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Abstract

We employ an effective Lagrangian approach to derive the leading-logarithm two-loop
electroweak contributions to the muon anomalous magnetic moment, aµ. We show that
these corrections can be obtained using known results on the anomalous dimensions of
composite operators. We confirm the result of Czarnecki et al. for the bosonic part and
present the complete sin2

θW dependence of the fermionic contribution. The approach is
then used to compute the leading-logarithm three-loop electroweak contribution to aµ.
Finally we derive, in a fairly model-independent way, the QED improvement of new-
physics contributions to aµ and to the electric dipole moment (EDM) of the electron. We
find that the QED corrections reduce the effect of new physics at the electroweak scale
by 6% (for aµ) and by 11% (for the electron EDM).
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1 Introduction

Historically, the measurement of the anomalous magnetic moment of the muon [1]

aµ ≡ gµ − 2

2
≡ µµ

(eh̄/2mµ)
− 1 = (11 659 230 ± 84) × 10−10 (1)

has provided the most convincing test of the validity of QED [2]. As the precision in the

experimental measurement and in the theoretical determination are progressively improving,

the muon anomalous magnetic moment aµ may soon offer a test of the Standard Model (SM)

electroweak theory and of some of its possible extensions.

From the experimental point of view, the E821 experiment at Brookhaven National Labo-

ratory is expected to improve the accuracy in the aµ measurement to the level of 4×10−10, and

possibly to 1–2×10−10 if large statistics is accumulated [3]. Let us consider now the present

status of the theoretical prediction for aµ. It is convenient to separate the total result into

several different parts. The pure QED contribution, which is known to order α5 [2], is

aQED
µ = (116 584 706 ± 2) × 10−11 . (2)

The part affected by strong-interaction contributions, which contains the largest source of uncer-

tainty, comes from the hadron vacuum polarization and the hadronic light-by-light amplitude.

A recent analysis relating, by means of dispertion relations, the hadronic vacuum polarization

to data from e+e− annihilation and τ decays gives [4]

ahad
µ (vac pol) = (6951 ± 75) × 10−11 . (3)

The error is dominated by the experimental uncertainty and will be significantly improved

by future measurements at BEPC in Beijing, at DAΦNE in Frascati, and at VEPP-2M in

Novosibirsk. The effect of higher-order hadronic contributions have also been evaluated [5]

ahad
µ (h.o. vac pol) = (−101 ± 6) × 10−11 . (4)

The most recent theoretical estimate of the hadronic light-by-light contribution gives [6]

ahad
µ (γ × γ) = (−79 ± 15) × 10−11 . (5)

Finally, the SM electroweak contribution at one loop is [7]

aEW
µ (1 loop) =

5 Gµ m2
µ

24
√

2π2

[
1 +

1

5
(1 − 4s2

W )2
]

= 195 × 10−11 , (6)
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where Gµ is the Fermi constant and s2
W ≡ sin2 θW = 1 − M2

W /M2
Z . As first noticed in

ref. [8], two-loop electroweak corrections are quite substantial, because of large contributions

O(Gµ m2
µ α/π ln (M/mf )). Here M represents the W or Z mass and mf indicates a light fermion

mass. Combining together the contribution containing closed fermionic loops [9, 10] and the

one from the other relevant two-loop diagrams (usually indicated as bosonic part), Czarnecki

et al. obtain [11]

aEW
µ (2 loop) = (−44 ± 4) × 10−11 , (7)

for an Higgs mass MH = 250 GeV, where the error is associated to the uncertainties in MH ,

the hadronic contributions, and higher-loop effects.

In this paper, we show how the leading O(Gµ m2
µ α/π ln (M/mf )) two-loop electroweak

corrections to the anomalous magnetic moment, aEW
µ (2 loop)LL, can be easily obtained with the

help of effective theories and Wilson renormalization group. The relevant anomalous dimensions

of composite operators can be extracted from known results of the QCD corrections to flavour-

violating bottom-quark transitions mediated by the magnetic dipole operator [12]. In this

way, we derive aEW
µ (2 loop)LL without directly computing any Feynman diagram and confirm

the results of refs. [9, 10, 11]. Moreover, since the renormalization-group technique actually

includes all leading QED logarithms, we are able to give an analytic expression for the leading

three-loop contribution to aEW
µ . This contribution turns out to be very small, but its knowledge

allows to eliminate the uncertainty on aEW
µ from higher-order effects. Including the different

terms, we obtain

aEW
µ = (153 ± 3) × 10−11 , (8)

where the central value corresponds to MH = 150 GeV. This leads to a theoretical prediction

for the muon anomalous magnetic moment

aµ = (116 591 630 ± 77) × 10−11 . (9)

