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1. Introduction

The situation in which a classical global symmetry is broken through regularization is

far from exceptional in field theory and is relevant for basic symmetries such as chirality

and scale invariance. In these cases either the symmetry is restored in the infinite cutoff

renormalized theory or quantum anomalies definitively spoil the conservation laws of

the classical action.

While for global symmetries respected by the regulator the bare Noether currents

are finite and correctly normalized, the situation is different for classical symmetries vi-

olated by the regularization. In this case, in fact, even if the symmetry will be recovered

in the renormalized theory, the corresponding currents require finite renormalization.

In the presence of anomalies, instead, infinite, scale dependent renormalizations are

needed in order to define the corresponding currents.

The general requisites underlying the recovery of the non-anomalous SU(3)
⊗
SU(3)

chiral symmetry and the corresponding classification of the local observables, have been

discussed in ref. [1] in the context of the lattice discretization with Wilson fermions.1

In the case of octet chiral currents, some of these requirements, those underlying the

construction of the conserved currents, have been shown [2] to be satisfied at any order

in perturbation theory. It must be said, however, that checks within perturbation the-

ory, although important, do not provide an “explanation” why these prerequisites are

1As repeatedly stressed, the discussion presented in ref. [1] is not restricted to lattice regularization,

but is indeed quite general and it is relevant whenever the process of regularization breaks a symmetry

of the classical action.
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indeed satisfied: one is left with the impression that the theory is, for some mysterious

reason, ready to incorporate the symmetry, although broken for any finite cutoff.

It is the purpose of this paper to explore the mechanisms underlying the recovery of

a symmetry, without invoking perturbation theory, but only using general properties

expected to be non-perturbatively valid in any field theory. In other words, we will try

to trace back to some general field theoretical features the various properties which, in

ref. [1], were conjectured from the analysis of one loop perturbation theory.

Let me state explicitly the general euclidean field theoretical assumptions which I

will use (at least those of which I am aware):

1. the renormalization structure is the same as the one found in perturbation theory;

2. renormalized Green’s function are finite when computed at non-exceptional ex-

ternal momenta and obey the Callan-Symanzik equation [3];

3. the theory exists in the zero mass limit, in the sense that Green’s functions of

“suitably renormalized operators”2 are finite when computed at non-exceptional

momenta [4];

4. the regularized Green’s functions are finite at non-exceptional momenta, also in

the massless limit.

The above properties are known to be true to all orders in perturbation theory.

If they will ever turn out to have a non-perturbative validity, the same will be true

for the considerations exposed in the following sections. Assumption 4 is, however,

on a different ground: it concerns the regularization. Although valid for any decent

regularization, we will show that it is not necessary in the proof of the recovery of the

symmetry, even in the massless limit: assumption 4 will only be used to exclude some

pathological behaviour, not found in lattice perturbation theory, of the renormalization

constants of any operator.

The plan of the paper is as follows. In Section 2 we give a simple non-perturbative

derivation of a fundamental, well-known, order by order in perturbation theory, prop-

erty concerning composite operators: power divergent mixings with lower dimensional

operators never depend on the renormalization scale µ. Starting from this result we

will discuss, in Section 3, the case of Ward Identities related to global non-anomalous

symmetries, showing their validity in the renormalized theory. Finally, in Section 4,

we will discuss the case of the chiral U(1) global anomalous symmetry and its Ward

Identities.

2This means that the renormalization conditions should not introduce spurious, mass-dependent

i.r. divergent terms like, e.g. log(p2/m2
q). The i.r. safe renormalization conditions are the usual ones

performed at a scale µ.
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2. Power divergent operators

We start considering a theory with fundamental fields φ(x), regularized by a cutoff3

Λ = 1/a, defined by a certain number of (bare) coupling constants which we collectively

denote by g0. The theory is renormalized at a subtraction point µ and the renormal-

ized Green’s functions, G(n)(x; g, µ), are expressed in terms of a set of renormalized

couplings g:

G(n)(x; g, µ) ≡
1

[Zφ(g0, aµ)]n/2

〈
φ(x1) . . . φ(xn)

〉
≡
〈
φ(ren)(x1) . . . φ

(ren)(xn)
〉
, (2.1)

where Zφ(g0, aµ) is the wave function renormalization of φ(x), φ(ren)(x) denote the

renormalized fields and
〈
. . .

〉
is the euclidean expectation value with respect to the

regularized measure.

