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1 Introduction

At LEP, the Tevatron and the future LHC, the detection of high-energy photons produced
by short-distance interactions goes through the definition of an isolation criterion that aims
at decreasing fake photon signals coming from π0 decays. The high-energy π0, which is
seen as a single cluster in a calorimeter, belongs to a jet and is accompanied by hadronic
energy, whereas a bremsstrahlung photon emitted by a quark is unaccompanied as soon as
the photon–quark angle is large enough. Therefore any criterion to select ‘unaccompanied
photons’ enhances the signal–background ratio.

The criterion that is mostly used in current practice is the following. In e+e− collisions
at LEP, a photon of energy Eγ is said to be isolated if it is accompanied by less than a
specific amount εhEγ of hadronic energy Econe

h in a cone of half-angle δ around the photon
momentum. This isolation criterion can be written as follows:

Econe
h =

∑
i6=γ

Ei Θ(δ − θiγ) ≤ εhEγ , εh > 0 , (1.1)

where the energies and the relative angles θiγ are defined in the centre-of-mass frame.
In hadron collisions at the Tevatron, the isolation criterion is similar, but the energies
are replaced by the transverse energies while the angles and the cone are defined in the

azimuth–pseudorapidity plane, so that θiγ is replaced by Riγ =
√
η2
iγ + φ2

iγ. Typical values

of the isolation parameters εh and δ are εh = O(10−1) and δ∼< 0.7.

The criterion in Eq. (1.1) can be stated in an equivalent way by saying that the fraction
of electromagnetic energy inside the isolation cone has to be larger than a fixed value xc:

Eγ∑
i6=γ Ei Θ(δ − θiγ) + Eγ

≥ xc , (1.2)

where

xc ≡
1

1 + εh
< 1 . (1.3)

In the case when no isolation criterion is applied, the inclusive photon cross section is
computable by using the QCD factorization formula:

σγ =
∑

A=q,q̄,g,γ

CA(µ2)⊗Dγ/A(µ2) , (1.4)

where ⊗ denotes the convolution over the energy fraction z. The hard-subprocess cross sec-
tion CA(µ2; z), which describes the production of a high-energy parton A, can be calculated
order by order in QCD perturbation theory. The non-perturbative phenomena are included
in Dγ/a(z, µ

2), the inclusive fragmentation function of the QCD parton a (a = q, q̄, g) into
a photon [1, 2], and the direct term (A = γ) not proportional to the fragmentation function
is taken into account through the convention Dγ/γ(z, µ

2) = δ(1− z).

In the case of an isolated photon, the isolation criterion (1.1) enforces additional phase-
space restrictions. This implies that the cross section is no longer fully inclusive and, hence,
that the factorized expression (1.4) is not necessarily valid.
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The applicability of the factorization theorem to isolated photons is thus a basic issue
that has to be dealt with before the corresponding cross sections can be studied within the
conventional QCD framework. The perturbative calculations that have been performed so
far do not help to this purpose. In the case of hadron collisions, all the available calcula-
tions [3] beyond the leading order (LO) in the strong coupling αS are based on approximate
methods that, in particular, lead to an incomplete treatment of the fragmentation contribu-
tions. The next-to-leading order (NLO) calculation of Ref. [4] for e+e− collisions introduces
by definition a fragmentation component that explicitly depends on the isolation param-
eters and thus differs from the process-independent fragmentation function in Eq. (1.4).
Actually, in the case of e+e− annihilation, factorization has recently been questioned by
Berger, Guo and Qiu [5]. The results of Ref. [5] have been criticized by some of us in
Ref. [6].

In the present paper we confirm the NLO argument of Ref. [6] and extend it by proving
the validity of factorization to all orders in perturbation theory.

Although we show that isolation does not spoil factorization, yet the phase-space re-
strictions due to the isolation criterion (1.1) are not harmless, as discussed in detail in
the second part of the paper. The factorization theorem deals with collinear singularities
that occur in the calculation at the parton level. Once these singularities, whose origin is
non-perturbative, have been absorbed in the fragmentation functions, the short-distance
cross section can still have a divergent behaviour at some points of the phase space when
computed order by order in perturbation theory [7]. These divergences are due to certain
kinematical constraints that, limiting the fully-inclusive character of the cross section, pro-
duce an imperfect compensation between real and virtual emission of soft (and collinear)
partons. In isolated-photon cross sections, the soft-gluon divergences are double logarith-
mic and appear at a specific point inside the phase space [5, 6]. Owing to its perturbative
origin, this disease can be cured by summing the logarithmic divergences to all orders in
perturbation theory.

The outline of the paper is as follows. In Sect. 2 we give our proof of the validity
of the factorization theorem for isolated-photon cross sections defined by the criterion§ in
Eq. (1.1). We show how the effects of the isolation are consistently included in the short-
distance subprocess and, in particular, we discuss the functional dependence of the short-
distance cross section on the isolation parameters. In Sect. 3 we consider isolated photons
produced in e+e− annihilation and we compute the NLO contribution to the fragmentation
component of the short-distance cross section. We present results in analytic form for any
value of the isolation parameters εh, δ. Using these explicit expressions, in Sect. 4 we discuss
in detail the physical origin of the soft-gluon divergent behaviour of the NLO cross section
in the vicinity of point xγ = xc. Finally, in Sect. 5 we summarize our results and outline
how an all-order resummation can eventually lead to well-behaved theoretical predictions
for the cross section.

