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Abstract

We explore the connection of anti-de-Sitter supergravity in six dimensions, based on

the exceptional F (4) superalgebra, and its boundary superconformal singleton theory.

The interpretation of these results in terms of a D4-D8 system and its near horizon

geometry is suggested.
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Recently, a close connection between superconformal field theories in d dimensions and

anti-de-Sitter supergravities in d + 1 dimensions has emerged [1]-[24]. The original pro-

posed duality between world-volume theories of p-branes systems and their nearly horizon

geometry in AdSp+2 space-time [2] has further been interpreted as a correspondence be-

tween superconformal p+1 world-volume theories with N (Poincaré) supersymmetries and

AdSp+2 supergravity with 2N supersymmetries. In addition, the global symmetries of the

former correspond to gauge symmetries of the latter [3, 4, 5].

Apart from its physical interpretation, these recent developments have been inherited

by some peculiar properties of a class of unitary representations of the O(p+1, 2) conformal

group, the so called singletons [25], which have the properties that they allow propagation of

massless degrees of freedom not on the AdSp+2 bulk but rather on its boundary ∂AdSp+2 =

M̃p+1, where M̃p+1 is a certain completion of Minkowski space. Bulk degrees of freedom turn

out to be composite of singletons. This fact being closely related to the group property of

decomposition of tensor products of singleton representations [3]. When this state of affairs

is enlarged to incorporate supersymmetry, then a quite remarkable relation is discovered

between BPS p-brane world-volume dynamics and gauged superalgebras.

The relevant superalgebras for p = 1, 2, 3 and 5 are members of infinite sequences

of superalgebras, usually denoted by OSp(N/M) and SU(N/M), the orthosymplectic and

unitary series [26]. However, in the particular case of a six-dimensional anti-de-Sitter space,

there is an isolated superalgebra, F (4), whose bosonic part is SO(5, 2) × SU(2). It is the

aim of the present work to study this case.

It turns out that the gauged F (4) theory [27] has on its boundary a N = 2 supercon-

formal field theory which is a superconformal fixed point of a five-dimensional Yang-Mills

theory. The relevant singleton representation of F (4)×G on the supergravity side is just a

5d hypermultiplet in a symplectic representation of the flavour group G at the fixed point

of the Yang-Mills theory.
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Five-dimensional superconformal field theories with some flavour symmetry group G

will correspond in the six dimensional bulk to the gauged F (4) theory [27], coupled to

matter vector multiplets gauging the group G. 1 These theories are based on a non-linear

sigma-model [27, 28]

R+ ×
SO(4, k)

SO(4)× SO(k)
, (1)

where the diagonal SU(2) in SO(4) = SU(2) × SU(2) is the gauged R-symmetry of the

world-volume theory and we have additional gauge bosons corresponding to the flavour

symmetry G (k = dimG) and a neutral U(1) vector in the gravitational multiplet. The

latter is absorbed by an antisymmetric tensor Bµν to give a “massive” two-form [27]. The

gauged bulk theory has a G-invariant anti-de-Sitter vacuum for a fixed value of the dilaton

and all matter scalars vanishing [27]. The gauged F (4) theory, in the Poincaré limit,

corresponds to the d = 6, (1, 1) theory (with 16 supercharges).

One may ask why no superconformal extension exists for the (2, 2) theory, contrary

to the other cases in diverse dimensions. This can be understood from the fact that the

N = 4, 5d theory in Minkowski space-time admits only vector multiplets and the latter

are not conformal multiplets in five dimensions. In other words, there is no candidate for a

supersingleton multiplet for a hypothetical maximally extended theory. One may also ask

what is the correspective of this statement in terms of brane world-volume, in the spirit

of [2]. n D4-branes in type IIA realize on their world-volume a U(n) Yang-Mills theory

which flows in the IR to a free (and not superconformal) theory of vector multiplets. The

near horizon geometry of the D4-branes is not related to AdS6. The regime of validity of

the supergravity solution (small curvature and small dilaton) in the large n limit does not

cover the IR region, as discussed in [7].

However, in the N = 2 case the 5d hypermultiplets are conformal invariant and there

1The Lagrangian for gauged supergravity coupled to matter vector multiplets has not yet been

constructed.
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is a candidate supergravity multiplet for the corresponding F (4) superalgebra. Non-trivial

superconformal fixed points in N = 2 Yang-Mills theories in 5d were found in [29]. A

common characteristic of these theories is that the global symmetries are enhanced at the

fixed point. The R-symmetry for N = 2 five-dimensional Yang-Mills theories is SU(2)R and

we do not expect that it is enhanced at the superconformal point: it becomes the bosonic

SU(2) subgroup of the superalgebra F (4). We will consider Yang-Mills theories with gauge

group USp(2n) with matter in the antisymmetric representations and Nf fundamentals

(Nf ≤ 7): the additional global symmetry is SU(2) × SO(2Nf) × U(1)I , where U(1)I is

associated with the current ∗(F ∧ F ), which exists and is conserved in five dimensions.

