties.
Since they represent the most economic way of packing the baryon number, they like to
absorb the ordinary matter in the form of protons and neutrons and to convert baryon
number from fermionic baryons to bosonic baryons (squarks) [11]. Large stable Q-balls
can be naturally produced [8] in the Early Universe via the decay of an Affleck-Dine
(AD) condensate [12] and can contribute to the cold dark matter [8]. Experimental
signatures of relic dark matter Q-balls are spectacular [13].

At zero temperature, Q-balls are the states with minimum energy at a fixed value
of the charge Q. They do not decay if the mass to charge ratio MQ/Q for them is
smaller than that for a free particle. At non-zero temperatures all energy levels of the
system are populated with non-zero probabilities and, thus, the charge can leak out
from a Q-ball to the outer space, or, equally, can be absorbed from the surrounding
plasma. Absorption of the charge into a Q-ball decreases the energy of the system,
while releasing the charge from it increases the entropy. So, the issue of Q-ball stability
gets more complicated than at zero temperature.

The aim of this paper is to consider Q-ball thermodynamics in theories with flat
directions in the scalar potential. We will see that in these models systems with a
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finite density of the baryon number nB do not have a standard thermodynamical limit.
For large enough volumes the initially homogeneous distribution of nB 6= 0 is unstable
against Q-ball formation at any temperature. On the contrary, if the volume of the
system is finite and its charge is fixed, Q-balls cease to exist (evaporate completely) at
temperatures T > TQ, where TQ is volume dependent.

In the cosmological context, a mere thermodynamical consideration is not enough
as the system has a finite time scale given by the expansion rate of the Universe, and
the (non-equilibrium) rate of Q-ball evaporation is essential. We make an estimate of
this rate and determine under which conditions Q-balls created in the Early Universe
survive till present. If the only source of baryon asymmetry of the Universe is the AD
mechanism, then the baryon asymmetry and cold dark matter may share the same
origin [8]. In this scenario, both matter and dark matter are baryonic, though dark
matter is constructed from squarks packed inside Q-balls. We show that in this case,
the baryon to cold dark matter ratio appears to be related to very few parameters such
as the charge of an individual Q-ball, the Planck scale, the SUSY breaking scale M
and the proton mass.

Initially, Q-balls were found and studied in different models in Refs. [1]–[3]. The
generation, evolution, evaporation and implications of Q-balls at the high tempera-
tures of the Early Universe were discussed in various models in [14]–[25]. In particular,
in [19, 20] it was found that at high temperatures (but still T � M) Q-balls tend
to evaporate whereas at low temperatures, they are stable and tend to grow. The
influence of SUSY Q-balls on phase transitions was discussed in [23]. In theories where
supersymmetry breaking comes from the supergravity hidden sector, Q-balls are unsta-
ble at zero temperature. Nevertheless, they can be produced in the Early Universe and
are important for baryogenesis [24]. Moreover, they may provide a natural explanation
for the ratio between neutralino dark matter and the baryonic matter in the Universe
[25]. However, theories with flat potentials, specific for theories with low energy su-
persymmetry breaking have, to our knowledge, never been analyzed in detail for all
temperatures up to T �M .

This paper is organized as follows. Essentially, it follows two distinct lines: a qualita-
tive discussion of the physically interesting case of the MSSM with order of magnitude
estimates, and a more formal and quantitative analysis, but mostly applied to a specific
toy model. In Sec. 2, we formulate in general terms the main problems considered. In
Sec. 3, we discuss the solutions to these problems on a qualitative level. In Sec. 4 we
perform a more quantitative analysis, but in a simple renormalizable supersymmetric
toy model with flat directions in the effective potential. A number of claims made in
Sec. 3 are substantiated in Sec. 4. Finally, in Sec. 5 we consider the applications of
the results to cosmology in the realistic case, again on an order of magnitude level. In
particular, we consider here the stability of Q-balls at high temperatures, their evapo-
ration rate, and their survival in the expanding Universe. We also estimate the baryon
to cold dark matter ratio. Some details related to Sec. 4 are in the two Appendices.
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2 The formulation of the problem

Let us consider a system with some conserved global charge Q, such as B or L (baryon
number or lepton number; the B+L anomaly is not important for this discussion).The
symmetry which corresponds to this charge is assumed to be unbroken. On a formal
level, the main questions we are going to address are as follows:

1. Assuming that the thermodynamical ground state of the system is homogeneous,
is the conserved charge carried by individual particles in a plasma, or by a scalar
condensate (Q-matter), in analogy with Bose-Einstein condensation?

2. Is such a homogeneous thermodynamical ground state stable against small in-
homogeneous perturbations? If it is, is it the true ground state or a only metastable
minimum?

3. In case a homogeneous ground state is unstable or metastable, what is the global
minimum of the free energy? In particular, under which conditions can Q-balls consti-
tute such a ground state?

4. If one starts from an unstable or metastable solution, at which rate does one
approach the equilibrium ground state? In particular, at which rate do Q-balls form if
they are stable, or evaporate if they are unstable?

In order to answer these questions, let us first fix the basic definitions used. The
thermodynamics of a system with a conserved charge (the case of zero temperature is
incorporated as a special case) is determined by the grand canonical partition function

Zµ = e−βΩ(T,V,µ) = e
V
T
p(T,µ) = Tr e−β(Ĥ−µQ̂), (2.1)

where 〈
Q̂
〉

V
≡
Q

V
≡ q =

∂p(T, µ)

∂µ
. (2.2)

If Q is kept fixed instead of µ, then the thermodynamical potential to be minimized is
obtained with a Legendre transformation:

F (T, V,Q) = V f(T, q) = Ω + µQ = V [−p + µq]. (2.3)

The relation inverse to eq. (2.2) is then

µ =
∂f(T, q)

∂q
. (2.4)

Given the Lagrangian of the system, one can by standard methods [26] derive a
Euclidian path integral expression for Zµ. In a field theory containing the fields Φ, it
is convenient to express the result in terms of an effective action in the usual way. It
then follows that

p(T, µ) = −(βV )−1 Γµ[Φ]|δΓµ[Φ]/δΦ=0 . (2.5)
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The relevant extremum is the minimum, as follows from the general thermodynamical
principle that, for fixed T, µ, the other variables take such values that the corresponding
free energy is minimized.

In the case of a homogeneous extremum, the problem reduces to an effective poten-
tial. Then

p(T, µ) = − Vµ(Φ)|dVµ/dΦ=0 . (2.6)

The Legendre transform is Vq(Φ) = Vµ(Φ) + µq where q = −∂µVµ(Φ), and

f(T, q) = Vq(Φ)|dVq/dΦ=0 . (2.7)

With these tools, the first three of the questions formulated above can, in principle, be
answered. The first of the questions is particularly straightforward: one just computes
the effective potential for a fixed charge, Vq(Φ), and inspects whether a non-zero value
for Φ serves to minimize it or not. If yes, then one can have a Q-matter condensate.

To address the second question, one can study the standard thermodynamical sta-
bility conditions: these follow from the requirement that the entropy of any subsystem
must be at a maximum with respect to local fluctuations of temperature, volume, and
the number of charged particles. Applied to the present case, it follows that to be
stable a medium must satisfy

cV = −T

(
∂2f

∂T 2

)
q

> 0; κT =
1

q

(
∂p

∂q

)−1

T

> 0;

(
∂µ

∂q

)
T

=

(
∂2f

∂q2

)
T

> 0. (2.8)

The last two conditions are, in fact, equivalent. The condition for cV is trivially satisfied
in a relativistic high temperature system, since the free energy density f is dominated
by the term ∼ −T 4. Hence essentially only the last condition remains to be inspected.

Let us note that there is an equivalent formulation for the second question. Indeed,
the fluctuation matrix around the saddle point used in the evaluation of eq. (2.5) must
be positive definite, from which it follows that

∂2
Φ Vµ(Φ)|Φ=Φmin

> 0. (2.9)

To address the third question, one has to study non-homogeneous configurations in
eq. (2.5). To do this in full generality is, obviously, very difficult. However, when one
restricts to spherically symmetric configurations (Q-balls), which is expected to be the
relevant case, the problem becomes, to a good approximation, solvable.