§The case of jets containing isolated photons has been considered in Refs. [4, 8, 9]. An alternative
definition of the isolated photon has recently been suggested by Frixione [10].

2



2 Factorization

The factorization issue regards both hadron and photon distributions. Thus, we make
no distinction between these two cases, although isolated-hadron cross sections are of less
experimental interest.

2.1 e+e− annihilation

The customary factorization formula for the inclusive distribution of a single particle H
with four-momentum pγ produced in e+e− annihilation is:

1

σ0

dσ(Q2, xγ)

dxγ
=
∑
A

∫ 1

xγ

dx

x
DH/A(xγ/x, µ

2) C
(full)
A (αS(µ2), Q2/µ2; x) +O ((1/Q)p) , (2.1)

where the sum extends over A = qf , q̄f , g when the observed particle H is a hadron and over
A = qf , q̄f , g, γ when H = γ is a photon (in this case Dγ/γ(z, µ

2) = δ(1− z), by definition).
The term O ((1/Q)p) on the right-hand side denotes corrections that are suppressed by
some power p ≥ 1 of the centre-of-mass energy Q when Q� ΛQCD.

The formula (2.1) states that at large values of Q2 and for any fixed value of the energy
fraction xγ = 2pγ · Q/Q2, all the long-distance physics phenomena can be absorbed in
the non-perturbative fragmentation function DH/A(z, µ2) of the parton A into the particle

H. The remaining coefficient function C
(full)
A (αS(µ2), Q2/µ2; x) is short-distance-dominated

and depends only on the partonic subprocess.

The predictivity of Eq. (2.1) within perturbation theory follows from the fact that not

only C
(full)
A but also the Q2-evolution of the fragmentation functions are perturbatively

computable as power-series expansions in αS. After having extracted DH/A(z,Q2
0) from

experimental data at a certain value Q2 = Q2
0, perturbative QCD predicts the cross section

in Eq. (2.1) for any other value of Q2.

The content of the factorization theorem in perturbation theory is nonetheless wider.
It states that similar factorization formulae are valid for other less inclusive observables
and that, in these formulae, the dominant non-perturbative contribution is universal and
accounted for by the same fragmentation functions DH/A(z, µ2) as in Eq. (2.1). Thus, the
factorization formulae are obtained from (2.1) by the replacement

C
(full)
A (αS(µ2), Q2/µ2; x)→ CA(αS(µ2), Q2/µ2; x, {J}) , (2.2)

where {J} denotes the dependence on the particular observable. The differences among
the various observables only regard the perturbatively computable coefficient functions CA
and the size and the power p of the power-suppressed corrections.

A particular class of observables to which the factorization theorem applies is the class
formed by what we call jet-type observables. These observables can be easily identified by
examining how they are defined (and measured) in terms of the momenta of the final-state
particles in the process. The definition has to fulfil the requirements of i) infrared safety,
ii) collinear safety, and iii) collinear factorizability.
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The first two requirements regard the dependence on all particle momenta but the trig-
gered momentum pγ : infrared safety means that the value of the observable is independent
of the momenta of arbitrarily soft particles, and collinear safety implies that, when some
final-state particles are produced collinearly, the value of the observable depends on their
total momentum rather than on the momentum of each of them. Collinear factorizability
means that from the measurement of the observable one cannot distinguish whether the
triggered momentum pγ is carried by the particle H or by that particle accompanied by a
bunch of particles parallel to it.

These properties can be stated in a formal way as follows [11, 12, 13]. Let us first
introduce the exclusive cross section dσ(excl.)

n (pγ, p1, . . . , pn) to produce n+ 1 particles with
momenta pγ, p1, . . . , pn, so that the single-particle inclusive distribution in Eq. (2.1) can be
written in the following form

dσ(Q2, xγ)

dxγ
=
∑
n

∫
Ω(pγ ,p1,...,pn)

dσ(excl.)
n (pγ, p1, . . . , pn) δ(xγ − 2pγ ·Q/Q

2) , (2.3)

where the integration extends over the full (n + 1)-particle phase space Ω(pγ, p1, . . . , pn).
According to this notation, any less inclusive cross section dσJ is given by

dσJ(Q2, xγ)

dxγ
=

∑
n

∫
Ω(pγ ,p1,...,pn)

dσ(excl.)
n (pγ, p1, . . . , pn)

· δ(xγ − 2pγ ·Q/Q
2) F

(n)
J (Q, pγ, {J}; p1, . . . pn) , (2.4)

where, for any exclusive final state with n + 1 particles of momenta pγ , p1, . . . pn, we have
denoted by

F
(n)
J (Q, pγ, {J}; p1, . . . pn) (2.5)

the measurement function that defines the actual observable.