For generic values of the parameters, these theories are IR free. However, if we tune

the parameters (in particular the bare coupling constant) in such a way that the effective

coupling constant diverges at the origin of the Coulomb branch, we find non trivial fixed

points, where the global symmetry is enhanced to SU(2) × ENf +1 (E5 = Spin(10), E4 =

SU(5), E3 = SU(3) × SU(2), E2 = SU(2) × U(1), E1 = SU(2)) [29]. Other fixed points

with U(1) or no global symmetry at all were constructed in [30]. The theory at the fixed

point is a superconformal theory of interacting hypermultiplets, with a global symmetry

SU(2) × ENf +1. The global symmetry quantum numbers are carried by instantons, which

are particles in five dimensions and are the only states charged under U(1)I [29]. Instantons

can become massless exactly when the coupling constant diverges. If we give mass to the

adjoint we get another series of fixed points with ENf +1 global symmetry.

Evidence for non-trivial fixed points for other simple gauge groups coupled to matter

in various representations can be found in [31]. There is a reason for having discussed

the USp(2n) case. It is the case which admits a brane realization in terms of D4 and

D8-branes. The 5d fixed points were indeed originally found by analyzing a D4-D8-brane

configuration [29]. We briefly review the construction. Consider type I′ on S1/Z2. There

are two orientifold planes and we will consider 2Nf D8 branes coinciding with one of

them. The USp(2n) Yang-Mills theory, with exactly the matter content described above,
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is obtained on the world-volume of 2n D4-branes living at the same orientifold. The global

symmetry of the D4-branes theory is SU(2) × SO(2Nf) × U(1)I . The SU(2) factor comes

from the space-time Lorentz group; it is the less relevant factor in our discussion, and

disappears if we give a mass to the matter in the antisymmetric representation. SO(2Nf)

is the gauge symmetry of the Nf D8-branes nine-dimensional world-volume theory; it is a

subgroup of the SO(32) type I gauge group. U(1)I corresponds to the U(1) vector field of

the type IIA theory. The enhancement of global symmetry can be understood using the

duality with the SO(32) heterotic string [29]. In nine dimensions, T-duality connects the

SO(32) and E8 × E8 heterotic strings. The type I′ backgrounds with enhanced symmetry

correspond to the points in the moduli space of the SO(32) heterotic string on S1 where

there is an enhancement of symmetry to E8 × E8, or subgroups. The U(1)I charge is the

winding number of the dual heterotic string and the perturbative enhancement of space-

time symmetry takes place at points in the moduli space where heterotic winding modes

become massless. In the previous examples, SO(2Nf) × U(1)I is enhanced to ENf +1 .

For our purpose the details of the type I′ theory are irrelevant: we are describing a system

of 2n D4-branes in the background of 2Nf D8-branes at a nine-dimensional orientifold

plane. The value of the dilaton at the orientifold diverges at the point in moduli space

where we expect enhanced symmetry [32, 29]; the heterotic winding modes are D0-branes

in type I′ and therefore become massless, providing the extra gauge bosons needed to fill

the adjoint of ENf +1 [33, 34]. The value of the dilaton at the orientifold is, for the five-

dimensional theory on the D4-branes, the effective coupling constant at the origin of the

Coulomb branch, which is therefore tuned to infinity. The D0-branes are instantons for

the D4-branes theory. This gives the picture of a non-trivial superconformal fixed point,

with relevant degrees of freedom corresponding to instantons, obtained by tuning to zero

the inverse coupling constant [29].

It is amusing to notice that the enhancement of the flavour symmetry O(2Nf)×O(2) →



–6–

ENf +1 at the superconformal fixed point is the compact version of the enhancement of the

T-S duality group to the U duality group O(10−d, 10−d)×O(1, 1) → E11−d(11−d), obtained

by replacing Nf → 10 − d [35].

The spinor representations of SO(2Nf) (SO(10 − d, 10 − d)), appearing in the decom-

position of the adjoint of ENf +1 (E11−d(11−d)) and providing the missing vector bosons of

the enhanced symmetry, can be obtained in the brane description by quantizing the modes

corresponding to the D0-D8 open strings [33, 34].