Just to establish some notation, let us recall that the Callan-Symanzik [3] differential

operator, µ d
dµ

∣∣∣
g0,a

acting on G(n)(x; g, µ) gives

µ
d

dµ

∣∣∣∣∣
g0,a

G(n)(x; g, µ)≡ (µ
∂

∂µ
+ β(g)

∂

∂g
)G(n)(x; g, µ) =

=

µ d

dµ

∣∣∣∣∣
g0,a

1

[Zφ(g0, aµ)]n/2

 〈φ(x1) . . . φ(xn)
〉

=

=−nγφ(g)G
(n)(x; g, µ) , (2.2)

where, as usual, we denoted by γφ(g) ≡
1
2
µ d
dµ

∣∣∣
g0,a

log[Zφ(g0, aµ)] the anomalous dimen-

sion of φ. In eq. (2.2) we exploited the fact that µ d
dµ

∣∣∣
g0,a

gives 0, when acting on bare

quantities.

Let us now consider the case of a composite operator O(x). In order to make it

finite it has to be mixed with bare operators of equal or smaller dimension. In order to

simplify the presentation of the argument we consider a simple situation in which only

mixings with lower dimensional operators occur.

In this case we have

OR(x) = ZO[O(x) +
Z̃

a
Õ(x)] , (2.3)

where we schematically denoted by Õ(x) the lower dimensional operators.

The dimensionless coefficients ZO and Z̃ are chosen, according to appropriate renor-

malization conditions at the scale µ, so that the Green functions

G(OR,n)(x, x1 . . . xn) ≡
1

[Zφ(g0, aµ)]n/2

〈
OR(x)φ(x1) . . . φ(xn)

〉
(2.4)

stay finite, together with their Fourier transforms, as a→ 0.

3We will, for definiteness, adopt the language of lattice regularization, but, as already stressed, our

discussion is completely general.
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Applying µ d
dµ

∣∣∣
g0,a

to both sides of eq. (2.4), we get

µ
d

dµ

∣∣∣∣∣
g0,a

G(OR,n)(x, x1 . . . xn) ≡

≡ (µ
∂

∂µ
+ β(g)

∂

∂g
)G(OR,n)(x, x1 . . . xn) =

=−nγφ(g)G
(OR,n)(x, x1 . . . xn) +

+

[
µ d
dµ

∣∣∣
g0,a

ZO

]
ZO

G(OR,n)(x, x1 . . . xn) +

+
ZO

a

µ d

dµ

∣∣∣∣∣
g0,a

Z̃

 〈Õ(x)φR(x1) . . . φR(xn)
〉
≡

≡− (nγφ(g) + γO(g))G(OR,n)(x, x1 . . . xn) +

+
ZO

a

µ d

dµ

∣∣∣∣∣
g0,a

Z̃

 〈Õ(x)φR(x1) . . . φR(xn)
〉
, (2.5)

where γO(g) denotes the anomalous dimension of OR(x).

Since the l.h.s. and the first term of the r.h.s. of eq. (2.5) are finite, we must have

µ
d

dµ

∣∣∣∣∣
g0,a

Z̃ = 0 . (2.6)

Eq. (2.6) proves in complete generality that power divergent subtractions of com-

posite operators do not contribute to anomalous dimensions and that, in presence of

dimensionless couplings only, they do not contain any logs.

3. Global non-anomalous symmetries

In this section we will deal, for definiteness, with non singlet chiral transformations,

softly broken by a mass term4 M0.

3.1. Ward identities with elementary operator insertions

As discussed in ref. [1], the naive chiral variation of the regularized functional integral

gives rise to the regularized Ward Identity5

∂µx

〈
Aaµ(x) q(y) q̄(z)

〉
= M0

〈
q̄(x)λaγ5q(x) q(y) q̄(z)

〉
+

+ δ(4)(x− y)
〈
γ5
λa

2
q(y) q̄(z)

〉
+ δ(4)(x− z)

〈
q(y) q̄(z)

λa

2
γ5

〉
+

+
〈
Xa(x) q(y) q̄(z)

〉
, (3.1)

4For simplicity we will consider in the following the flavor-symmetric case M0 ∝ I
5We adopt the conventions: {λa, λb} = 2dabcλc, dab0 = δab, λ0 = 2