Finally, the fourth question is a non-equilibrium consideration, and the tools above
do not directly apply. However, the equilibrium limit turns out to give quite strong
constraints. As the results depend on the initial non-equilibrium state, we will not at-
tempt a general analysis here, but rather concentrate on the cosmologically interesting
case of Q-ball evaporation in the Early Universe. This will be done in Sec. 5.
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3 Q-balls at zero and finite temperatures

It turns out that the first and second questions formulated in Sec. 2, concerning the
existence and stability of Q-matter, have a simple and transparent answer: a Q-matter
state (∼ Bose-Einstein condensate) could in principle exist, but it is unstable and will
decay into an inhomogeneous configuration. We will illustrate this phenomenon in
some detail in Sec. 4. In this Section we consider the inhomogeneous final state, i.e.,
Q-balls, in general qualitative terms. Some more details in a specific model will again
be given in Sec. 4.

Let us start by reviewing the properties of Q-balls at zero temperature. Consider
a generic field theory containing scalar fields φi and fermions ψi with global U(1)
charges qi. The scalar potential is V (φ). Complications appearing with the inclusion of
gauge fields were discussed in [27] and do not appear in the phenomenologically interest-
ing case of SUSY theories, where flat directions are associated with SU(3)×SU(2)×U(1)
singlets. Then, a spherically symmetric Q-ball solution has the form [1]–[3]

φi(r, t) = exp(iqiωt)φi(r). (3.1)

The functions φi(r) can be found by minimizing the functional

Eω =
∫
d3x

[∑
j

|∂iφj(r)|
2 + V̂ω(φ)

]
, (3.2)

where
V̂ω(φ) = V (φ)− ω2

∑
i

q2
i φ
†
iφi. (3.3)

The frequency ω is related to the total charge of the solution Q as

Q = 2ω
∫
d3x

∑
i

q2
i φ
†
iφi. (3.4)

Consider now the finite temperature case and a large but finite volume V. The
thermodynamics of the system is determined by the grand canonical partition function
defined in eq. (2.1).

Given the Lagrangian of the system, which contains all the fields of the theory, one
can derive a Euclidian path integral expression for Zµ,

Zµ =
∫
D[All fields] exp

(
−
∫ β

0
dτ
∫
d3xLE

)
, (3.5)

where LE is the ordinary Euclidean action with the replacement of the Euclidian time
derivative [26]

∂τ → ∂τ − qiµ. (3.6)
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Note that for scalar fields, the charges come with the opposite signs in ∂τφ, ∂τφ
†. As

usual, bosonic fields are periodic, while fermionic fields are anti-periodic on the finite
time interval 0 < τ < β = 1/T .

To define if there are any non-trivial contributions to the partition function, poten-
tially associated with Q-balls, one can look for the saddle points of the exponential in
eq. (3.5). The configurations that play the most important role at high temperatures
are static, i.e., independent of Euclidian time. The static bosonic part of the action
has the form

S = β
∫
d3x

[∑
j

|∂iφj(r)|
2 + V (φ)− µ2

∑
i

q2
i φ
†
iφi
]
, (3.7)

precisely the one given by eqs. (3.2), (3.3) with the replacement ω → µ. Thus, if the
theory at zero temperature has Q-ball solutions with some values of ω, these solutions
are saddle points of the Euclidian finite temperature and finite density path integral
at µ = ω. The relationship between the charge and µ is now given by eq. (2.2), rather
than eq. (3.4): besides Q-balls, at non-zero temperatures charge can be carried by
particles outside it, as well.

As is very well known from the study of phase transitions at high temperatures, the
saddle points of the tree-level static bosonic action provide a good approximation only
when T �M , where M is the typical mass scale of the theory. At T >∼M , the quantum
corrections are large, and must be resummed in some way. Thus one either has to use
an approximation for the full effective action Γ[Φ] in eq. (2.5), or one has to use an
effective theory where quantum corrections are small. The latter could be constructed
for static but space dependent bosonic configurations, integrating out all fermions, all
heavy (mass � T ) bosons, and the non-zero Matsubara frequencies of light bosons.
For static bosonic configurations, depending on space coordinates only weakly (we will
see that this is indeed the case for sufficiently large Q-balls), the derivative expansion
is most helpful:

Seff = β
∫
d3x

[∑
j

Zj(φ, T, µ)|∂iφj(r)|
2 + Veff(φ, T, µ) + ...

]
, (3.8)

where Veff(φ, T, µ) is basically the effective potential of the system at non-zero T and
µ (more precisely, Veff is the contribution to the effective potential from the degrees of
freedom that have been integrated out). The effective potential as a function of µ has
been computed in a number of theories and discussed in connection with the question
of the influence of charge density on the symmetry behaviour in a number of papers
[28]–[30]. If the particle masses in the background of the field φ are smaller than the
temperature, then the high temperature expansion can be used for the construction of
the effective action precisely along the lines of Refs. [31]–[34]. If not (as is in fact for
many of the considerations below), then an effective action incorporating both high
and low temperature behaviour must be used. Now, we have at hands enough for
a qualitative discussion and order of magnitude estimates of the properties of SUSY
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Q-balls at high temperatures. For this aim we take the wave function normalizations
in eq. (3.7) to be unity. As a number of studies [35, 31] show, higher order corrections
in the wave function normalizations are not essential numerically.

Let us take some field φ representing, in somewhat loose terms, a gauge-invariant
combination of squarks and sleptons in the MSSM, and carrying baryon (and, perhaps,
lepton) number (for simplicity, we take the charge q = 1). Specific examples can
be found in [4]. Under the global baryon symmetry, the field φ is transformed as
φ→ exp(iα)φ. Assume that the effective potential is flat along this direction as shown
in Fig. 1,

V (φ)→M4 (3.9)

at φ→∞. Then, at zero temperature the minimum of the energy at a fixed baryonic
charge Q� 1 corresponds to a time dependent Q-ball solution which can in the limit
of a large charge be written as

φ(r) ≈ exp(iωt)×


φQ(sinωr)/ωr, r < RQ

0, r ≥ RQ.
(3.10)

Here
RQ ≈ (1/

√
2)M−1Q1/4, φQ ≈ (1/

√
2)M Q1/4, ωRQ ≈ π, (3.11)

and the mass of the solution is

MQ ≈ (4π
√

2/3)MQ3/4. (3.12)

A Q-ball is stable (cannot decay into protons: MQ < mpQ) if Q > 1015(M/1TeV)4.
Let us now see what happens at high temperatures. The scalar field φ couples to

the other fields of the MSSM. In the background of this field a number of particles
(e.g. gluons and gluinos) acquire masses m(φ) ∼ gφ, while others do not (e.g. if the
Q-ball solution at T = 0 is constructed from squarks only, leptons and sleptons remain
massless since they do not have tree level interactions with squarks). Now, if gφ > T ,
massive particles do not contribute to the finite temperature effective potential just
because of the Boltzmann suppression exp(−m(φ)/T ), whereas the contribution of the
massless particles is φ independent and produces just an overall shift of the effective
potential which we discard. At the same time, m(φ) is small near φ = 0. Thus, the
point φ = 0 moves down as ∆V ∼ −NT 4, where the coefficient N is related to the
difference between the number of light degrees of freedom at small and large φ. So, the
finite temperature effective potential has qualitatively the same form as the effective
potential at zero temperature, with the change M4 →M(T )4 ∼M4 +NT 4.

This consideration allows to write down immediately the Q-ball contribution to the
thermodynamic potential. Replacing MQ → FQ, M → M(T ) in eq. (3.12) and using
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that Q1/4 ∼ RQM ∼M/ω ∼M/µ, we get

FQ(µ) ∼M(T )

(
M(T )

µ

)3

, (3.13)

with the charge in the Q-ball

QQ(µ) ∼

(
M(T )

µ

)4

. (3.14)

The size of the Q-ball is given by RQ ∼ π/µ.
Now, the µ-dependent part of the thermodynamic potential has the form

Ω(T, V, µ) = FQ(µ)− C
1

2
µ2T 2V, (3.15)

where the coefficient C is related to the number of light carriers of the baryon charge
(such as quarks). The total charge of the system follows from eq. (2.2),

Qtotal = QQ(µ) + CµT 2V. (3.16)

These two equations define equilibrium Q-ball properties at high temperatures.
Let us assume first that the average charge density nQ is nonzero and is fixed, while

the volume of the system grows. Then eq. (3.16) admits two solutions. The first one is
with a “large” chemical potential µ ∼ nQ/(CT

2). It corresponds to a state where all
the charge is carried by particles in the plasma and Q-balls are not present. Another
solution has a “small” chemical potential,

µ ∼M(T )(nQV )−1/4. (3.17)

It corresponds to a system containing one Q-ball that carries almost all of the charge
Qtotal = nQV .