In terms of this function, the properties of a jet-type observable are¶

i) infrared safety:

F
(n+1)
J (Q, pγ , {J}; p1, . . .pi, . . . pn+1)

pi → 0
→ F

(n)
J (Q, pγ , {J}; p1, . . . pn+1) , (2.6)

ii) collinear safety:

F
(n+1)
J (Q, pγ, {J}; p1, . . .pi,pj, . . . pn+1)

pi ‖ pj
→ F

(n)
J (Q, pγ, {J}; p1, . . . ,pi + pj , . . . pn+1) ,

(2.7)

iii) collinear factorizability:

F
(n+1)
J (Q,pγ , {J}; p1, . . .pi, . . . pn+1)

pi ‖ pγ
→ F

(n)
J (Q,pγ + pi, {J}; p1, . . . . . . pn+1) . (2.8)

¶In Eqs. (2.6)–(2.8) bold-face characters are used just to emphasize the differences between left-hand
and right-hand sides.
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In the case of the isolated-particle distribution, the measurement function is specified by
the isolation criterion in Eq. (1.1). One sees that the expression (1.1) fulfils the properties
(2.6) and (2.7), provided the isolation parameter εh is kept finite‖.

The fulfilment of the collinear factorizability in Eq. (2.8) may appear more problematic
by naive inspection of Eq. (1.1). If the isolation parameters J = {εh, δ} were assumed to
be the relevant variables for the short-distance subprocess, the measurement function could
be defined as

F (n+1)(Q, pγ, J = {εh, δ}; p1, . . . pn+1) = Θ

εhEγ − n+1∑
i=1

i6=γ

Ei Θ(δ − θiγ)

 . (2.9)

Then, considering the collinear limit where, for instance, pn+1 is parallel to pγ:

F (n+1)(Q, pγ, J = {εh, δ}; p1, . . . pn+1)
pn+1 ‖ pγ
→ Θ

εhEγ − En+1 −
n∑
i=1

i6=γ

Ei Θ(δ − θiγ)


= F (n)(Q, pγ − pn+1/εh, J = {εh, δ}; p1, . . . pn) .(2.10)

Since the function F (n) on the right-hand side of Eq. (2.10) depends on the momentum
pγ−pn+1/εh rather than on pγ +pn+1, Eq. (2.8) is not fulfilled by the definition in Eq. (2.9).

This effect can easily be understood. In its collinear-fragmentation process the triggered
parton (particle) turns out to be necessarily less isolated (its energy decreases while the
amount of accompanying hadronic energy increases) and, eventually, the isolation criterion
can be violated. Thus one cannot insist on factorizing a short-distance subprocess that
depends on the fixed isolation parameter εh. Hard partons produced at short distances have
to be more isolated than the triggered particle H and their isolation has to be increased as
the energy of H decreases.

This is the key point to show that the isolated cross section is a jet-type observable. The
isolation criterion in Eq. (1.1) can indeed be recast in a form that explicitly fulfils collinear
factorizability by considering J = {rγ, δ} as the relevant parameters of the hard-scattering
subprocess. Here rγ is defined by

rγ ≡
xγ
xc
≥

2

(∑
i6=γ

Ei Θ(δ − θiγ) + Eγ

)
Q

> xγ , (2.11)

and represents the upper limit on the total-energy fraction inside the isolation cone. Using
these isolation parameters, the measurement function that corresponds to the criterion in
Eq. (1.1) can be written as

F (n)(Q, pγ, J = {rγ, δ}; p1, . . . pn) = Θ

rγQ2 −
 n∑
i=1

i6=γ

Ei Θ(δ − θiγ) + Eγ


 , (2.12)

‖The violation of infrared safety in the case of perfect isolation, i.e. when Econe
h = 0, was pointed out

in Refs. [4, 8, 14].
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Equation (2.8), as well as Eqs. (2.6) and (2.7), straightforwardly apply to the function in
Eq. (2.12) as long as rγ > 2Eγ/Q = xγ . Note that, performing the limits of Eqs. (2.6)–(2.8)
the parameters J = {rγ, δ} in Eq. (2.12) have to be kept fixed and regarded as variables that
are independent of the momenta pγ, p1, . . . pn. In particular, this implies that the factorized
coefficient functions of Eq. (2.2) explicitly depend on the parameters J = {rγ, δ}.

We thus conclude that, for the production cross section of isolated photons, factorization
is valid and the all-order factorization formula is:

1

σ0

dσ(Q2, xγ , xc, δ)

dxγ
=

∑
a=qf ,q̄f ,g

∫ 1

xγ

dx

x
Dγ/a(xγ/x, µ

2) Ca(αS(µ2), Q2/µ2; x, rγ , δ)

+ Cγ(αS(µ2), Q2/µ2; xγ , rγ, δ) , (2.13)

where Ca and Cγ are the coefficient functions for the fragmentation and direct components,
respectively. Note that the fragmentation function Dγ/a is independent of the isolation
parameters δ and εh. The effect of the isolation is entirely included in Ca and Cγ through
their dependence on δ and rγ = xγ/(1 + εh).

A final remark is in order. At present, a field-theory proof of the factorization theorem
is known only for fully inclusive deep inelastic scattering (DIS). In the case of less inclusive
observables, factorization can be justified order by order in perturbation theory on the
basis of general power-counting arguments [15]. The requirements of infrared and collinear
safety and collinear factorizability are sufficient to guarantee the validity of factorization
through power counting. In this respect, our proof of factorization for isolated-photon cross
sections cannot be considered rigorous from a field-theory viewpoint, but it is certainly at
the same level of rigour as for any other semi-inclusive cross sections [15].

2.2 Hadroproduction and photoproduction collisions

The discussion of the previous subsection can straightforwardly be extended to the produc-
tion of isolated photons in collisions of hadrons and/or real photons. In these cases, the
calculation of the cross section at the parton level contains additional singularities that are
produced by initial-state collinear radiation. These singularities have to be absorbed in the
non-perturbative parton distributions of the colliding particles. Thus, the essential differ-
ence with respect to e+e− annihilation is that, in hadronic collisions, the photon-isolation
criterion must not spoil the factorization of the initial-state collinear singularities.