Let us examine the implications of a AdS6 supergravity description for the superconfor-

mal fixed points with ENf +1 global symmetry. The D4-D8 system has a global symmetry

SU(2)R×SU(2)×ENf +1. For simplicity, we do not consider the SU(2) factor in the follow-

ing analysis: the corresponding superconformal theory is obtained as a limit of the same

USp(2n) Yang-Mills theory with a mass term for the multiplet in the antisymmetric repre-

sentation. These fixed points will correspond to the gauged F (4) supergravity [27] coupled

to matter vector multiplets in the adjoint of ENf +1. The superconformal theory at the

boundary is a theory of singleton hypermultiplets transforming in a symplectic representa-

tion of ENf +1. The massless bulk supermultiplets can be identified with bilinear composite

operators on the boundary, corresponding to the supermultiplets of global currents [3]. The

multiplets are classified according to the maximal subgroup USp(4) × O(2) ⊂ O(5, 2), i.e.

by the energy level E0 and a USp(4) representation.

Let us analyse in details the case Nf = 6. The singleton hypermultiplets transform in

the fundamental of E7, which decomposes under SO(12)×O(2) as 56 = (12, 2) + (32, 1).

The hypermultiplets contain the fermion (E0 = 2) and scalar (E0 = 3/2) fields, ψA, AA
i ,

where A is an index in the 56 of E7 and i is a index in the 2 of SU(2). The scalars obey

the reality condition: (AA
i )∗ = ǫijΩABA

B
j (where ΩAB is the E7 antisymmetric tensor). The

total number of states is 4 × 56. The following bilinears belong to the energy-momentum

tensor supermultiplet, which contains 26 states and is related to the graviton supermultiplet
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in AdS6,

graviton (E0 = 5) : conserved traceless energy-momentum tensor

gravitinos (E0 = 9/2) : γ∂AA
i γµψ

BΩAB,

SU(2)R currents (E0 = 4) : AA
i

↔

∂µ A
B
j ΩAB,

antisymmetric tensor and singlet vector (E0 = 4) : ψAσµνψ
BΩAB,

fermions (E0 = 7/2) : AA
i ψ

BΩAB,

singlet scalar (E0 = 3) : AA
i A

B
j ǫijΩAB. (2)

The global current supermultiplet, related to the AdS6 vector multiplets, with 24 × dimG

states, contains

E7 currents (E0 = 4) : AA
i

↔

∂µ A
B
j ǫijT

I
AB + ψAγµψ

BT I
AB,

fermions (E0 = 7/2) : AA
i ψ

BT I
AB,

scalars (E0 = 3) : AA
i A

B
j σ

a
ijT

I
AB, (dimSU(2), dimE7),

(E0 = 4) : ψAψBT I
AB, (1, dimE7), (3)

where T I
AB are the E7 (symmetric) matrix generators in the fundamental representation.

Note that the total number of scalars is 4 dimG+ 1, in agreement with (1).

The last set of scalars, singlets under SU(2)R and in the adjoint of E7, are the high-

est components (highest number of θ and, as a consequence, also highest conformal di-

mension) of the global current supermultiplet and therefore correspond to supersymmetry

preserving deformations of the superconformal point. Having conformal dimension 4, they

correspond to relevant deformations, which break superconformal invariance (and also the

global symmetry E7). Going to the Cartan subalgebra of E7, we find Nf parameters ti

(i = 0, ..., Nf − 1). t0 = 1/g2 corresponds to turning on the inverse coupling constant,

breaking the global symmetry to SO(2Nf)×U(1)I , which is appropriate for the Yang-Mills
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theory with non-infinite coupling. The other parameters mi corresponds to masses for some

of the quarks and also break, partially or totally, SO(2Nf). The other scalars in the global

current multiplet, having lower dimension and therefore not being the highest components

of their supermultiplet, are supersymmetry breaking deformations.

We see that also the scalar in the supergraviton multiplet, which is a singlet of the R and

global symmetries, is not the highest component of its supermultiplet and therefore it is a

deformation which breaks supersymmetry. In particular, the dilaton does not correspond to

the coupling constant of the Yang-Mills theory. It is interesting to consider what happens

to this singlet scalar in superconformal theories in different dimensions. In D = 4, it is

the highest component in its multiplet (which is the graviton multiplet for N = 4, a tensor

multiplet for N = 2 and an hypermultiplet for N = 1 [8]). In all the cases, it has dimension

4. It corresponds to a marginal supersymmetric deformation, which can be identified with

the coupling constant: the theory has indeed a line of fixed points. In D = 3 and 6, the

singlet is not the highest component of the supermultiplet and, therefore, it is a relevant

deformation which breaks supersymmetry and it cannot be identified with the coupling

constant. On the other hand, the (inverse) coupling constant is an irrelevant deformation

in D = 3, which, therefore, does not belong to the massless multiplets in AdS, but to some

massive KK mode. In D = 6, the (inverse) coupling constant is a relevant parameter and

belongs to some global current multiplet, as in the D = 5 case.