3I.
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where

Aaµ(x) ≡ q̄(x)
λa

2
γµγ5q(x) (3.2)

and Xa(x) is the chiral variation of the Wilson term. Since Xa(x) vanishes in the

formal classical limit, it has the form

Xa(x) = aOa
5(x) . (3.3)

Eq. (3.1) has still to be renormalized. In particular the composite operator Oa
5(x),

defined in eq. (3.3), is not finite as a → 0, but contains power divergences which can

compensate the overall factor a. In order to construct a finite operator, Ōa
5(x), out of

Oa
5(x), we must consider appropriate linear combinations, as generically described in

eq. (2.3). In the case of Oa
5(x), dimension 5 operators will appear with logarithmically

divergent coefficients, while lower dimensional operators will contribute with coeffi-

cients proportional to inverse powers of the lattice spacing a. In order to simplify the

presentation we will not write down explicitly the logarithmically divergent mixings.

We, therefore, have

Ōa
5(x) = Z5

[
Oa

5(x) +
M̄

a
q̄(x)λaγ5q(x) +

(ZA − 1)

a
∂µAaµ(x)

]
. (3.4)

While6 Z5(g0, aµ) is logarithmically divergent, ZA and M̄ are restricted by eq. (2.6), to

be of the form7

ZA=ZA(g0, aM0) (3.5)

M̄ =
w(g0, aM0)

a
(3.6)

Eq. (3.1) then becomes [1]:

∂µx

〈
Âaµ(x) q(y) q̄(z)

〉
=mq

〈
q̄(x)λaγ5q(x) q(y) q̄(z)

〉
+

+ δ(4)(x− y)
〈
γ5
λa

2
q(y) q̄(z)

〉
+ δ(4)(x− z)

〈
q(y) q̄(z)

λa

2
γ5

〉
+

+
〈
X̄a(x) q(y) q̄(z)

〉
, (3.7)

where

Âaµ(x)≡ZAA
a
µ(x) ,

mq≡M0 − M̄ , (3.8)

X̄a(x)≡
a

Z5

Ōa
5(x) .

6Strictly speaking Z5 could also depend on aM0, if we do not use assumption 4. See the further

discussions on this point, later in this section.
7In this case also M0 has to be included among the bare couplings.
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The aM0 dependence in eqs. (3.5) and (3.6) is not further restricted by the renormal-

ization group and looks somewhat problematic, at least for considerations pertaining

the massless limit of QCD, reached when

M0 = Mcr ≡
fcr(g0)

a
⇔ mq = 0 . (3.9)

In fact eq. (3.5), does not forbid the presence, in ZA, of terms such as log(amq); in

ref. [1] the absence of such terms was explicitly assumed and this assumption has

afterwards been confirmed in perturbation theory [2]. In our case these terms are

excluded by assumption 4 stated in the introduction, which guarantees the existence,

in the massless limit, of any regularized bare operator. However, as we will show at

the end of this section, this hypothesis does not seem necessary in order to recover

the symmetry, even in the massless limit. For the moment, therefore, we will proceed

without invoking it.

Using eq. (3.7) we can now establish, in full generality, the recovery of chiral sym-

metry in the continuum limit. First of all, since the quark fields appear homogeneously

in eq. (3.7), we can proceed to their renormalization:

∂µx

〈
Âaµ(x) q

(ren)(y) q̄(ren)(z
〉

= mq

〈
q̄(x)λaγ5q(x) q

(ren)(y) q̄(ren)(z)
〉

+

+ δ(4)(x− y)
〈
γ5
λa

2
q(ren)(y) q̄(ren)(z)

〉
+ δ(4)(x− z)

〈
q(ren)(y) q̄(ren)(z)

λa

2
γ5

〉
+

+
〈
X̄a(x) q(ren)(y) q̄(ren)(z)

〉
, (3.10)

where

q(ren)(x)≡
q(x)√

Zq(g0, aµ)
, (3.11)

q̄(ren)(x)≡
q̄(x)√

Zq(g0, aµ)
.

In eq. (3.10) we can safely drop the insertion of X̄a(x), since Ōa
5(x) is finite when inserted

together with renormalized fundamental fields and Z5 behaves, at most, logarithmically.