As mentioned in Sect. 1, in the current experimental practice [16] the hadronic-collision
versions of the isolation criterion (1.1) involve transverse energies and angular distances
evaluated in the azimuth–pseudorapidity plane. These variables are invariant under lon-
gitudinal boosts along the beam direction and, hence, they are insensitive to initial-state
collinear radiation. It follows that these types of isolation criteria fulfil the QCD factoriza-
tion theorem.

Note, however, that the factorization of initial-state collinear singularities can be easily
violated when boost-non-invariant variables are used. For instance, this is the case if one

considers the angular distances Riγ =
√
η2
iγ + φ2

iγ and insist in using energies rather than
transverse energies.
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3 Fixed-order calculation in e+e− annihilation

To explicitly check the factorization formula (2.13) for e+e− annihilation, one needs a
perturbative calculation to (at least) the first non-trivial order in αS. We have carried out
this calculation in analytic form and the results are presented in this section. We limit
ourselves to the case in which the isolation parameters εh, δ vary in the range of practical
interest, namely:

0 < εh ≤ 1 , 0 < δ ≤ π/2 . (3.1)

The coefficient functions Ca for the fragmentation component of Eq. (2.13) have the
following perturbative expansions:

Ca(αS(µ2), Q2/µ2; x, rγ , δ) = λa

[
C(LO)
a (x, rγ) +

αS(µ2)

2π
C(NLO)
a (Q2/µ2; x, rγ, δ)

]
+O(α2

S) ,

(3.2)
where λqf = λq̄f = e2

qf
, λg =

∑
f e

2
qf

, Cqf = Cq̄f = Cq and eqf is the electric charge of the
quark of flavour f .

At the LO only the quark coefficient function contributes:

C(LO)
q (x, rγ) = δ(1− x) Θ(rγ − 1) , C(LO)

g (x, rγ) = 0 . (3.3)

Note also that C(LO)
q (x, rγ) is non-vanishing only for rγ ≥ 1, i.e. for xγ ≥ xc.

The results of our calculation for the NLO expressions can be written as

C(NLO)
a (Q2/µ2; x, rγ , δ) = Θ(rγ − 1)

[
C(NLO, full)
a (Q2/µ2; x)

+ C(NLO, in)
a (x, rγ, δ)

]
+ C(NLO, out)

a (x, rγ , δ) , (3.4)

where C(NLO, full)
a (Q2/µ2; x) denote the customary NLO coefficient functions [17, 18] for the

single-particle distribution, i.e. for the case in which no isolation is applied. Their explicit
expressions in the MS factorization scheme are:

C(NLO, full)
q (Q2/µ2; x) = CF

{[
1 + x2

1− x
ln

(1− x)Q2

µ2
−

3

2

1

1− x

]
+

+
1 + x2

1− x
lnx2

+
(

2

3
π2 −

11

4

)
δ(1− x) +

5

2
−

3

2
x

}
, (3.5)

C(NLO, full)
g (Q2/µ2; x) = CF 2

1 + (1− x)2

x
ln

(1− x)x2Q2

µ2
. (3.6)

The other two terms on the right-hand side of Eq. (3.4) derive from the isolation criterion
and do not depend on the factorization scheme. We find that:

• The contributions C(NLO, in)
a are non-vanishing only in the region

rγ ≤ 1 + tan2 δ

4
, (3.7)
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and are given by

C(NLO, in)
q (x, rγ, δ) = − Θ(x+

γ − x)Θ(x− x−γ ) CF (3.8)

·

{
1 + x2

1− x
ln

(1− rγ + x)(1− x) tan2(δ/2)

rγ − 1
− (4− x)

[
x− rγ
1− x

+
1

1− x sin2(δ/2)

]}
,

C(NLO, in)
g (x, rγ, δ) = −Θ(x+

γ − x)Θ(x− x−γ ) CF (3.9)

·

{
2

1 + (1− x)2

x
ln

(1− rγ + x)(1− x) tan2(δ/2)

rγ − 1
− 4

[
x− rγ +

(1− x)

1− x sin2(δ/2)

]}
,

where

x±γ ≡
rγ
2

1±

√√√√1−
4(rγ − 1)

r2
γ sin2(δ/2)

 . (3.10)

• The contributions C(NLO, out)
a are non-vanishing only in the region

rγ < 1 , (3.11)

and have the following explicit expressions

C(NLO, out)
q (x, rγ , δ) = Θ(rγ − x) CF (3.12)

·

{
1 + x2

1− x
ln

1

(1− x) tan2(δ/2)
−

4− x

2

[
1

1− x
−

1 + x sin2(δ/2)

1− x sin2(δ/2)

]}
,

C(NLO, out)
g (x, rγ, δ) = Θ(rγ − x) CF (3.13)

·

{
2

1 + (1− x)2

x
ln

1

(1− x) tan2(δ/2)
− 2

[
1−

(1− x)(1 + x sin2(δ/2))

1− x sin2(δ/2)

]}
.