Note that the five dimensional Yang-Mills theories considered in this paper have been

constructed originally in terms of D4 and D8-branes systems. Also, we have argued an

interpretation of their fixed point superconformal field theories (in the large n limit) in

terms of boundary singleton theories of F (4) supergravities in AdS6. These two facts give

evidence that a solitonic D4-D8-branes configuration preserving eight supercharges, with

a near horizon geometry described by a F (4) gauged six dimensional supergravity theory

(with 16 supercharges) should exist. In fact, since D8-branes are only known to exist in
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the “massive” type IIA supergravity [36, 37], it may be natural to consider such solitonic

solutions in this ten dimensional supergravity. Such a relation between the F (4) and the

massive IIA supergravities is also suggested by the fact that they are the only known cases

where a Higgs mechanism takes place, where a massless two-form absorbs the degrees a

freedom of a gauge boson to become massive. As a result, the relations between p-branes

world-volumes and AdSp+2 theories that were already known for p = 3 in type IIB and

p = 2, 5 in eleven dimensional supergravity would be completed for p = 4 in the massive

type IIA.

Although the connection between F (4) and massive type IIA supergravities seems to

suggest that the gauged six-dimensional supergravity, dual to the five-dimensional fixed

point, can be obtained as the near horizon geometry of a configuration with D4 and D8

branes, it cannot be excluded that the brane configuration withAdS6 near-horizon geometry

is instead realized in a different set-up. A chain of dualities, for example, transforms the

D4-D8 system into a fivebrane wrapped around a circle in the E8 × E8 heterotic string.

In this heterotic description, the full series of ENf +1 global symmetries, which would be

harder to get in a massive type IIA compactification, are more likely to be manifest as

space-time fields, as discussed for six-dimensional (1,0) theories with E8 symmetry in [15].

The five-dimensional fixed points discussed in this paper are indeed the reduction to 5d

(with additional Wilson line) of the six-dimensional (1,0) theory.

It would be interesting to find the right solution. Besides giving evidence for the

AdS/CFT correspondence, it would provide an explicit KK reduction from ten or eleven

dimensions to six, and the KK modes would give information on the spectrum of conformal

operator of the fixed point theory.
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R. D’Auria, S. Ferrara, P. Fré and M. Trigiante, hep-th/9803039.

[2] J. Maldacena, hep-th/9711200.

[3] S. Ferrara and C. Fronsdal, hep-th/9712239; hep-th/9802126.

[4] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, hep-th/9802109.

[5] E. Witten, hep-th/9802150.

[6] G.T. Horowitz and H. Ooguri, hep-th/9802116.

[7] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, hep-th/9802203.

[8] C. Fronsdal, S. Ferrara and A. Zaffaroni, hep-th/9802203; S. Ferrara and A. Zaffa-

roni, hep-th/9803060; S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, hep-

th/9803109.

http://arxiv.org/abs/hep-th/9704005
http://arxiv.org/abs/hep-th/9711138
http://arxiv.org/abs/hep-th/9801076
http://arxiv.org/abs/hep-th/9711161
http://arxiv.org/abs/hep-th/9712073
http://arxiv.org/abs/hep-th/9712073
http://arxiv.org/abs/hep-th/9801206
http://arxiv.org/abs/hep-th/9801206
http://arxiv.org/abs/hep-th/9802047
http://arxiv.org/abs/hep-th/9803039
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9712239
http://arxiv.org/abs/hep-th/9802126
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9802116
http://arxiv.org/abs/hep-th/9802203
http://arxiv.org/abs/hep-th/9802203
http://arxiv.org/abs/hep-th/9803060
http://arxiv.org/abs/hep-th/9803109
http://arxiv.org/abs/hep-th/9803109


–11–

[9] S.J. Rey and J. Yee, hep-th/9803001; S.J. Rey, S. Theisen and J.T. Yee, hep-

th/9803135; J.M. Maldacena, hep-th/9803002; J.A. Minahan, hep-th/9803111.

[10] A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, hep-th/9803137.

[11] I.Ya. Aref’eva and I.V. Volovich, hep-th/9803028; I.V. Volovich, hep-th/9803174.