We also show that this method is well suited to compute higher-order corrections to new-

physics contributions to magnetic and electric dipole moments. The only necessary basic as-

sumption is that the new physics gives a one-loop contribution to the dipole moments, but does

not significantly affect at tree level composite four-fermion interactions. Under this assump-

tion, the leading logarithmic two-loop contribution is determined by infrared effects and it can

be computed from the renormalization-group evolution of the effective theory below the weak
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scale. We find that the QED improvement reduces the one-loop new-physics effect by 6% in the

case of aµ and 11% in the case of the electric dipole moment (EDM) of the electron, assuming

that the new physics lies around the weak scale.

2 Two-Loop Calculation of aEW
µ

The leading two-loop contributions to aEW
µ come from large QED logarithms. These terms

correspond to ultraviolet divergences in the effective theory obtained by integrating out the

heavy modes, and they can be derived in terms of the anomalous dimensions of the dipole and

current-current operators.

We start by defining an effective theory valid below the electroweak scale, in which the W

and Z bosons and the top quark have been integrated out. The effect from heavy particles is

reflected in higher-dimensional operators. Here we are interested in the operator corresponding

to aµ

Hµ = −
√

α

(4π)3
mµ µ̄ σνρ µ Fνρ , (10)

and to other possible dimension-six operators that mix under QED renormalization with Hµ.

Since QED is parity conserving and Hµ is parity even, it is easy to realize that we need to

consider only the following parity-even four-fermion operators

Vµ =
1

2
µ̄γνµ µ̄γνµ , Aµ =

1

2
µ̄γνγ5µ µ̄γνγ5µ , (11)

Vµf = µ̄γνµ f̄γνf , Aµf = µ̄γνγ5µ f̄γνγ5f . (12)

In eq. (12) f indicates a generic fermion different from µ and the factor 1/2 in the definition

of the operators Vµ and Aµ compensates the symmetry factor for two identical currents in the

Feynman rule. The relevant part of the effective Lagrangian is

Leff = −2
√

2Gµ

∑

i

CiOi , (13)

where the operators Oi are given in eqs. (10)–(12) (with f = {b, τ, c, s, d, u, e}) and the Wilson

coefficients Ci at the electroweak scale µ = M are

CHµ
(M) =

2
√

2π2

Gµ m2
µ

aEW
µ (1 loop) =

5

12

[
1 +

1

5
(1 − 4s2

W )2
]

, (14)
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CVµ
(M) =

1

8
(1 − 4s2

W )2 , CAµ
(M) =

1

8
, (15)

CVµf
(M) = −1

4
(1 − 4s2

W )(Tf − 2Qfs
2
W ) , CAµf

(M) = −1

4
Tf . (16)

In eq. (16) Tf and Qf are the third isospin component and electric charge of the fermion f ,

respectively. The coefficient CHµ
is obtained by one-loop integration, while the coefficients in

eqs. (15)–(16) correspond to tree-level Z exchange. The W boson can only generate operators

with f = ν which are irrelevant for our analysis, because they cannot mix under QED with Hµ

as neutrinos carry no electric charge.

We are interested in the Wilson coefficient of the operator Hµ at the scale µ = mµ. The

leading-log evolution of the Wilson coefficients from the scale M to a generic scale µ is given

in terms of the one-loop anomalous dimension matrix γ and the one-loop beta function. In our

case,

Ci(µ) =
∑

j

[
exp

∫ e(µ)

e(M)
de

γT (e)

β(e)

]

ij

Cj(M)

=
∑

j





V

[
α(M)

α(µ)

] γ̂

2b

V −1





ij

Cj(M) , (17)

where e =
√

4πα is the QED gauge coupling, and the rotation matrix V is defined such that

γ̂ = V −1γT V is diagonal. The beta function is β(e) = −b e3/(16π2), with the coefficient b given

by

b = −4

3

∑

f

NfQ
2
f . (18)

In eq. (18) the sum is extended over all fermions f with mass less than the scale µ, electric

charge Qf and multiplicity Nf (Nf = 3 for quarks and Nf = 1 for leptons). Expanding eq. (17)

in powers of α, we obtain

CHµ
(µ) = CHµ

(M) −
∑

i

γ(Oi, Hµ)
α(µ)

4π
ln

M

µ
COi

(M) , (19)

where γ(Oi, Hµ) ≡ γOiHµ
. Aside from an overall factor Gµ m2

µ/(2
√

2π2), the first term in the

r.h.s. of eq. (19) gives aEW
µ (1 loop), while the second term gives aEW

µ (2 loop)LL.