The origin of the various NLO contributions in Eq. (3.4) is easily understood. We
are interested in the process γ∗ → q + q̄ + g + γ when one of the QCD partons is
collinear to the photon. Owing to this collinear decay, to compute the coefficient function
C(NLO)
a (Q2/µ2; x, rγ, δ), we simply have to evaluate the cross section∗∗ for the three-parton

subprocess γ∗ → q + q̄ + g when the triggered parton a (a = q, q̄ or g) carries momentum
p, parallel to pγ , and energy fraction x = 2E/Q. We denote by p1, p2 the momenta of the
other two partons and by x1, x2 their energy fractions. According to the isolation criterion
specified by Eq. (2.12), the corresponding measurement functions is:

F (2)(Q, p, {rγ, δ}; p1, p2) = Θ

rγ − ∑
i=1,2

xi Θ(δ − θiγ)− x

 . (3.14)

To make explicit the factorization of collinear singularities, we rewrite Eq. (3.14) by adding
and subtracting a contribution that is independent of the momenta, as follows:

Θ(rγ − 1) +
[
F (2)(Q, p, {rγ, δ}; p1, p2)−Θ(rγ − 1)

]
. (3.15)

∗∗More technical details can be found in Ref. [6].
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When inserted into Eq. (2.4) and combined with the virtual correction, the first term in
Eq. (3.15) gives exactly (cf. Eq. (2.3)) the fully inclusive contribution C(NLO, full)

a (Q2/µ2; x)
to Eq. (3.4).

Then, we have to consider the term in the square bracket in Eq. (3.15), which, on the
basis of the general factorization argument of Sect. 2, is expected to give a non-singular
contribution. To show that, we decompose this term in two parts that correspond to the
cases in which one additional parton, either p1 or p2, is inside the isolation cone (F (2,in))
and both partons are outside it (F (2,out)). Using Eq. (3.14), we obtain:[

F (2)(Q, p, {rγ, δ}; p1, p2)−Θ(rγ − 1)
]

= F (2,in)(Q, p, {rγ, δ}; p1, p2)

+ F (2,out)(Q, p, {rγ, δ}; p1, p2) , (3.16)

where

F (2,in)(Q, p, {rγ, δ}; p1, p2) = −
{

Θ(δ − θ1γ)
[
Θ(rγ − 1)−Θ(rγ − x1 − x)

]
+ (1↔ 2)

}
,

(3.17)

F (2,out)(Q, p, {rγ, δ}; p1, p2) = Θ(θ1γ − δ) Θ(θ2γ − δ)
[
Θ(rγ − x)−Θ(rγ − 1)

]
. (3.18)

Let us first consider the emission inside the cone. Since x1+x ≥ 1 because of kinematics,
the term in the square bracket on the right-hand side of Eq. (3.17) corresponds to the phase-
space region

x1 + x > rγ ≥ 1 . (3.19)

This forbids the parton p1 to become either soft (x1 = 0) or collinear to the photon (θ1γ = 0)
because in both cases the three-parton kinematics implies x1 + x = 1, thus violating the
constraint (3.19). Therefore, we can safely perform the integration over p1 and obtain the
finite contribution C(NLO, in)

a (x, rγ , δ) in Eqs. (3.4), (3.8), (3.9). Note that parton radiation
inside the isolation cone is included in both terms C(NLO, full)

a and C(NLO, in)
a of Eq. (3.4).

The contribution of C(NLO, in)
a is negative (cf. Eq. (3.17)) and represents the suppression

effect of the non-isolated distribution produced by the isolation criterion.

A similar discussion applies to the emission outside the cone. Since x ≤ 1 because of
kinematics, the term in the square bracket on the right-hand side of Eq. (3.18) vanishes
when rγ ≥ 1. Thus the term in the square bracket can be replaced by

1 > rγ ≥ x . (3.20)

In this region, p1 and p2 cannot become either soft or collinear because in both cases
one has x = 1. Therefore the integration over p1 and p2 is safe and we obtain the finite
contribution C(NLO, out)

a (x, rγ , δ) in Eqs. (3.4), (3.12), (3.13). Note that the C(NLO, out)
a is

positive, although smaller (cf. the subtraction in Eq. (3.18)) than the full non-isolated
contribution C(NLO, full)

a in the region rγ < 1.

We remind the reader that the coefficient function for the direct component of the
factorization formula (2.13) was analytically computed to the lowest order by Kunszt and
Trocsanyi [4]. Using our notation, their result can be written as follows:

Cγ(αS(µ2), Q2/µ2; xγ , rγ, δ) =
α

2π
λg

[
1

CF
C(NLO)
g (Q2/µ2; xγ, rγ, δ) +O(αS(µ2))

]
, (3.21)
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where α is the fine structure constant and C(NLO)
g (Q2/µ2; xγ , rγ, δ) is given in Eq. (3.4).

The relation (3.21) between Cγ and our result for the NLO gluon coefficient function C(NLO)
g

can be regarded as a partial check of the calculation described in this section.

Our NLO results in Eqs. (3.4)–(3.13) do not fully confirm those in Ref. [5]. There, the
coefficient functions C(NLO)

a were computed in the limit of small cone size δ and found to be
affected by collinear singularities (poles in 1/ε, where ε = 4 − d parametrizes the number
d of space-time dimensions in dimensional regularization) that would spoil conventional
factorization. The method of calculation used in Ref. [5] has been criticized in Ref. [6].
The method described in this section clearly exhibits the factorization of the collinear
singularities. Using the decomposition in Eq. (3.15), we separate a term (that in the square
bracket), which is manifestly free from the singularities, from a remaining contribution
whose dependence on the isolation parameters is only due to the constraint rγ ≥ 1. This
is an overall constraint (i.e. it does not act on the partonic variables) and its effect is
thus harmless: the ensuing collinear singularities are those that universally enter the fully-
inclusive cross section.