[12] E. Bergshoeff and K. Behrndt, hep-th/9803090.

[13] M.J. Duff, H. Lu and C.N. Pope, hep-th/9803061.

[14] S. Kachru and E. Silverstein, hep-th/9802183; A. Lawrence, N. Nekrasov and C. Vafa,

hep-th/9803015; M. Bershadsky, Z. Kakushadze and C. Vafa, hep-th/9803076; Z.

Kakushadze, hep-th/9803214.

[15] M. Berkooz, hep-th/9802195.

[16] J. Gomis, hep-th/9803119; Y. Oz and J. Terning, hep-th/9803167; E. Halyo, hep-

th/9803193; F. Brandt, J. Gomis and J. Simon, hep-th/9803196.

[17] O. Aharony, Y. Oz and Z. Yin, hep-th/9803051; R.G. Leigh and M. Rozali, hep-

th9803068; S. Minwalla, hep-th/9803053; E. Halyo, hep-th/9803077.

[18] G.T. Horowitz and S.F. Ross, hep-th/9803085.

[19] N. Itzhaki, A.A. Tseytlin and S. Yankielowicz, hep-th/9803103.

[20] E. Witten, hep-th/9803131.

[21] M. Gunaydin, hep-th/9803138.

[22] L. Andrianopoli and S. Ferrara, hep-th/9803171.

[23] A. Volovich, hep-th/9803220.

[24] H.J. Boonstra, B. Peeters and K. Skenderis, hep-th/9803231.

http://arxiv.org/abs/hep-th/9803001
http://arxiv.org/abs/hep-th/9803135
http://arxiv.org/abs/hep-th/9803135
http://arxiv.org/abs/hep-th/9803002
http://arxiv.org/abs/hep-th/9803111
http://arxiv.org/abs/hep-th/9803137
http://arxiv.org/abs/hep-th/9803028
http://arxiv.org/abs/hep-th/9803174
http://arxiv.org/abs/hep-th/9803090
http://arxiv.org/abs/hep-th/9803061
http://arxiv.org/abs/hep-th/9802183
http://arxiv.org/abs/hep-th/9803015
http://arxiv.org/abs/hep-th/9803076
http://arxiv.org/abs/hep-th/9803214
http://arxiv.org/abs/hep-th/9802195
http://arxiv.org/abs/hep-th/9803119
http://arxiv.org/abs/hep-th/9803167
http://arxiv.org/abs/hep-th/9803193
http://arxiv.org/abs/hep-th/9803193
http://arxiv.org/abs/hep-th/9803196
http://arxiv.org/abs/hep-th/9803051
http://arxiv.org/abs/hep-th/9803068
http://arxiv.org/abs/hep-th/9803068
http://arxiv.org/abs/hep-th/9803053
http://arxiv.org/abs/hep-th/9803077
http://arxiv.org/abs/hep-th/9803085
http://arxiv.org/abs/hep-th/9803103
http://arxiv.org/abs/hep-th/9803131
http://arxiv.org/abs/hep-th/9803138
http://arxiv.org/abs/hep-th/9803171
http://arxiv.org/abs/hep-th/9803220
http://arxiv.org/abs/hep-th/9803231


–12–

[25] M. Flato and C. Fronsdal, Lett. Math. Phys. 2 (1978) 421; Phys. Lett. B97 (1980)

236; hep-th/9803013; J. Math. Phys. 22 (1981) 1100; Phys. Lett. B172 (1986) 412;

A. Angelopoulos, M. Flato, C. Fronsdal and D. Sternheimer, Phys. Rev. D23 (1981)

1278.

[26] W. Nahm, Nucl. Phys. B135 (1978) 149.

[27] L.J. Romans, Nucl. Phys. B269 (1986) 691.

[28] F. Giani, M. Pernici and P. Van Nieuwenhuizen, Phys. Rev. D30 (1984) 1680.

[29] N. Seiberg, hep-th/9608111.

[30] D.R. Morrison and N. Seiberg, hep-th/9609070; M.R. Douglas, S. Katz and C. Vafa,

hep-th/9609071.

[31] K. Intriligator, D.R. Morrison and N. Seiberg, hep-th/9702198.

[32] J. Polchinski and E. Witten, Nucl. Phys. B460 (1996) 525.

[33] J. Polchinski, S. Chaudhuri and C.V. Johnson, hep-th/9602052.

[34] D. Matalliotakis, H.P. Nilles and S. Theisen, hep-th/9710247; O. Bergman, M.R. Gab-

erdiel and G. Lifschytz, hep-th/9711098.

[35] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré and M. Trigiante, Nucl. Phys. B496
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