We then get

∂µx

〈
Âaµ(x) q

(ren)(y)q̄(ren)(z)
〉

= mq

〈
q̄(x)λaγ5q(x) q

(ren)(y) q̄(ren)(z)
〉

+

+ δ(4)(x− y)
〈
γ5
λa

2
q(ren)(y) q̄(ren)(z)

〉
+ δ(4)(x− z)

〈
q(ren)(y) q̄(ren)(z)

λa

2
γ5

〉
. (3.12)

Eq. (3.12) implies, by a standard argument, the separate u.v. finiteness of both

mq q̄(x)λ
aγ5q(x) and Âaµ(x). In fact, integrating eq. (3.12) over x, we get:

mq

∫
d4x

〈
q̄(x)λaγ5q(x) q

(ren)(y) q̄(ren)(z)
〉

=

=−

[〈
γ5
λa

2
q(ren)(y) q̄(ren)(z)

〉
+
〈
q(ren)(y) q̄(ren)(z)

λa

2
γ5

〉]
. (3.13)
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Eq. (3.13) shows that, in virtue of the (assumed) u.v. finiteness of the Green functions

of renormalized fields, the integrated mass insertion is finite. Since there are no op-

erators of dimension ≤ 3 with identically vanishing x integral, which could mix with

q̄(x)λaγ5q(x), we conclude that the non integrated mass insertion in eq. (3.12) is also

finite. This, in turn, shows that ∂µx
〈
Âaµ(x) q

(ren)(y) q̄ren(z)
〉

is finite by itself. Since

the symmetry is ungauged, there are no operators of dimension ≤ 3 with identically

vanishing 4-divergence which could mix with Âaµ(x). This shows that Âaµ(x) is finite

and correctly normalized, since it satisfies the continuum Ward Identity, eq. (3.12) [1].

Let me finally discuss the question of the massless limit. I want to show that as-

sumptions 1-3, alone, imply the existence of Âaµ(x) also in the limit mq → 0. The

finiteness of insertions of “suitably renormalized operators” at non-exceptional mo-

menta, assumption 3, cannot be directly invoked here, because the normalization of

Âaµ(x) has not been chosen “suitably”, but has been fixed by the theory itself, through

eq. (3.8). However Âaµ(x) must be proportional to a “suitably renormalized operator”,

possibly through a factor which diverges logarithmically as mq → 0. This means that,

if we can show the finiteness of one particular insertion of Âaµ(x) in the massless limit

at non-exceptional momenta, then the current itself will be well defined. The argu-

ment proceeds as follows. Eq. (3.13), shows that mq

∫
d4x q̄(x)λaγ5q(x) and its limit

for mq → 0 can never be infinite, because of the assumed finiteness of the Green func-

tions of the renormalized quark fields appearing in the r.h.s.8 This implies that, when

inserted at non-zero momentum, mq q̄(x)λ
aγ5q(x) has to vanish, as mq → 0. If we now

take the Fourier transform of eq. (3.12), with respect to x, at some momentum k 6= 0,

for mq → 0

∫
d4x e−ikx ∂µx

〈
Âaµ(x) q

(ren)(y) q̄(ren)(z)
〉

=

= i kµ

∫
d4x e−ikx

〈
Âaµ(x) q

(ren)(y) q̄(ren)(z)
〉

=

=e−iky
〈
γ5
λa

2
q(ren)(y) q̄(ren)(z)

〉
+ e−ikz

〈
q(ren)(y) q̄(ren)(z)

λa

2
γ5

〉
(3.14)

we see that, again in virtue of the assumed finiteness of the Green functions of the

renormalized quark fields appearing in the r.h.s., the insertion of kµ
∫
d4x e−ikx Âaµ(x)

is finite and, therefore, so is Âaµ(x).

From now on we will assume that the regularization has been performed so that

assumption 4 is satisfied. We stress again that the recovery of chiral symmetry in the

massless limit has nothing to do with it: if assumption 4 were not fulfilled, then all bare

operators would be singular in the massless limit. As a consequence of assumption 4,

the aM0 dependence in ZA can be safely neglected, for asymptotically small a, and ZA
will be a function of g0 alone [1].

8This behaviour is, of course, compatible with the possibility of spontaneous symmetry breaking.
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3.2. Ward identities with composite operator insertions

When studying Ward Identities with composite operator insertions, another general

property was needed in ref. [1], which we will now examine in full generality. It concerns

the integrated insertion of X̄a(y) together with a composite local operator.