Constructing the Legendre transform of eq. (3.15) according to eq. (2.3), it can now
be seen that the latter solution has a smaller free energy at large volumes. Indeed,
the Q-ball free energy scales with volume only as FQ ∼ V 3/4, whereas the free energy
of the plasma phase grows as Fplasma ∼ V . Thus, we arrive at the conclusion that in
theories with flat potentials and a fixed non-zero density of the charge Q, the ground
state of the system always contains just one Q-ball at any temperature when V →∞.

Let us then take another limit, where the total charge of the system is fixed, and
we increase its volume. In this case, the average density of the charge decreases as
nQ ∼ Qtotal/V . Then, a state with a Q-ball is more favourable than a homogeneous
distribution of the charge at

V <∼
Q

5/4
total

M(T )T 2
. (3.18)
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This inequality allows, for example, an estimate of the temperature Tevap at which an
initially cold Q-ball, placed in a volume V , evaporates. It follows from eq. (3.18) that
Tevap ∼ V −1/3Q5/12, provided Tevap � M , and Tevap ∼ (VM)−1/2Q5/8 in the opposite
case.

All these results have a simple physical meaning. Imagine that we place a Q-ball at
zero temperature into a box with the volume V . Now, let us heat the system gradually
without adding any charge to it. Some charge from the Q-ball (δQ) will evaporate,
and it will create a chemical potential in the surrounding plasma, µplasma ∼ δQ/(V T 2).
The process of Q-ball evaporation will stop when the chemical potential associated
with the Q-ball, µQ ∼M(T )(Q− δQ)−1/4, will be equal to µplasma. If the inequality in
eq. (3.18) is satisfied, then one finds that the solution for δQ is

δQ

Q
∼
M(T )V T 2

Q5/4
� 1, (3.19)

so that the Q-ball cannot evaporate completely, whereas if eq. (3.18) is not true, then
the equation µplasma = µQ does not have physical solutions with Q − δQ � 1, and
therefore, the Q-ball disappears.

As we see, the structure of the ground state is obviously volume dependent. Thus,
the system we consider does not have a standard thermodynamic limit. The flatness
of the potential is essential for these conclusions. If FQ ∼ Q1 rather than FQ ∼ Q3/4,
then the standard thermodynamical limit is well defined, and Q-balls cease to exist
above some temperature which is entirely determined by the density of the charge and
the parameters of the model.

4 A model computation

In order to illustrate in more specific terms the issues discussed above, we will in this
Section consider in some detail the renormalizable model introduced in [6] for studying
supersymmetric inflation. We first discuss the stability of Q-matter, and then that of
Q-balls, adding numerical coefficients to the estimates in Sec. 3.

The model is defined by a superpotential with two complex fields φ, χ:

W =
1

2
fχφ2 − χm2. (4.1)

The parameters f,m2 can be assumed to be real. We denote m̃2 = fm2. In the
direction of the charged field, the potential of the model grows only logarithmically.
Let us assume that there are no local symmetries and thus no gauge fields.

We start by writing down the Minkowskian Lagrangian. Let us split φ to real
components, φ = (φ1 + iφ2)/

√
2, and denote the Weyl spinors corresponding to φ, χ by

ψφ, ψχ. Then

LM = ∂µφ∗∂µφ+ ∂µχ∗∂µχ+ iψφσ
µ∂µψφ + iψχσ

µ∂µψχ − V (φ1, φ2, χ)− Lψ, (4.2)
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where

V (φ1, φ2, χ) =
1

2
m̃2(φ2

2 − φ
2
1) +

1

16
f 2(φ2

1 + φ2
2)2 +

1

2
f 2(φ2

1 + φ2
2)|χ|2 +

m̃4

f 2
, (4.3)

Lψ =
1

2
fχψφψφ + fφψχψφ + H.c. (4.4)

This action has a global U(1)-symmetry,

φ→ φ, χ→ eiαχ,

ψφ → e−iα/2ψφ, ψχ → eiα/2ψχ. (4.5)

The superpotential is not symmetric and therefore the scalar fields and the correspond-
ing fermions transform differently. The charge corresponding to the symmetry is

Q =
∫
d3x

[
i(χ∗∂0χ− χ∂0χ∗) +

1

2
ψχσ

0ψχ −
1

2
ψφσ

0ψφ

]
. (4.6)

The theory has also a discrete symmetry, φ→ −φ, ψφ → −ψφ, which however does not
play any role in the following.

At tree-level at zero temperature, the ground state of the system is at a broken min-
imum: χ = 0, φ2 = 0, φ2

1 = 4m̃2/f 2, V (φ, χ) = 0. There supersymmetry is conserved,
and the spectrum consists of four massive scalar degrees of freedom and one Dirac
fermion, all with the same mass,

√
2m̃. On the other hand, for large values of |χ|,

the minimum of the potential is at φ1 = φ2 = 0 and the tree-level potential does not
depend on χ: this is a flat direction. Along the flat direction, two scalar degrees of
freedom and one Majorana fermion remain massless. The value of the potential along
the flat direction is m̃4/f 2 = m4.

Consider then Zµ in eq. (2.1). According to the standard procedure [26], the Euclid-
ian path integral expression for Zµ with the charge Q as given in eq. (4.6), is

Zµ =
∫

b.c.
DφDχDψφDψχ exp

(
−
∫ β

0
dτ
∫
d3xLE

)
, (4.7)

where, denoting now also χ = (χ1 + iχ2)/
√

2, the Euclidian Lagrangian is

LE =
1

2
(∂τφ1)2 +

1

2
(∂τφ2)2 +

1

2
(∇φ1)2 +

1

2
(∇φ2)2

+
1

2
(∂τχ1 − iµχ2)2 +

1

2
(∂τχ2 + iµχ1)2 +

1

2
(∇χ1)2 +

1

2
(∇χ2)2

+ ψφσ
0
(
∂τ +

µ

2

)
ψφ − iψφσ

i∂iψφ

+ ψχσ
0
(
∂τ −

µ

2

)
ψχ − iψχσ

i∂iψχ

+ V (φ, χ) + Lχ. (4.8)

10



0.0 2.0 4.0 6.0
χ1/T

-1.0

0.0

1.0

2.0

3.0

4.0

V
/T

4

V1-loop(φ1,χ1,µ=0)
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Figure 1: The projection of the effective potential on the χ1-axis, at different tempera-
tures and µ = 0. The temperature is given in units of the mass scale M ≡ m̃0 = m̃(m̃0).
The thick lines indicate the regime where 〈φ1〉 6= 0: this symmetry is restored at
T/m̃0>∼ 4.0. For χ1/T <∼ 3.5, the effective potential is the one of the 3d effective the-
ory in eqs. (A.16), (A.17), and for χ1/T >∼ 2.5, the one of the 4d theory in eqs. (A.19),
(A.21). The scale of χ1 is in both cases what appears in the 3d theory: χ1 ≡ χ4d

1 (µT/4).

Here V (φ, χ), Lχ are from eqs. (4.3), (4.4).

We now wish to consider the functional integral for Zµ in the background of φ̂1, χ̂1,

i.e., to compute the effective potentials Vµ(φ̂1, χ̂1), Vq(φ̂1, χ̂1), defined in eqs. (2.6),
(2.7). For χ, choosing to consider χ1 is no restriction, due to the U(1) symmetry. On
the other hand, we have φ2 = 0 already at the tree-level at zero temperature, so φ2

remains at origin for T > 0. In the following, we denote φ̂1 = φ1, χ̂1 = χ1.
The details of the computation of the 1-loop effective potential are discussed in

Appendix A. We consider here the numerical results and their main features. To have
a weakly coupled theory, we take f = 0.5.