4 Divergent behaviour for xγ ∼ xc

The NLO coefficient functions C(NLO)
a (Q2/µ2; x, rγ, δ) in Eq. (3.4) are well-behaved for any

value rγ 6= 1, i.e. both for xγ < xc and for xγ > xc. However, when rγ → 1 they become
divergent. The divergent behaviour (Fig. 1) at this point xγ = xc, which we shall call the
critical point, can be easily derived from the explicit espressions in Eqs. (3.8), (3.9) and
(3.12), (3.13):

• When the critical point is approached from below:

xγ < xc , (4.1)

we obtain

C(NLO)
q (Q2/µ2; x, rγ , δ) = δ(1− x)CF

[
ln2

(
(1− rγ) tan2(δ/2)

)
+

3

2
ln
(
(1− rγ) tan2(δ/2)

)]
+O(1) , (4.2)

C(NLO)
g (Q2/µ2; x, rγ , δ) =O(1) . (4.3)

• When the critical point is approached from above:

xc ≤ xγ , (4.4)

we find

C(NLO)
q (Q2/µ2; x, rγ, δ) = CF

{
δ(1− x)

[
− ln2

(
rγ − 1

tan2(δ/2)

)
−

3

2
ln

(
rγ − 1

tan2(δ/2)

)]

+

(
1 + x2

1− x

)
+

ln

(
rγ − 1

tan2(δ/2)

)}
+O(1) , (4.5)

C(NLO)
g (Q2/µ2; x, rγ, δ) = CF 2

1 + (1− x)2

x
ln

(
rγ − 1

tan2(δ/2)

)
+O(1) , (4.6)
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X X γ

Figure 1: The divergent behaviour of the isolated-photon cross section in the vicinity of
the critical point xγ = xc at LO (solid), NLO (dotted) and as expected after resummation
(dot-dashed).

where O(1) stands for any term that is finite for rγ = 1. Owing to relation (3.21), the
coefficient function Cγ(αS(µ2), Q2/µ2; xγ , rγ, δ) for the direct component diverges when xc
is approached from above.

The presence of these divergences was first pointed out in Ref. [5], but it is not in
contradiction with the factorization of the collinear singularities [6]. Indeed, these two
types of singularities have different physical origins, as discussed in rather general terms in
Ref. [7] and recalled below.

The factorization theorem deals with infrared singularities that affect the parton-level
calculation for any value of the relevant kinematical variables, e.g. xγ , δ. These singularities
are due to the long-distance component of the scattering process that is intrinsically non-
perturbative, in the sense that it is not suppressed by some inverse power of Q as the hard-
scattering scale Q increases. The validity of the factorization theorem for the isolated-
photon cross section guarantees that this non-perturbative component can be described
by the universal fragmentation function Dγ/a(x,Q

2). The remaining contributions to the
cross section are short-distance-dominated. They consist of i) power-suppressed terms
(cf. the term O((1/Q)p) on the right-hand side of Eq. (2.1)) that are controlled by non-
perturbative phenomena and of ii) a short-distance component, the coefficient functions
CA, which depends only logarithmically on Q and is computable as a power series expansion
in αS(Q2).

However, the fact that the coefficient functions are perturbatively computable does not
imply that the coefficients of their perturbative expansion are non-singular functions. In
fact, in general these coefficients are singular generalized functions or distributions that lead
to finite quantities only when they are integrated with sufficiently smooth test functions.
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The ‘plus’-distribution

w(x) = 2CF

[
1

1− x
ln

1

1− x

]
+

(4.7)

that enters in Eq. (3.5) is a well-known example of this type of singular generalized func-
tions. An analogous divergent behaviour, namely

C(NLO)
a (Q2/µ2; x, rγ, δ) ' Θ(1−rγ)Θ(rγ−x)CF ln

1

tan2(δ/2)
·


1+x2

1−x (a = q) ,

2 1+(1−x)2

x
(a = g) ,

(4.8)

is observed in the NLO coefficient functions of Eq. (3.4) when the cone size δ → 0 at fixed
rγ. The double- and single-logarithmic divergences in Eqs. (4.2), (4.6), (4.5) are integrable
in any neighbourhood of the point xγ = xc and essentially belong to the same type of
singularities [19]. These singularities are known as divergences of the Sudakov type and, in
spite of the validity of the factorization theorem, they are still produced by the radiation
of soft and/or collinear partons.

The main difference between the divergent behaviour in Eqs. (3.5) and (4.8) and that in
Eqs. (4.2), (4.5), (4.6) is that the former appears near the exclusive boundary of the phase
space (i.e. x → 1, δ → 0) while the latter occurs at a point xγ = xc inside the physical
region 0 < xγ < 1. The Sudakov singularities that arise at an exclusive boundary of the
phase space are the most common and extensively studied∗. They are due to the loss of
balance between the virtual contributions and the radiative tail of the real emission, which
is strongly suppressed in this extreme kinematic regime. Sudakov singularities inside the
physical region of the phase space have attracted less attention but are nonetheless quite
common in jet physics. Some examples are the the C-parameter distribution [21] in e+e
annihilation and the jet shape [22] in hadron collisions.