We will discuss the example of the regularized, integrated octet (a 6= 0) axial Ward

Identity [1]

−mqZp

∫
d4x

〈
q̄(x)λaγ5q(x) q̄(0)

λb

2
γ5q(0) Λn(y)

〉
=

=dabcZp
〈
q̄(0)

λc

2
q(0) Λn(y)

〉
+ Zp

〈
q̄(0)

λb

2
γ5q(0) δaAΛn(y)

〉
+

+ Zp

∫
d4x

〈
X̄a(x) q̄(0)

λb

2
γ5q(0) Λn(y)

〉
, (3.15)

where Zp(g0, aµ) is a logarithmically divergent renormalization constant which makes

single insertions of the pseudoscalar density finite, Λn(y) denotes a collection of n q(ren)

and q̄(ren) insertions, all at different points,

Λn(y) ≡ q(ren)(y1) . . . q̄
(ren)(yn) , (3.16)

and δaAΛn(y) its axial variation

δaAΛn(y) ≡ γ5
λa

2
q(ren)(y1) . . . q̄

(ren)(yn) + . . .+ q(ren)(y1) . . . q̄
(ren)(yn)γ5

λa

2
. (3.17)

In order to study the X̄a(x) insertion in the r.h.s of eq. (3.15) we start considering

Φab ≡ Zp

∫
d4x

〈
Ōa

5(x) q̄(0)γ5
λb

2
q(0) Λn(y)

〉
. (3.18)

Although Ōa
5(x) and Zp q̄(0)γ5

λb

2
q(0), being renormalized operators, have finite

insertions with fundamental fields, Φab is still u.v. divergent due to short distance non-

integrable singularities when x → 0. We will consider here, for simplicity, the case

b 6= 0, a. With an appropriate choice of Cs we can construct out of Φab a finite quantity

as

Φab
R = Φab − ZpZ5

Cs

a
dabc

〈
q̄(0)

λc

2
q(0) Λn(y)

〉
. (3.19)

As before we get a restriction on Cs by applying µ d
dµ

∣∣∣
g0,M0,a

to both sides of

eq. (3.19):

µ
d

dµ

∣∣∣∣∣
g0,M0,a

Φab
R ≡ (µ

∂

∂µ
+ β(g)

∂

∂g
)Φab

R =

=− (γŌ5
(g) + γp(g) + nγq(g))Φ

ab
R −

−
ZpZ5

a
dabc

〈
q̄(0)

λc

2
q(0) Λ(y)

〉
µ
d

dµ

∣∣∣∣∣
g0,M0,a

Cs . (3.20)
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Eq. (3.20) shows that Cs is a function of g0 only,9 so that:

Zp

∫
d4x

〈
X̄a(x) q̄(0)γ5

λb

2
q(0) Λn(y)

〉
=

=
a

Z5
Φab(y) ≈

a≈0
ZpCs(g0)d

abc
〈
q̄(0)

λc

2
q(0) Λn(y)

〉
, (3.21)

where we exploited the fact that a
Z5

Φab
R → 0, as a→ 0.

Eq. (3.21) fully confirms the results of ref. [1]. A similar analysis shows that, in

general, for a 6= 0 and b = 0, . . . , 8, we have

−mq

∫
d4x

〈
q̄(x)γ5λ

aq(x) P b(0) Λn(y)
〉

=

=dabc
〈
Sc(0) Λn(y)

〉
+
〈
P b(0) δaAΛn(y)

〉
, (3.22)

where (a 6= 0)

P 0(x) ≡ Zp(1 + Cp(g0))q̄(x)γ5
λ0

2
q(x)

P a(x) ≡ Zpq̄(x)γ5
λa

2
q(x)

S0(x) ≡ Zp

[
(1 + Cs0(g0))q̄(x)

λ0

2
q(x) +

1

3

D(g0, aM0)

a3

]

Sa(x) ≡ Zp(1 + Cs(g0))q̄(x)
λa

2
q(x)

(3.23)

By evaluating eq. (3.22) in the chiral limit, mq = 0, we avoid an u.v. divergence in

the l.h.s.,10 due to the simultaneous insertion of q̄(x)γ5λ
aq(x) and q̄(0)γ5

λb

2
q(0) and show

that the P ’s and the S’s, defined in eq. (3.23), belong to a renormalized (3, 3̄)
⊕

(3̄, 3)

representation of SU(3)
⊗
SU(3) [1].