The last ingredient necessary to complete the analysis is the computation of the elements

γ(Oi, Hµ) of the anomalous dimension matrix. This requires a calculation of the divergent

parts of loop diagrams generating Hµ, in which a single operator Oi is inserted and a single
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photon is exchanged. Actually, this calculation is completely analogous to the one of the QCD

anomalous dimension matrix for the ∆B = 1 effective Lagrangian, relevant for flavour-violating

bottom-quark transitions. For such a processes a complete list of the divergent contributions

from the various diagrams can be found in ref. [13]. All we need to do is the proper translation

from quarks to muons, and from gluons to photons. In this way we obtain

γ(Hµ, Hµ) = 16 (20)

γ(Vµ, Hµ) =
40

3
(21)

γ(Aµ, Hµ) =
808

9
(22)

γ(Vµf , Hµ) =
32

9
Q2

fNf (23)

γ(Aµf , Hµ) = 48 Q2
fNf . (24)

These expressions are valid both in dimensional regularization with the ’t Hooft-Veltman pre-

scription for γ5 [14] and in dimensional reduction [15]. In both schemes there are no finite

operator renormalizations from non-vanishing matrix elements.

Replacing in eq. (19) the matching conditions of eqs. (14)–(16) and the anomalous-dimension

elements of eqs. (20)–(24), and choosing M = MZ as high-energy scale, we obtain

aEW
µ (2 loop)LL =

5 Gµ m2
µ

24
√

2π2

α(mµ)

π

{
−43

3

[
1 +

31

215
(1 − 4s2

W )2
]
ln

MZ

mµ

+
36

5

∑

f∈F

NfQ
2
f

[
Tf +

2

27

(
Tf − 2 Qf s2

W

)
(1 − 4s2

W )
]
ln

MZ

mf



 , (25)

where the sum is extended over the fermions with a mass threshold between MZ and mµ,

F = {b, τ, c, s, d, u}. Eq. (25) confirms the results of refs. [9, 10, 11], but it disagrees with the

one presented in ref. [8]. It also shows the complete s2
W dependence, extending the results of

refs. [9, 10], in which the fermionic contribution has been computed in the limit s2
W = 1/4.

The contribution from light quarks is not appropriately described by eq. (25), since per-

turbation theory is not justified. Nevertheless, here we will parametrize the effect by taking

in eq. (25) mQ ≡ mu = md = ms = 0.3 GeV, and varying mQ between 0 and 1 GeV. In

this way, our result is consistent with the estimate of the light-quark contribution given in

ref. [10], based on a chiral effective Lagrangian. Taking mc = 1.5 GeV and mb = 4.5 GeV,
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we find aEW
µ (2 loop)LL = −(37 ± 1) × 10−11. This corresponds to ∼ 19% of the one-loop con-

tribution. We recall that the result in eq. (25) includes only the logarithmic contribution.

The terms not enhanced by large logarithms have been computed in ref. [9, 11] and amount

to aEW
µ (2 loop)NL = −(6 ± 2) × 10−11, where the central value corresponds to a Higgs mass

MH = 150 GeV and the error to a variation of MH in the range between 100 and 1000 GeV.

3 Three-Loop Calculation of aEW
µ

In the previous section, we have computed aEW
µ (2 loop)LL by expanding eq. (17) at the first

order in α. However eq. (17) also contains the information of higher-order terms, since it

resums all leading logarithms. We can therefore easily evaluate the magnitude of higher-order

corrections. For this purpose it is sufficient to expand eq. (17) to the next order in α, because

(α/π) ln(MZ/mµ) is much smaller than one. The corresponding result will give us the leading

logarithmic part of aEW
µ (3 loop).