4.1 The stability of Q-matter

In Fig. 1, the 1-loop effective potential is shown at µ = 0. It is seen that for T/m̃0>∼ 4,
the symmetry is restored (φ1 = 0) for any χ1. However, irrespective of the temperature,
the effective potential always displays the characteristic form allowing Q-balls: at small
χ1, there is a thermal or vacuum mass term, but at large χ1, the potential flattens off
and grows eventually only logarithmically.

Consider then the case of a finite charge density. In Figs. 2, 3, the potentials Vµ(χ1)
and its Legendre transform Vq(χ1) are shown at T/m̃0 = 5.0, 2.0, respectively. The
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Figure 2: Left: The effective potential Vµ(χ1) at T/m̃0 = 5.0, for different values of
µ/T . Right: The effective potential Vq(χ1) at T/m̃0 = 5.0, for different values of q/T 3.
Each extremum of Vµ(χ1) corresponds to an extremum of Vq(χ1), as well, as is shown
by the symbols. For q/T 3 > (q/T 3)c ∼ 0.065, there is a charged condensate: 〈χ1〉 > 0.

structure is simpler at T/m̃0 = 5.0, where the φ1-symmetry is restored everywhere and
the mass scale m̃0 does not have much effect. Nevertheless, both cases show the same
general behaviour. There is a critical charge density qc > 0. For q < qc, the minimum
of Vq(χ1) is at χ1 = 0 and the charge is hence carried by particle excitations in a plasma
phase. However, for q > qc, a phenomenon analogous with Bose-Einstein condensation
takes place, and χ1 > 0.

This pattern can be understood already from the tree-level potential of the effective
3d theory in eq. (A.16). Consider first the temperatures T > T φc ≈ 2m̃/f ∼ 4m̃. Then
m2

1 > 0 according to eq. (A.15), and φ1 = 0 for all χ1. The effective potential Vµ(χ1) is

Vµ(χ1)
fχ1�T
≈ const.−

5

24
µ2T 2 +

1

2

(
−µ2 +

f 2T 2

8

)
χ2

1. (4.9)

It will be useful to consider a more general expression for the latter term in the coef-
ficient of χ2

1, so let us replace f 2T 2/8 → M̃2. Then the situation looks precisely like
relativistic Bose-Einstein condensation in a free theory.

To proceed, let us make a Legendre transformation into Vq(χ1) = Vµ(χ1)+µq, where
q = −∂µVµ(χ1):

Vq ∼
1

2

q2

(5/12)T 2 + χ2
1

+
1

2
M̃2χ2

1. (4.10)
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Figure 3: As Fig. 2, but for T/m̃0 = 2.0. The thick lines indicate the regime where
the symmetry is broken, 〈φ1〉 6= 0. Due to the symmetry breaking, the potentials have
more structure than in Fig. 2. The critical charge density is here (q/T 3)c ≈ 0.25. Note
that the (unique) extremum of Vµ(χ1) at χ1 > 0 is always a maximum.

What then remains is to minimize Vq(χ1) with respect to χ1, for different q, T . The
main results are as follows. The global minimum is at χ1 = 0 if M̃ > (12/5)(q/T 2).
Hence, the critical charge density is

qc =
5

12
M̃T 2. (4.11)

If q < qc, then

χ1 = 0; µ =
12

5

q

T 2
; f(T, q) = f(T, 0) +

6

5

q2

T 2
; ∂2

χ1
Vµ(χ1) > 0. (4.12)

If q > qc, on the other hand, then

χ1 =

√
q − qc
M̃

; µ = M̃ ; f(T, q) = f(T, 0) +
6

5

qc
T 2

(2q− qc); ∂2
χ1
Vµ(χ1) = 0. (4.13)

Replacing now M̃2 → f 2T 2/8, we see that for any given T > T φc ∼ 2m̃/f , there is a
critical charge density (

q

T 3

)
c

=
5f

24
√

2
, (4.14)
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Figure 4: The free energy density as a function of the charge density for T/m̃0 =
2.0, 5.0. For T/m̃0 >∼ 4 the symmetry is always restored (φ1 = 0) and the results scale
with T ; the critical charge density below which χ1 = 0, is (q/T 3)c ≈ 0.065. For
temperatures T/m̃0<∼ 4, on the other hand, the symmetry is broken (φ1 > 0) at small
χ1, and there is more structure.

below which there is no condensate, χ1 = 0. Note that for T > T φc , the leading
order results in eqs. (4.12), (4.13) do not depend on m̃ at all, and all the dimensionful
quantities scale with T . Numerically, (q/T 3)c ∼ 0.07, in accordance with Fig. 2.

For T <∼T
φ
c , on the other hand, m2

1 < 0 and φ2
1 > 0 for small χ1. The potential

in eq. (A.16) must thus first be minimized with respect to φ2
1. After that has been

done, the potential Vµ(χ1) is again of the form in eq. (4.9) for small χ1, but now with
M̃2 = 2m̃2 − 3f 2T 2/8. Thus the mass scale m̃ appears in the results. For example,

(
q

T 3

)
c

=
5

12

√
2m̃2

T 2
−

3f 2

8
, (4.15)

which gives (q/T 3)c ∼ 0.27 for T/m̃ = 2.0, in agreement with Fig. 3.
To summarize, based on free energy considerations alone, one would say that for any

temperature, there is a charge density qc such that for q > qc, one has a Bose-Einstein
condensate, or a “Q-matter” state. For T → 0, qc → 0 according to eq. (4.15), and the
plasma phase does not exist at all.

Let us then consider whether such a Q-matter condensate would be stable. Apply-
ing the stability conditions in eqs. (2.8), (2.9), one sees that in the tree level case,
the plasma phase [eq. (4.12)] is stable while the situation in the condensate phase
[eq. (4.13)] is marginal: ∂2

qf(T, q) = ∂2
χ1
Vµ(χ1) = 0. Hence the system is stabilized or

destabilized through interactions. Adding an interaction of the type λ(χ∗χ)2 [29, 30],

14



in fact stabilizes the condensate. On the other hand, it is easy to see that in the present
case, the interactions destabilize the condensate!

The fact that the condensate in the present system is unstable, can be observed from
Figs. 2, 3. The extremum corresponding to the condensate is always a maximum of
Vµ(χ1), and thus the inequality in eq. (2.9) is violated. Equivalently, one can observe
from Fig. 4 that the free energy density f(T, q) has a negative curvature at q > qc, which
violates the stability condition in eq. (2.8). The negative curvature can be understood
also analytically: at large charges, corresponding to large χ1’s,

Vµ(χ1)
fχ1�T
≈ Vµ(0) +

m̃4

f 2

(
1−

T 2

T φ2
c

)2

θ(T φc − T )

+
π2T 4

24
+
µ2T 2

48
−

1

2
µ2χ2

1 +
1

32π2
m̃4 ln

m2
χ

µ2
T

, (4.16)

from which it follows that

f(T, q)
q→∞
≈ f(T, 0) +

m̃4

f 2

(
1−

T 2

T φ2
c

)2

θ(T φc − T )

+
π2T 4

24
+

1

16π2
m̃4 ln

(
feγ+1/2

√
2

q

m̃2T

)
. (4.17)

Hence ∂2
qf(T, q) < 0. We conclude that a (meta)stable Q-matter state does not exist

in the present system.
Consider then the plasma phase. That the plasma phase at q < qc satisfies the

stability conditions in eqs. (2.8), (2.9), only proves that such a state is metastable
against small perturbations. The global minimum may still be elsewhere. Consider, in
particular, an arrangement where all the charge is moved into a subvolume V ′ = rV ,
with r < 1 (this of course means that there is no chemical equilibrium, but this is
not essential for the argument). Let δf(T, q) = f(T, q) − f(T, 0). Then the original
free energy density excess with respect to an empty space is δf(T, q), while the final is
δf(T, q/r)r. Now, for any initial q, δf(T, q/r)r → 0 as r → 0, since δf(T, q/r) grows
only logarithmically at small r, see eq. (4.17). Hence, even if f(q/r)r grows at r <∼ 1
and the original state is thus metastable, f(q/r)r finally starts to decrease for small
enough r and it is in principle favourable to clump all the charge together in one place.
Of course, surface effects start to be important at very small r, so to be more precise,
one has to inspect the possible final configurations in more detail. We thus turn to
Q-balls.