Strictly speaking, the Ward Identity eq. (3.22) only provides a check that the P a(x)’s

transform into the Sa(x)’s (for a = 0, . . . , 8) under an axial transformation. In principle

we should also consider the Ward Identity analogous to eq. (3.22), but with an Sb(x)

insertion in the l.h.s. and check that in the r.h.s. the correct combination dabcP c(x)

appears, without additional renormalization constants. This consistency is guaranteed

by the fact that Ward identities are obtained by making a transformation, δaAq(x) on

the quark fields in the functional integral and the δaA identically satisfy, on the lattice,

the algebra of SU(3)
⊗
SU(3):

δaAδ
b
A − δ

b
Aδ

a
A=−ifabcδcV , (3.24)

δaV δ
b
V − δ

b
V δ

a
V =−ifabcδcV , (3.25)

where δaV denotes a vector flavor variation. It is easy to check that eq. (3.24) provides

the required consistency. An explicit example of this kind of consistency, in a simpler

case, will be given at the end of subsection 4.2.

9The dependence on aM0 can be neglected in view of assumption 4.
10This divergence appears in the disconnected component of the Green function and is relevant in

the definition of the chiral condensate [1].
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4. Global anomalous symmetries

In this section we will discuss the definition and the renormalization of the Ward

Identities related to the U(1) chiral transformations [5].

4.1. Anomalous Ward identities with elementary operator insertions

In analogy with the octet case, eq. (3.1), for a U(1) chiral transformation we have the

regularized identity

∂µx

〈
Aµ(x) q(y) q̄(z)

〉
= M0

〈
q̄(x)γ5q(x) q(y) q̄(z)

〉
+

+ δ(4)(x− y)
〈γ5

2
q(y) q̄(z)

〉
+ δ(4)(x− z)

〈
q(y) q̄(z)

γ5

2

〉
+

+
〈
X(x) q(y) q̄(z)

〉
, (4.1)

where

Aµ(x) ≡
1

2
q̄(x)γµγ5q(x) . (4.2)

As Xa(x), also X(x) has the form

X(x) = aO5(x) . (4.3)

In this case, however, in order to construct a finite operator out of O5(x), we have to

perform more subtractions. Instead of eq. (3.4), we have

Ō5(x) = Z ′5

[
O5(x) +

M̄ ′

a
q̄(x)γ5q(x) +

(Z ′A − 1)

a
∂µAµ(x)−

ZF F̃
a
F F̃

]
, (4.4)

where FF̃ is any formal regularization of the corresponding classical operator.

As in the octet case we conclude that Z ′A and ZF F̃ are finite functions of g0, while

M̄ ′ =
w′(g0, aM0)

a
. (4.5)

Renormalizing the quark fields, eq. (4.1) becomes

Z ′A(g0)∂
µ
x

〈
Aµ(x) q

(ren)(y) q̄(ren)(z)
〉

=

=m′q

〈
q̄(x)γ5q(x) q

(ren)(y) q̄(ren)(z)
〉

+ ZF F̃ (g0)
〈
FF̃ (x) q(ren)(y) q̄(ren)(z)

〉
+

+ δ(4)(x− y)
〈γ5

2
q(ren)(y) q̄(ren)(z)

〉
+ δ(4)(x− z)

〈
q(ren)(y) q̄(ren)(z)

γ5

2

〉
+

+
〈
X̄(x) q(ren)(y) q̄(ren)(z)

〉
, (4.6)

where

m′q ≡M0 − M̄
′ , X̄(x) ≡

a

Z ′5
Ō5(x) . (4.7)

Again, in eq. (4.6), the insertion of X̄(x) vanishes as a → 0. An argument similar to

the one used in the octet case shows the finiteness of the mass insertion [6]. However we
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cannot exclude separate logarithmically divergent contributions from Z ′A(g0)∂
µ
xAµ(x)

and ZF F̃ (g0)FF̃ . These divergences are, in fact, present [6] and require a logarithmically

divergent mixing, in order to define separately finite operators:

ARµ (x)≡ (1− ZC(g0, aµ))Z ′A(g0)Aµ(x) (4.8)

FF̃R(x)≡ZF F̃ (g0)FF̃ (x)− ZC(g0, aµ)Z ′A(g0)∂
µAµ(x) (4.9)

so that the renormalized anomalous Ward Identity with quark field insertions becomes

∂µx

〈
ARµ (x) q(ren)(y) q̄(ren)(z)

〉
=

=m′q

〈
q̄(x)γ5q(x) q

(ren)(y) q̄(ren)(z)
〉

+
〈
FF̃R(x) q(ren)(y) q̄(ren)(z)

〉
+

+ δ(4)(x− y)
〈γ5

2
q(ren)(y) q̄(ren)(z)

〉
+ δ(4)(x− z)

〈
q(ren)(y) q̄(ren)(z)

γ5

2

〉
.(4.10)

In the anomalous case the normalization of the axial current is, of course, not fixed by

Ward Identities, but must be adjusted according to some arbitrary prescription.