The general origin of Sudakov singularities at a critical point inside the physical region
has recently been discussed [7]. They arise whenever the observable in question has a non-
smooth behaviour in some order of perturbation theory at that point. This can happen
if the phase-space boundary for a certain number of partons lies inside that for a larger
number, or if the observable itself is defined in a non-smooth way. Both mechanisms are
responsible for the singular behaviour in the case of the isolated-photon cross section. The
double- and single-logarithmic divergences in the square brackets of Eqs. (4.2), (4.5) are
due to the first mechanism, while the remaining single-logarithmic terms in Eqs. (4.5), (4.6)
are due to the second mechanism. We discuss these points in turn.

At the LO the phase-space region rγ < 1 is not accessible to the fragmentation compo-
nent because there is a single parton, the triggered quark, inside the isolation cone. There-
fore the coefficient function C(LO)

q (x, rγ) in Eq. (3.3) has a step at the critical point rγ = 1.
As proved in Ref. [7], this step-wise behaviour necessarily produces double-logarithmic sin-
gularities at the next order in perturbation theory. When applied to our case, the general
argument of Ref. [7] is as follows. The NLO subprocess contains a term that is obtained by
radiating a soft (and collinear) gluon from the LO subprocess. This term gives the following
contribution to the NLO coefficient function

C(NLO)
q (x, rγ , δ) =

∫ 1

0
dz w(z) C(LO)

q (x, rγ(z)) + . . . , (4.9)

∗See, for instance, Refs. [19, 20] and references therein.
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where 1 − z is the energy fraction of the soft gluon (1 − z � 1) and the dots stand for
less singular terms when rγ → 1. In Eq. (4.9), w(z) denotes the probability (in units of
αS/2π) of emission of the soft gluon from the triggered quark; it is given by the usual
‘plus’-distribution in Eq. (4.7). The integration over z follows from energy conservation
and relates the value of the parameter rγ after the emission (i.e. on the left-hand side) to
the corresponding value rγ(z) before the emission. To explicitly evaluate Eq. (4.9), we have
to specify how rγ(z) depends on rγ and z. Since rγ is constrained by the fraction of the
total energy inside the isolation cone (see Eq. (2.11)), its value decreases (rγ < r(out)

γ (z))

or increases (rγ > r(in)
γ (z)) according to whether the soft gluon is radiated outside or inside

the cone. Neglecting less singular terms† in the soft limit 1− z � 1, we can thus write

r(out)
γ (z) ' rγ + (1− z) , (4.10)

r(in)
γ (z) ' rγ − (1− z) . (4.11)

Using the explicit expression (3.3), (4.7) and inserting Eqs. (4.10) and (4.11) in the integral
(4.9), we respectively obtain:

C(NLO, out)
q (x, rγ , δ) = 2 δ(1− x)CF

∫ 1

0
dz

(
1

1− z
ln

1

1− z

)
+

Θ(rγ − z) + . . .

= + Θ(1− rγ) δ(1− x)CF ln2 |rγ − 1| + . . . , (4.12)

C(NLO, in)
q (x, rγ , δ) = 2 δ(1− x)CF

∫ 1

0
dz

(
1

1− z
ln

1

1− z

)
+

Θ(rγ − 1− (1− z)) + . . .

= − Θ(rγ − 1) δ(1− x)CF ln2 |rγ − 1| + . . . , (4.13)

in agreement with the double-logarithmic terms in Eqs. (4.2), (4.5).

Equations (4.9), (4.12), (4.13) explain the mechanism that produces the logarithmic
divergences in the square brackets of Eqs. (4.2), (4.5). The ‘plus’-prescription in Eq. (4.7)
arises from adding real and virtual soft-gluon radiation and, as a result of the cancellation
of the soft singularities, leads to finite quantities whenever it acts on smooth functions
of z. However, this is not the case of Eq. (4.9), because C(LO)

q (x, rγ(z)) is discontinuous
at rγ(z) = 1. The divergent behaviour at the critical point is thus due to the imperfect
compensation between real and virtual contributions, which occurs in the presence of the LO

step-like discontinuity at xγ = xc. Because of the different kinematic recoil in Eqs. (4.10)
and (4.11), at NLO the cross section has a double-sided singularity (Fig. 1), that is, it
diverges to +∞ and −∞ below and above the critical point xγ = xc, respectively.

The single-logarithmic term‡ in Eq. (4.5) (outside the square bracket) and that in
Eq. (4.6) have a different origin. They arise from the integration of the collinear spec-
trum of the parton that is radiated by the triggered parton a at an angle θ1γ inside the
isolation cone. They have indeed the form:

Pqa(x)
∫ θ2

max

µ2/Q2

dθ2
1γ

θ2
1γ

= Pqa(x)
(
ln θ2

max + lnQ2/µ2
)
, (4.14)

†The actual size of the coefficient in front of the shift (1−z) on the right-hand side of Eqs. (4.10), (4.11)
would affect only the single-logarithmic contributions.
‡We recall that these single-logarithmic divergences appear also in the LO coefficient function Cγ of

the direct component of the cross section.
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where Pqa(x) is the relevant Altarelli–Parisi probability