Retaining O(α2) terms, the expansion of eq. (17) yields

Ci(µ) =
∑

j



δij − γji

α(µ)

4π
ln

M

µ
+
[
bγji +

1

2
(γγ)ji

] [
α(µ)

4π
ln

M

µ

]2


Cj(M) . (26)

Because of the presence of the (γγ) factor, we now need information on the complete structure

of the anomalous dimension matrix, and not only on the elements given in eqs. (20)–(24). We

start by defining the basis for the required parity-even operators. Besides the operators defined

in eqs. (10)–(12), we need the following four-fermion operators

Vf =
1

2
f̄γνf f̄γνf , Af =

1

2
f̄γνγ5f f̄γνγ5f , (27)

Vff ′ = f̄γνf f̄ ′γνf
′ , Aff ′ = f̄γνγ5f f̄ ′γνγ5f

′ with f 6= f ′ , (28)

Ṽqq′ = q̄γνq′ q̄′γνq , Ãqq′ = q̄γνγ5q
′ q̄′γνγ5q with q 6= q′ . (29)

In eqs. (27)-(29) f, f ′ (q, q′) represent a generic fermion (quark), and all quark operators are

defined with the colour indices saturated so that each current is an SU(3)C singlet. The

operators Ṽqq′ and Ãqq′ cannot be written in terms of Vff ′ and Aff ′ with a Fierz rearrangement,

because of the different colour-index saturation.
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The matching conditions for the Wilson coefficients at the scale µ = M are

CVf
(M) =

1

2
(Tf − 2 Qfs

2
W )2 , CAf

(M) =
1

2
T 2

f , (30)

CVff ′
(M) =

1

2
(Tf − 2 Qfs

2
W )(Tf ′ − 2 Qf ′s2

W ) , CAff ′
(M) =

1

2
TfTf ′ , (31)

C
Ṽqq′

(M) = C
Ãqq′

(M) =
1

4
∆qq′ , (32)

where ∆qq′ = 1 if q and q′ belong to the same isospin doublet, and ∆qq′ = 0 otherwise. The

coefficients for the operators of type V , A (Ṽ , Ã) are determined by tree-level Z (W ) exchange

and we neglect Cabibbo-Kobayashi-Maskawa angles.

The non-vanishing elements of the anomalous-dimension matrix for the operators in eqs. (27)-

(29) are

γ(Vf , Vf) =
16

3
Q2

f (1 + 2Nf) (33)

γ(Vf , Af) = 12 Q2
f (34)

γ(Af , Vf) =
52

3
Q2

f (35)

γ(Vff ′ , Vff ′) =
16

3
(Q2

fNf + Q2
f ′Nf ′) (36)

γ(Vff ′ , Aff ′) = γ(Aff ′ , Vff ′) = 12 QfQf ′ (37)

γ(Vf , Vff ′) =
8

3
QfQf ′(1 + 2Nf) (38)

γ(Af , Vff ′) =
8

3
QfQf ′ (39)

γ(Vff ′ , Vf) =
32

3
QfQf ′Nf ′ (40)

γ(Vff ′ , Vff ′′) =
16

3
Qf ′Qf ′′Nf ′ (41)

γ(Ṽqq′, Ṽqq′) = γ(Ãqq′ , Ṽqq′) = 12 QqQq′ (42)

γ(Ṽqq′, Vq) = γ(Ãqq′, Vq) =
16

3
QqQq′ (43)

γ(Ṽqq′, Vqq′) = γ(Ãqq′ , Vqq′) =
8

3
(Q2

q + Q2
q′) (44)

γ(Ṽqq′, Vqf ′′) = γ(Ãqq′, Vqf ′′) =
8

3
Qq′Qf ′′ , (45)

with f ′ 6= f , q′ 6= q and f ′′ 6= f, f ′.
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Inserting in eq. (26) the Wilson coefficients at the scale µ = MZ (see eqs. (14)–(16) and

eqs. (30)–(32)), and the relevant elements of the anomalous-dimension matrix (see eqs. (20)–

(24) and eqs. (33)–(45)), we obtain

aEW
µ (3 loop)LL =

5 Gµ m2
µ

24
√

2π2

[
α(mµ)

π

]2

(A + B) . (46)

Here A and B come respectively from the (γγ)/2 and the bγ term in eq. (26) and, in the

approximation s2
W = 1/4 and ms = mu = md = mQ, are given by

A =
2827

90
ln2 MZ

mµ

− 298

45
ln2 MZ

mτ

− 7826

3645
ln2 MZ

mb

+
7040

729
ln2 MZ

mc

+
2108

405
ln2 MZ

mQ

+
24

5
ln

MZ

mb

ln
MZ

mµ

+
72

5
ln

MZ

mτ

ln
MZ

mµ

− 96

5
ln

MZ

mc

ln
MZ

mµ

− 48

5
ln

MZ

mQ

ln
MZ

mµ

− 128

1215
ln

MZ

mb

ln
MZ

mc

(47)