4.2 The stability of Q-balls

We start by considering the limit of large temperatures, T � m̃, and small chemical
potentials, µ � T . Moreover, let us subtract the contribution of the homogeneous
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symmetric plasma phase, where χ1 = 0. Then it follows from eq. (A.21) that

V̄µ(χ1) ≡ Vµ(χ1)− Vµ(0) ≈ −
1

2
µ2χ2

1 +
T 4

2π2

[
4J0(Mχ/T )−

1

4
J0(2Mχ/T )

]
, (4.18)

where Mχ = fχ1/
√

2 and J0 is from eq. (A.22). Neglecting the change in the derivative
term, the extra free energy of any configuration χ1(r) is then given by

Fµ =
∫
d3r

[
1

2
(∂iχ1)2 + V̄ (χ1)

]
. (4.19)

The properties of the saddle points of eq. (4.19) are discussed in Appendix B. It
follows from eqs. (B.7), (B.8) that in the present model (aV = (π2/24)T 4), the Q-ball
free energy, charge and radius at T � m̃ are given by

FQ ≈ 4.74TQ3/4, Q ≈ 160
(
µ

T

)−4

, R ≈
π

T

(
µ

T

)−1

. (4.20)

We now consider the stability of such Q-balls. The other metastable alternative is
the homogeneous plasma phase, so we have to compare with f(T, q) in eq. (4.12). Let
us write FQ = aTQ3/4, Q = b(µ/T )−4.

Consider first a situation of thermal but not chemical equilibrium, in which all the
charge is in the Q-ball. Then, the Q-ball does not decay into a homogeneous plasma
phase, if Fplasma = V fplasma(T, q) > FQ, or

6

5
a−1Q5/4 > V T 3. (4.21)

This is the analogue of eq. (3.18), and tells that in a fixed volume, Q-balls will evaporate
at large enough temperatures.

On the other hand, note that what appears on the right-hand side of eq. (4.21) is
a comoving volume in units of temperature, which is a constant in the cosmological
context. Thus, in this case, if Q-balls are thermally stable at some high temperature,
they remain stable at least as long as T � m̃. The thermal stability of a distribution
of Q-balls can be seen by replacing V by their inverse number density n−1

Q .
Consider then a thermodynamical equilibrium situation where there is chemical equi-

librium, as well. Some of the charge will now be outside the Q-ball, since there is a
non-vanishing chemical potential. The stability condition becomes

6

5

Q2

V T 3
>

6

5

(Q−Q′)2

V T 3
+ a(Q′)3/4, (4.22)

where the Q-ball charge Q′ is to be solved from an equality following from chemical
equilibrium:

µ

T

plasma
=

12

5

Q−Q′

V T 3

Q-ball
=

(
Q′

b

)−1/4

. (4.23)
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However, it can easily be seen that when eq. (4.21) is strongly enough satisfied, then
the fact that there is chemical equilibrium does not change the result. Indeed, it can
be seen from eq. (4.23) that most of the charge resides in Q-balls in this limit,

Q′

Q
≈ 1−

b1/4

2a

[
V T 3

(6/5)a−1Q5/4

]
≈ 1, (4.24)

and Q-balls carry most of the free energy associated with the non-zero net charge,

Fplasma

FQ
≈
b1/2

4a2

[
V T 3

(6/5)a−1Q5/4

]
� 1. (4.25)

Moreover, provided that the Q-ball charge is large, Q-balls are small in the sense that
most of the space is in the plasma phase:

VQ

Vplasma

=
(4/3)π(RQT )3

V T 3
≈

10π4a

9b3/4

[
(6/5)a−1Q5/4

V T 3

]
1

Q1/2
� 1, (4.26)

if

Q� 130

[
(6/5)a−1Q5/4

V T 3

]2

. (4.27)

Even though chemical equilibrium does not essentially change the constraint in
eq. (4.21), there is an important implication following from eq. (4.23). Noting that
the entropy density is s = dp/dT = π2T 3/3, one gets a simple relation between the
charge density in the plasma, and the charge residing in a Q-ball:(

q

s

)
plasma

=
5

4π2

µ

T
=

5b1/4

4π2
(Q′)−1/4 ≈ 0.45(Q′)−1/4. (4.28)

In the cosmological context, this corresponds to a relation between the baryon asym-
metry in the plasma, and the baryon number residing in Q-balls.

Finally, consider what happens at lower temperatures. The Q-ball free energy will
decrease for a while as ∼ T , until at T <∼ m̃/f , the symmetry breaking starts to play
a role: eventually T gets replaced by m̃/f 1/2 in eq. (4.20). At the same time, the
Q-part of the free energy of the plasma phase also decreases, initially as Fplasma ∼
(6/5)(Q2/V T 3)T ∼ T . This behaviour is valid up to T ∼ m̃/π; at smaller temperatures
one gets the standard non-relativistic ideal gas behaviour Fplasma ∼ QT [lnQ/(V T 3) +
(3/2) ln(T/m̃)] ∼ T . Hence the plasma phase free energy decreases faster than FQ
and a thermalized Q-ball in a comoving volume becomes more unstable at smaller
temperatures.

The considerations above concern an equilibrium situation. There are also other
relevant questions, such as, assuming that one is trapped in a metastable homogeneous
plasma phase and Q-balls would be stable, what is the transition rate? Some progress
in addressing this question has been reported in [36], but we will not consider it here.
In the next Section we consider the opposite limit: taking a Q-ball which is unstable,
at which rate does it decay into the plasma phase?
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5 Baryon to cold dark matter ratio

Consider Q-balls in the cosmological context. In [8] it was shown that Q-balls with
large charges can be produced in the Early Universe. The general idea is that in
the AD scenario for baryogenesis, an uniform condensate of the scalar field, carrying
baryon number, is formed as a result of inflation, CP-violation and baryon number
non-conservation [12]. This AD condensate is nothing but Q-matter, described by
an uniform scalar field with a time dependent phase. As we have seen, Q-matter is
unstable against Q-ball formation; an analysis of the typical instability scales shows
that charges of the order of magnitude Q > 1020 can be easily formed (and do not
violate experimental constraints [37]). In [8] it was suggested that these stable Q-balls
can play the role of the cold dark matter. The ordinary, baryonic matter appears then
as a result of Q-ball evaporation. If true, baryonic and cold dark matter in the Universe
come from the same source. Moreover, dark matter is in fact baryonic in this case, but
baryons exist in the form of SUSY Q-balls which do not participate in nucleosynthesis.
In this scenario the ratio of baryonic to cold dark matter can be computed and the aim
of this Section is to make such an estimate.

We assume that after the instability has taken place, the Universe is filled with
baryonic Q-balls with charge3 Q and number density nQ, surrounded by a hot plasma
at temperature T . We will also assume that only a negligible part of the baryonic
charge initially exists in the plasma. Some arguments if favour of this assumption were
put forward in [25], but its complete check would require the solution of the non-linear
problem of Q-ball formation. In the following, we completely neglect the process of
merging of two Q-balls, since their concentration is so small that the probability of
their collision is absolutely negligible, as can be checked a posteriori.

As a starting point, let us consider what the thermodynamical equilibrium state
corresponding to these initial conditions would be. Then we will argue that in fact
only thermal equilibrium can be established in practice, while chemical equilibrium
with respect to baryon charge is not reached with these initial conditions.