Pqq(x) = CF

(
1 + x2

1− x

)
+

, Pqg(x) = CF
1 + (1− x)2

x
. (4.15)

The lower limit of integration over θ2
1γ comes from the factorization of the collinear sin-

gularity at θ1γ = 0 in the non-perturbative fragmentation function. The upper limit θ2
max

comes from the kinematics of the process. Of course, θ1γ has to be smaller than the cone
size δ. However, when rγ → 1 at fixed x and δ, the energy radiated inside the cone by
the splitting process q → a can violate the isolation constraint before the cone boundary
is actually appproached by θ1γ . Therefore, θ2

max ∼ rγ − 1 and Eq. (4.14) gives the single-
logarithmic terms of Eqs. (4.5) and (4.6). These terms are due to the non-smooth character
of the isolation criterion, which enforces sharp boundaries on the energies and angles of the
radiated partons.

5 Outlook: higher orders, resummation

and non-perturbative effects

In this paper we have shown that the factorization of collinear singularities in cross sections
for the production of isolated particles defined by the criterion (1.1) is valid to any order
in QCD perturbation theory. The non-perturbative component of the scattering process
that is not power-suppressed at high transferred momentum Q is thus taken into account
by the universal fragmentation functions DH/a(x,Q

2), whereas the isolation condition is
consistently included in the short-distance subprocess.

In the case of isolated photons produced in e+e− annihilation, we have checked the
factorization pattern by performing an explicit calculation at NLO in αS. This calculation
shows that, although infrared and collinear safe, the short-distance component of the NLO

cross section has still a divergent behaviour (Fig. 1) when the photon energy fraction
xγ approaches a critical value xc = 1/(1 + εh) that is located inside the physical region
0 < xγ < 1. As shown in Eqs. (4.2), (4.3), (4.5), (4.6), the divergences are double-
logarithmic. They are due to the loss of balance between real and virtual contributions
that is enforced by the non-smooth character of the energy isolation criterion. In Sect. 4
we have discussed in detail the physical mechanisms that produce these singularities of the
Sudakov type.

The same mechanisms leading to Eqs. (4.2), (4.3), (4.5), (4.6) will enhance the double-
logarithmic divergences by further integer powers of ln |rγ − 1| in yet higher orders of
perturbation theory. Since these divergences are unphysical [5], QCD calculations at any
finite order in perturbation theory cannot give reliable phenomenological predictions for
the isolated-photon cross section in the region around xγ = xc.

This problem may be overcome by trying to avoid the phase-space region near the
critical point. However, also in this case, some general theoretical understanding of the
phenomenon is necessary to assess the extent of the dangerous region. The identification
of the dangerous region in the perturbative calculation is even more difficult in the case of
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Figure 2: Divergent behaviour at a critical point with single-sided singularities: LO (solid),
NLO (dotted). The dot-dashed line denotes the Sudakov shoulder obtained after all-order
resummation.

hadron collisions [5]. Here the singularities appear at a critical point in the partonic cross
section and are smeared by the convolution with the parton distributions of the colliding
hadrons.

A better way to deal with the problem is to identify and resum the soft-gluon divergences
to all orders in perturbation theory. The resummation approach has been used successfully
for the treatment of the Sudakov singularities near the exclusive phase-space boundary for
many observables [19, 20]. The same approach was advocated in Refs. [5, 6] for isolated
photons and in Ref. [7] for a general treatment of the Sudakov singularities inside the
physical region.

All-order resummation has already been carried out [7] for a particular type of critical
point inside the physical region. This type of critical point (Fig. 2) regards cross sections
that at LO have a stepwise behaviour at that point and at NLO show a divergence on
a single side of the step. After resummation, the cross section is finite, continuous and
differentiable at the critical point. Rather than suppressing the NLO divergence and thus
mantaining the step-like behaviour, resummation leads to the suppression of the step. The
general form of the resummed cross section is a smooth extrapolation from the region
where the NLO divergence appears towards the critical point, joining smoothly with the
finite value that the cross section has on the other side of the LO step. This characteristic
structure was called a Sudakov shoulder [7].

The resummation of the double-sided singularities (Fig. 1) of the isolated-photon cross
section is technically more complicated. We expect that it leads to a smooth ‘jump’ struc-
ture obtained by smearing (convoluting) two Sudakov shoulders: a shoulder below and an
inverted shoulder above the critical point xγ = xc. As a result, the two sides of the LO

step match at some intermediate value at the critical point in the all-order distribution,
and the step is smoothed. The actual derivation of the resummed calculation requires more
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study, since the type of smearing (convolution) to be applied to the two shoulders strongly
depends on the detailed isolation kinematics. Work on resummation is in progress, and the
results will be reported elsewhere.

Note that the perturbative divergences at xγ = xc correspond to integrable singularities
and therefore they could in principle be removed by non-perturbative smearing effects as
expected, for instance, from hadronization. However, since the hadronization smearing
should cancel divergent terms proportional to some power of αS(Q), this would require
that the short-distance cross section contains non-perturbative contributions that are not
power-suppressed at large Q. On the basis of our resummation argument, we do not
anticipate the presence of these contributions. The resummation of soft-gluon effects to
all orders of perturbation theory should be sufficient to render the isolated-photon cross
section finite and smooth throughout the physical phase space. This suggests that the
non-perturbative contributions that are not included in the fragmentation function are still
power-suppressed.
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