B = −179

45

(
1

3
ln2 MZ

mb

+ ln2 MZ

mτ

+
4

3
ln2 MZ

mc

+ 2 ln2 MZ

mQ

+ 2 ln2 MZ

mµ

)

+
2

5

(
ln2 mb

mτ

+
4

3
ln2 mb

mc

+ 2 ln2 mb

mQ

+ 2 ln2 mb

mµ

)
− 8

5

(
2 ln2 mc

mQ

+ 2 ln2 mc

mµ

)

+
6

5

(
4

3
ln2 mτ

mc

+ 2 ln2 mτ

mQ

+ 2 ln2 mτ

mµ

)
− 8

5
ln2 mQ

mµ

(48)

Using the same values for the quark masses as in Sect. 2, we find

aEW
µ (3 loop)LL

aEW
µ (2 loop)LL

≃ −0.8
α

π
ln

MZ

mµ

, (49)

which corresponds to a 1% reduction of aEW
µ (2 loop) and gives aEW

µ (3 loop)LL = 0.5 × 10−11.

Including all the different contributions, we obtain

aEW
µ = (153 ± 3) × 10−11 . (50)

4 New Physics Effects in aEW
µ and in the Electron EDM

The effective-Lagrangian method is well suited to discuss effects from new physics. Indeed, in

the presence of new interactions, characterized by a mass scale ΛNP of the order of the weak

scale or larger, only the ultraviolet behaviour of the theory is modified, while the infrared one
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is unaffected. This means that information about new physics can be completely included in

the matching conditions of the Wilson coefficients, while the QED renormalization described

by the anomalous dimension matrix through eq. (17) remains the same.

Furthermore, it is reasonable to assume that new physics has a chance to affect sizably

only matching conditions of operators that, in the SM, are not generated at the tree level, but

possibly at the quantum level. This is indeed what happens in most of the SM extensions

generally considered. In this case, the analysis is particularly simple and predictive.

Let us first consider new physics contributions to aµ. Following our assumption, we expect

that only the matching condition of the operator Hµ is affected, but not those of the four-

fermion operators V and A. This means that the total aµ is just given by the sum of the SM

result discussed in the previous section and of a new contribution aNP
µ . If aNP

µ is known at one

loop, the leading contribution at two loops, enhanced by large QED logarithms, can be simply

obtained

aNP
µ (2 loop) = −4α

π
ln

ΛNP

mµ

aNP
µ (1 loop) . (51)

The coefficient in eq. (51) corresponds to the anomalous dimension element γ(Hµ, Hµ). For

instance, for ΛNP = 100 GeV, the inclusion of the two-loop contribution reduces the one-

loop result by 6%. This result is quite model independent, and it can be applied to specific

models in which aNP
µ (1 loop) is known, like in the case of supersymmetry [16], light-gravitino

interactions [17], compositeness [18], leptoquarks [19], and light non-minimal Higgs bosons [20].

Another case in which the QED logarithms turn out to be large is represented by the EDM

of the electron, de. In the SM de is negligible, but in some of its extensions with new sources

of CP violation, it can lie just below the present experimental upper bound. For instance, this

can be the case in some versions of the supersymmetric model [21].

The analysis of the QED renormalization can be done along the same lines followed for aµ.

The electron EDM corresponds to an operator in the effective Lagrangian

− i

2
de ē σνργ5 e F νρ. (52)

It is easy to show that in the effective theory below the weak scale, its one-loop anomalous

dimension is equal to that of the magnetic dipole operator that is given in eq. (20). Therefore

if d(0)
e describes the new physics contribution obtained by integrating out the heavy modes with

9



mass ΛNP , the QED improved result is

de = d(0)
e

[
1 − 4α

π
ln

ΛNP

me

]
. (53)

For ΛNP = 100 GeV, the term inside brackets amounts to a reduction of d(0)
e of 11%.

The result in eq. (53) is rather model independent. However, it should be remarked that it

is valid only if ΛNP is not much larger than the weak scale. An analysis at very large scales

should include the mixing of the operator in eq. (52) with other CP violating operators, like

the analogue of eq. (52) for the different electroweak gauge bosons, and the analogue of the

Weinberg operator [22] for the SU(2) gauge theory. The corresponding anomalous dimension

matrix can be extracted from ref. [23]. The result however is more involved than the one

presented in eq. (53), since it depends on the separate unknown coefficients of the different

operators.

We wish to thank G. Altarelli and M. Ciuchini for useful discussions.
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