If there is full thermodynamical equilibrium, then it follows from eq. (4.23) that
already at high temperatures, the baryon to photon ratio in the plasma phase would
be

η =
nB

nγ
∼ Q−1/4. (5.1)

In full thermal equilibrium Q-balls become more unstable at lower temperatures, see
Sec. 4.2, so that with the experimental number η ∼ 10−10, eq. (5.1) would imply the
lower bound Q>∼ 1040. On the other hand, if Q-balls account for a fraction ΩDM of the

3As is shown in [8], the instability of an AD condensate occurs in a narrow range of scales, and
thus the Q-ball charge distribution is likely to be narrow, as well.
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dark matter, then their present number density is n
(0)
Q = ρ

(0)
Q /MQ, where

ρ
(0)
Q ≈ 10−5ΩDM mp cm−3, (5.2)

and mp is the proton mass. It follows that

n−1
Q T 3 ≈ 3× 108g−1

∗

M

mp

Q3/4

ΩDM

, (5.3)

where g∗ is the number of massless degrees of freedom. If, for instance, g∗ ∼ 200,ΩDM ∼
0.4, Q ∼ 1040 and M ∼ (1 . . . 10) TeV, then4 n−1

Q T 3 ∼ 1039 . . . 1040. Comparing now
with the LHS of eq. (4.21), it is seen that such a density of Q-balls would indeed be
thermodynamically stable against evaporation into the plasma phase. However, it is
not clear how Q-balls with charges as large as 1040 could be produced, and whether they
would indeed reach thermodynamical equilibrium in the cosmological environment.

Now we are going to take into account the expansion of the Universe. First of
all, the intrinsic temperature of Q-balls may be different from the temperature of the
surrounding plasma, if the system is not fully thermalized. Then Q-balls are heated up
because of collisions with particles from the plasma. The energy transfer to the scalar
particles in the condensate from which the Q-ball is built, has been estimated in [8]
(we assume that all coupling constants are of order unity),

dF

dt
∼ R2

QT
3σnφδRδE ∼ T 2(

T

M
)3Q1/4. (5.4)

Here R2
QT

3 counts the initial flux of particles in the plasma on the Q-ball, δE ∼ ω
gives the energy transfer to a scalar particle in the condensate, δR ∼ T/M2 gives the
thickness of the Q-ball layer in which plasma particles can penetrate (due to mφ ∼
φ<∼T ), nφ ∼ φ2ω ∼ T 2MQ−1/4 is the charged scalar particle number density in this
layer [eq. (3.4)], σ ∼ 1/(ωT ) is the typical cross-section5 of the interaction of an
energetic particle from the plasma with a condensate scalar with a small energy ∼ ω,
and we assumed T �M . The estimate in eq. (5.4) contains only the effect of particles
interacting strongly (at tree-level) with the condensate, so that it should represent a
lower bound of the thermalization rate.

The energy transfer is most efficient at high temperatures. Requiring that the change
of Q-ball free energy is of the order of its equilibrium value F ∼ TQ3/4, we find that
a zero-temperature Q-ball can be thermalized if the initial temperature of the plasma
satisfies the requirement

Tin > M

(
M

M0

)1/2

Q1/4, (5.5)

4To illustrate this number density in cosmological units: n
−1/3
Q ∼ 10−2Rew

H , where Rew
H is the

horizon radius at the electroweak scale T ∼ 100 GeV.
5In [8] this cross-section was incorrectly taken to be σ ∼ 1/T 2. Also, the estimate of the transmitted

energy δE contains a misprint: the power 2 must be omitted from the corresponding expression.
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where M0 = (0.30/
√
g∗)mPl ∼ 3 × 1017 GeV. For typical values of M ∼ 1 − 10 TeV

and Q ∼ 1020 − 1030, Tin>∼ 1 . . . 104 GeV, which is true for most inflationary models.
Next, we would like to determine the amount of baryons which evaporated from

thermalized Q-balls. From the discussion in Sec. 3, we know that we can associate
with Q-balls a chemical potential µ ∼ M(T )Q−1/4. In the case that the surrounding
plasma has the same chemical potential, Q-balls are in chemical equilibrium and their
charge does not change. In other words, the rate of their evaporation coincides with
the rate of charge accretion on the Q-ball. The upper limit on the accretion can be
easily computed: the rate of accretion cannot be larger than the total baryonic flux
through the Q-ball surface. So,

dQ

dt
= −D(µQ − µplasma)T 24πR2

Q

µplasma�µQ
∼ −D

T 2Q1/4

M(T )
, (5.6)

where the coefficient D<∼ 1 shows the deviation of the real evaporation rate from the
upper bound. At T > mφ (mφ is the mass of squarks, suppressed by some coupling
constants with respect to M), the evaporation rate must be parametrically the same
as the upper bound, since the scalar particles building up the Q-ball appear with
a large number density ∼ T 3 also in the plasma phase6. Hence, the rate of Q-ball
evaporation in a plasma with a vanishing chemical potential (µplasma = 0) at T > mφ

is given by eq. (5.6) with D ∼ 1. At T < mφ, the charge in the plasma sits mainly in
light fermions; the probability of squark emission from a Q-ball is suppressed by the
Boltzmann exponent exp(−mφ/T ). Therefore, the emission of heavy squarks from the
Q-ball surface can be neglected. The main process which is allowed is squark-squark
transition into two quarks, φφ → qq. It may occur through gluino exchange with a
cross-section of the order of σ ∼ β/m2

φ (see also a similar discussion in [38]), where
β is some combination of the coupling constants. Thus, we expect D ∼ βT 2/m2

φ at
T < mφ.

By integrating eq. (5.6) (we assume a radiation dominated Universe) we find that
Q-ball evaporation is negligible at T < mφ (D is essentially replaced by β in eq. (5.7)).
The charge QT of a Q-ball at T ∼ mφ is related to its initial charge Q0 as

QT ∼ Q0

(
1−D

M0

MQ
3/4
0

ln(
M

mφ

)

)4/3

. (5.7)

Most of the charge is evaporated at low temperatures near T ∼ mφ.
From eq. (5.7) we conclude that Q-balls survive evaporation if their initial charge is

Q0>∼

(
D
M0

M
ln(

M

mφ

)

)4/3

. (5.8)

6In case some of the Lagrangian squark mass parameters are small or negative, this regime extends
down to the critical temperature of the electroweak phase transition.
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If, for example, M ∼ 1 TeV, then all Q-balls with Q0 > 1020 stay till the present time.
It is interesting to note that these values of Q are naturally produced from the decay
of an AD condensate.

Now, if eq. (5.8) is satisfied, then the amount of charge evaporated from an individual
Q-ball is of the order of

∆Q ∼ D
M0

M
ln(

M

mφ

)Q1/4
0 . (5.9)

Thus, the number density of baryons nB in the plasma is related to the number density
of Q-balls nQ as

nB ∼ nQ∆Q. (5.10)

Using then nQ from eq. (5.3) together with the entropy density s ≈ (2/45)g∗π
2T 3, and

assuming that Q-balls give all the cold dark matter in the Universe with ΩDM ∼ 0.4,
the baryon to photon ratio is computable:

η =
nB
nγ
∼ 10−8 M0mp

M2Q
1/2
0

ln(
M

mφ

). (5.11)

The correct ratio η ∼ 10−10 appears quite naturally with the choice of, e.g., M ∼ 1−10
TeV and a corresponding initial charge Q0 ∼ 1028 − 1022. These values are quite
plausible from the mechanism of Q-ball formation.

Since Q-balls interact very rarely, they should not take part in light element nu-
cleosynthesis. From the point of view of structure formation, they are completely
equivalent to weakly interacting cold dark matter. They thus behave in a somewhat
similar way as quark nuggets [39].

6 Conclusions

Supersymmetric non-topological solitons in theories with flat directions of the effective
potential have a number of interesting properties at high temperatures. Provided that
their charge is large enough, Q-balls can exist at any temperature. Unlike for “classic”
Q-balls with MQ ∼ Q1, the ground state of a system with a finite density of the
charge is not translationally invariant and contains Q-balls. The state of Q-matter
(Bose-Einstein condensate) appears to be always unstable and it decays into Q-balls.

These properties have interesting implications for cosmology. Depending on the
mechanism of Q-ball formation, thermal and chemical equilibrium may or may not be
reached. If it is reached, an equilibrium distribution of Q-balls with charges Q>∼ 1040

could account for both the net baryon asymmetry needed for nucleosynthesis, and for
the cold dark matter. In this picture, the dark matter is in fact baryonic, with the
baryon charge distributed between ordinary baryons with nB/nγ ∼ 10−10, and squarks
packed inside dark matter Q-balls.
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On the other hand, for charges Q ∼ 1022 . . . 1028 which are more likely from the point
of view of Q-ball formation, only thermal equilibrium is reached. But even then, it turns
out that the right orders of magnitude for the baryon asymmetry in ordinary baryons
and for the dark matter in Q-balls, can be reached provided that supersymmetry is
broken at a low energy scale M ∼ 1 . . . 10 TeV. Thus Q-balls represent an appealing
candidate for the cold dark matter, offering a new picture in which the origin of ordinary
baryons and the dark matter is the same.
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Appendix A: A model effective potential

In this appendix, we derive the 1-loop effective potential of the theory considered in
Sec. 4 for given µ, T , both at small and large values of the fields. These two cases have
to be treated separately, as the theory requires a resummation for small values of the
fields.

At 1-loop level, one has to consider renormalization. To be specific, the running of
the fields and parameters is at 1-loop level determined by

µ
d

dµ
f 2 =

5

16π2
f 4, µ

d

dµ
m̃2 =

3

16π2
f 2m̃2, (A.1)

µ
d

dµ
φ∗φ = −

2

16π2
f 2φ∗φ, µ

d

dµ
χ∗χ = −

1

16π2
f 2χ∗χ. (A.2)

Here φ∗φ, χ∗χ denote the renormalized fields squared appearing in the Lagrangian,
and not any composite operators. As a result, the parameters and fields at scale µ are

φ∗φ(µ) ≈ φ∗φ(µ0)

(
µ

µ0

)− 2f2

16π2

, χ∗χ(µ) ≈ χ∗χ(µ0)

(
µ

µ0

)− f2

16π2

, (A.3)

m̃2(µ) ≈ m̃2(µ0)

(
µ

µ0

) 3f2

16π2

, f 2(µ) ≈
16π2

5 ln(Λ/µ)
, (A.4)

where Λ = µ0 exp[16π2/5f 2(µ0)].
The theory can then be defined in terms of two parameters, the values of m̃2(µ0),

f(µ0), at some value µ0 of the MS scale parameter. We choose µ0 ≡ m̃0, where
m̃0 = m̃(m̃0). Then all the dimensionful quantities, such as the temperature T , are
measured in units of m̃0, and the results only depend on f(m̃0). To have a weakly
coupled theory up to very high scales, we arbitrarily choose f(m̃0) = 0.5.
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The most convenient way to implement the resummation needed at small values of
the fields, is to construct an effective 3d theory describing the thermodynamics [31]–
[34]. On the other hand, for large values of χ, no resummation is needed and the
effective 3d theory is not valid any more. Then one can use the standard 4d finite
temperature 1-loop potential. Let us discuss the 3d theory first.

A.1 The 3d effective theory and V (φ, χ) at small φ, χ

Let us denote

Mφ =
1
√

2
fφ1, Mχ =

1
√

2
fχ1. (A.5)

The effective theory constructed is valid for Mφ,Mχ � πT , and implements the re-
summation needed in the regime Mφ,χ<∼ fT .

The derivation of the effective theory proceeds by computing the n-point functions in
the original theory and in the effective theory, and by matching the parameters of the
effective theory such that the original results are reproduced. In the present context,
one has to consider the 2-point functions of the bosonic fields at non-zero momenta to
get the field normalizations, and the 2- and 4-point functions at zero momenta. The
field normalizations arise from fermionic loops alone. The zero-momentum correlators
arise both from bosonic and fermionic loops, and the most convenient way of deriving
them is the effective potential, expanded in terms of masses to the required order. We
will also expand in µ, assuming µ � πT , although this would not be necessary. We
then assume that parametrically fφ, fχ, µ ∼ fT and work at 1-loop level to order f 4.
Thus we need the first five terms (up to B4) from the expansion

1

2
ln det(A+B) =

1

2
ln detA+

∞∑
n=1

(−1)n+1

2n
Tr (A−1B)n. (A.6)

In the bosonic case, the matrices are

A−1 =
1

p2
diag(1, 1, 1, 1),

B =


m̃2 + 1

2
M2

φ +M2
χ 0 0 0

0 −m̃2 + 3
2
M2

φ +M2
χ 2MφMχ 0

0 2MφMχ −µ2 +M2
φ −2µp0

0 0 2µp0 −µ2 +M2
φ

 , (A.7)

where p2 = p2
0 + p2 and p0 is a bosonic Matsubara frequency. In the fermionic case,

A−1 =
1

p2

(
−i/p 0

0 −i/p

)
, B =

(
−µ

2
γ0γ5 +Mχ Mφ

Mφ
µ
2
γ0γ5

)
. (A.8)
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The fermionic matrices have been written in the basis of the Majorana fermions

ψ̃φ =

(
ψφ
ψφ

)
, ψ̃χ =

(
ψχ
ψχ

)
, (A.9)

where we used the standard notation of Ref. [40]. There is an overall minus sign in
eq. (A.6) for fermions, and only even powers of B contribute due to the momentum
integration.

The basic integrals appearing in the evaluation of the traces are

∑∫ ′
pb

1

p2
=
T 2

12
,

∑∫ ′
pb

1

(p2)2
=

1

16π2

[
1

ε
+ Lb(µ)

]
,

∑∫ ′
pb

1

(p2)3
=

ζ(3)

128π4T 2
, (A.10)

∑∫
pf

1

p2
= −

T 2

24
,

∑∫
pf

1

(p2)2
=

1

16π2

[
1

ε
+ Lf (µ)

]
,

∑∫
pf

1

(p2)3
=

7ζ(3)

128π4T 2
, (A.11)

where pb, pf are the bosonic and fermionic Matsubara momenta, a prime means that
the zero Matsubara mode is omitted, and

Lb(µ) = 2 ln
µ

µT
, Lf (µ) = 2 ln

4µ

µT
, µT = 4πe−γT. (A.12)

The other integrals appearing, of the form
∫
Σ (p2

0)n/(p2)m, can be derived from those in
eq. (A.11) by taking derivatives with respect to T .

As a result, the 3d finite temperature effective theory describing the thermodynamics
of the original 4d theory is defined by the action

S3d =
V

T

[
−
π2

12
T 4 −

5

24
µ2T 2 +

7

192π2
µ4 +

m̃4(µT )

f 2(µT )

]

+
∫
d3x

[
1

2
(∇φ1)2 +

1

2
(∇φ2)2 + (∇χ)∗(∇χ)

+
1

2
m2

1φ
2
1 +

1

2
m2

2φ
2
2 +m2

χχ
∗χ

+
1

4
λφ(φ2

1 + φ2
2)2 +

1

2
λm(φ2

1 + φ2
2)χ∗χ+ λχ(χ∗χ)2

]
. (A.13)

Here the fields are related to the 4d fields by

(φφ)3d =
1

T
(φφ)4d

(1

4
µT
)
, (χχ)3d =

1

T
(χχ)4d

(1

4
µT
)
. (A.14)

The parameters are given by

m2
1 = −m̃2

(
2−4/3µT

)
−
f 2µ2

16π2
+
f 2T 2

4
,
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m2
2 = m̃2

(
2−4/3µT

)
−
f 2µ2

16π2
+
f 2T 2

4
,

m2
χ = −µ2

(
1−

f 2

16π2

)
+
f 2T 2

8
,

λφ =
1

4
Tf 2

(
28/5µT

)
, λm = Tf 2

(
22/5µT

)
, λχ = T

f 4

8π2
ln 2. (A.15)

Note, in particular, that around the two “symmetry restoring” temperatures [T φc =
2m̃/f where m2

1 ∼ 0, and T χc = 2
√

2µ/f where m2
χ ∼ 0], one has πT � {m̃, µ} for a

small coupling f , so that the construction of the effective theory is well convergent.
To go further with resummed perturbation theory, one can compute the effective

potential in the theory defined by the action in eq. (A.13). The general pattern can be
seen already from the tree-level potential,

Vtree = const. +
1

2
m2

1φ
2
1 +

1

2
m2
χχ

2
1 +

1

4
λφφ

4
1 +

1

4
λmφ

2
1χ

2
1 +

1

4
λχχ

4
1. (A.16)

This tree-level potential of the 3d theory corresponds to the dominant thermal screening
contributions in the 4d 1-loop potential. The 3d 1-loop correction is

V1−loop = −
1

12π

∑
i=φ2,χ2,±

m3
i , (A.17)

where

m2
φ2

= m2
2 + λφφ

2
1 +

1

2
λmχ

2
1, m2

χ2
= m2

χ + λχχ
2
1 +

1

2
λmφ

2
1,

m2
± =

1

2

[
m2
φ1

+m2
χ1
±
√

(m2
φ1
−m2

χ1
)2 + 4m2

φχ

]
,

m2
φ1

= m2
1 + 3λφφ

2
1 +

1

2
λmχ

2
1, m2

χ1
= m2

χ + 3λχχ
2
1 +

1

2
λmφ

2
1,

m2
φχ = λmφ1χ1. (A.18)

The 2-loop corrections can also be readily computed, but they do not affect our con-
clusions.

A.2 The effective potential V (φ, χ) at large χ

At large field values, Mχ>∼πT , the 3d effective theory breaks down. Then one needs the
full finite temperature 1-loop effective potential, but on the other hand resummation is
not needed. Moreover, the φ1-symmetry is restored, Mφ = 0. We assume also that the
chemical potential is small, µ�Mχ, which is well justified in the region considered.

The tree-level potential for Mφ = 0 is

Vtree =
m̃4(µ)

f 2(µ)
−

1

2
µ2χ2

1. (A.19)
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The mass spectrum entering the 1-loop potential consists of two massless scalar degrees
of freedom χ1, χ2 and one massless Majorana spinor ψ̃χ, together with the massive
scalar particles φ1, φ2 and the Majorana fermion ψ̃φ. The masses are

mψφ = Mχ, m2
φ1

= −m̃2 +m2
ψφ
, m2

φ2
= m̃2 +m2

ψφ
. (A.20)

To order (µ/Mχ)2, the renormalized 1-loop contribution is then

V1−loop =

[
−2

(
1 +

7

8

)
π2T 4

90
−

9

48
µ2T 2

]

+
∑
i=1,2

[
−
m4
φi

64π2

(
ln

µ2

m2
φi

+
3

2

)
+
T 4

2π2
J0(mφi/T )

]

+ (−2)

−m4
ψφ

64π2

ln
µ2

m2
ψφ

+
3

2

+
T 4

2π2

(
1

8
J0(2mψφ/T )− J0(mψφ/T )

)
+

µ2

2

−m2
ψφ

16π2
ln

µ2

m2
ψφ

+
T 2

2π2

(
1

2
I0(2mψφ/T )− I0(mψφ/T )

) . (A.21)

The integrals appearing here are

J0(y) =
∫ ∞

0
dx x2 ln

(
1− e−

√
x2+y2

)
, (A.22)

I0(y) =
∫ ∞

0
dx

x2

√
x2 + y2

1

e
√
x2+y2

− 1
. (A.23)

In the regime Mχ<∼T , the convergence of the 1-loop potential can be improved by a
resummation:

V ′1−loop = V1−loop +
∑
i=1,2

T

12π

(
m3
φi
−m3

φi

)
, (A.24)

where m2
φi

= m2
φi

+ f 2T 2/4.

Appendix B: Q-ball properties

In this appendix, we briefly review the properties of Q-balls in theories with flat direc-
tions. The high temperature limit of Q-balls in the theory considered in Sec. 4 follows
as a special case.

Consider the action for the length χ1 of the complex U(1) scalar field χ (the extremum
solutions considered do not depend on the phase of χ),

Fµ =
∫
d3r

[
1

2
(∂iχ1)2 −

1

2
µ2χ2

1 + V (χ1)
]
. (B.1)
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Here it has been assumed that the derivative part of the effective action remains the
same as at tree-level and only the potential changes. The potential is assumed to
be normalized such that V (0) = 0. Let us scale eq. (B.1) into a dimensionless form
by V (χ1) = aV g(χ̃), χ1 = aχχ̃, µ = aµµ̃, r = aRr̃, F = aF F̃ , Q = aQQ̃, with aµ =
√
aV /aχ, aR = aχ/

√
aV , aF = a3

χ/
√
aV , aQ = a4

χ/aV . The scaling of V (χ1) is chosen so
that g(0) = 0, g(∞) = 1. It then follows that the spherically symmetric extrema of the
action in eq. (B.1), required by eq. (2.5), satisfy

d2χ̃

dr̃2
+

2

r̃

dχ̃

dr̃
= −µ̃2χ̃+ g′(χ̃); χ̃′(0) = 0; χ̃(∞) = 0. (B.2)

The main properties of the solution of eq. (B.2) for small µ̃ are familiar from the
zero temperature context, and do not depend at all on the functional form of g(χ̃) at
small χ̃. To see this, assume that the solution scales so that F̃µ = Cµ̃−α. Then

Q̃ = µ̃
∫
d3r̃χ̃2 = −

∂F̃µ

∂µ̃
= Cαµ̃−α−1, (B.3)

and
F̃Q = F̃µ + µ̃Q̃ = (1 + α−1)(αC)

1
1+α Q̃

α
1+α . (B.4)

The parameters α,C can now be easily derived. At large χ̃ (small r̃), the potential
g(χ̃) equals unity, and the equations of motion can be solved analytically:

χ̃(r̃) = χ̃0
sinµ̃r̃

µ̃r̃
. (B.5)

The scale of χ̃0 is determined by when −(1/2)µ̃2χ̃2 compensates for the unity in g(χ̃).
It follows that χ̃0 ∼ µ̃−1. The radius of the Q-ball is determined by χ̃(R̃) ∼ 1, i.e.
R̃ ∼ πµ̃−1. Thus

Q̃ = µ̃
∫
d3r̃χ̃2 ∼ µ̃R̃3χ̃2

0 ∼ µ̃−4, (B.6)

and it follows from eq. (B.3) that α = 3. To determine the constant C, note that
g(κ/µ̃) → θ(κ) with θ(0) = 0, when µ̃ → 0. Eq. (B.2) can then be integrated from
R̃− ε to R̃ + ε, and one finds χ̃0 =

√
2π/µ̃. One then gets from eqs. (B.3), (B.5) that

C = 4π4/3.
We can now go back to the original dimensionful units, to find that

R = (1/
√

2)a
−1/4
V Q1/4, χmax

1 = a
1/4
V Q1/4, Rµ = π, (B.7)

FQ = (4π
√

2/3)a
1/4
V Q3/4, Q = 4π4aV µ

−4. (B.8)

These are in accordance with eqs. (3.11), (3.12), where aV = M4. In the model of
Sec. 4 at very high temperatures, aV = (π2/24)T 4.
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Figure 5: The free energy F̃µ and the charge Q̃ as a function of the scaled chemical
potential µ̃ (denoted by F ′, Q′, µ′ in this figure) for the Q-ball solution, in the limit
of high temperatures and a small chemical potential. The extrapolated constant at
µ̃→ 0 is C ≈ 129.87(1), in accordance with the analytic result C = 4π4/3. The slopes
are such that F̃µ = Cµ̃−3(1− 2.1µ̃), Q̃ = 3Cµ̃−4(1− 1.4µ̃).

Finally, note that in contrast to the leading terms, the first corrections to the asymp-
totic behaviour in eqs. (B.7), (B.8) depend on the detailed form of the potential g(χ̃).
As an example, consider the model in Sec. 4. With aV = (π2/24)T 4 and choosing
χ̃ = Mχ/T = fχ1/(

√
2T ) ≡ a−1

χ χ1, we get

g(χ̃) = 1 +
48

π4
J0(χ̃)−

3

π4
J0(2χ̃). (B.9)

Here J0 is from eq. (A.22). The numerical values following from the solution of eq. (B.2)
with this g(χ̃) are shown in Fig. 5. Since µ̃ = (aχ/

√
aV )µ = (4

√
3/fπ)(µ/T ), it is seen

from Fig. 5 that the asymptotic estimates in eqs. (B.7), (B.8) are reliable within ∼ 10%
at least up to µ̃ <∼ 0.05, or µ/T <∼ 0.02f . This corresponds to charges Q>∼ 109f−4.
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