4.2. Anomalous Ward identities with composite operator insertions

In the presence of a composite operator, as, for instance, P a(y), defined in eq. (3.23),

we can write the regularized and integrated U(1) Ward Identity11

−
∫
d4x

〈
[m′q q̄(x)γ5q(x) + FF̃R(x)] P a(y) Λn(z)

〉
=

=
〈
P a(y) δAΛn(z)

〉
+ Zp

〈
q̄(y)

λa

2
q(y) Λn(z)

〉
+

+
∫
d4x

〈
X̄(x) P a(y) Λn(z)

〉
(4.11)

with an obvious meaning for δA. For the insertion of X̄(x) in eq. (4.11), we can construct

an argument completely parallel to the one leading to eq. (3.21), which gives∫
d4x

〈
X̄(x) P a(y) Λn(z)

〉
≈
a≈0

ZpC
′(g0)

〈
q̄(y)

λa

2
q(y) Λn(z)

〉
, (4.12)

so that eq. (4.11) becomes

−
∫
d4x

〈
[m′q q̄(x)γ5q(x) + FF̃R(x)] P a(y) Λn(z)

〉
=

=
〈
P a(y) δAΛn(z)

〉
+ Zp(1 + C ′(g0))

〈
q̄(y)

λa

2
q(y) Λn(z)

〉
≡

≡
〈
P a(y) δAΛn(z)

〉
+

1 + C ′(g0)

1 + Cs(g0)

〈
Sa(y) Λn(z)

〉
. (4.13)

Through operator product expansion one can convince oneself that the double insertion

of composite operators in eq. (4.13) is integrable without further subtractions. In

11We choose a 6= 0 in order to avoid disconnected contributions.
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fact in the product of m′q q̄(x)γ5q(x) and P a(y) at x ≈ y, the identity operator is

missing because of the flavour structure (a 6= 0) and the next contributing operator

has dimension 3, giving rise to an integrable singularity. A similar argument holds for

the double insertion of FF̃R(x) and P a(y).

Eq. (4.13) is the prototype of the U(1) integrated chiral Ward identities with com-

posite operator insertions and can be used to solve the following consistency problem.

When sandwiched between on-shell states, Âaµ(x) and ARµ (x) satisfy the partial

conservation equations

∂µÂaµ(x) = mq q̄(x)λ
aγ5q(x) (4.14)

∂µARµ (x) = m′q q̄(x)γ5q(x) + FF̃R(x) . (4.15)

While in eq. (4.15) the mass insertion is proportional to m′q ≡ M0−M̄ ′, in eq. (4.14)

it is proportional to mq ≡ M0 − M̄ . Formally, in the continuum, the mass insertions

in eqs. (4.14) and (4.15) have the same coefficient, the quark mass, so that they vanish

together in the chiral limit.

We want to show that this is also true for the renormalized eqs. (4.14) and (4.15):

mq and m′q are in fact proportional through a finite coefficient, so that both vanish in

the chiral limit.

We integrate eq. (4.13) over y:

−
∫
d4x d4y

〈
[m′q q̄(x)γ5q(x) + FF̃R(x)] P a(y) Λn(z)

〉
=

=
∫
d4y

〈
P a(y) δAΛn(z)

〉
+ Zp(1 + C ′(g0))

∫
d4y

〈
q̄(y)

λa

2
q(y) Λn(z)

〉
(4.16)

and consider the chain of equalities

−
∫
d4x d4y

〈
mq q̄(y)λ

aγ5q(y)[m
′
qq̄(x)γ5q(x) + FF̃R(x)]Λn(z)

〉
= (4.17)

=m′q
1 + Cs(g0)

1 + Cp(g0)

∫
d4x

〈
q̄(x)λaq(x) Λn(z)

〉
+

+
∫
d4x

〈 [
m′q q̄(x)γ5q(x) + FF̃R(x)

]
δaAΛn(z)

〉
= (4.18)

=mq(1 + C ′(g0))
∫
d4y

〈
q̄(y)λaq(y) Λn(z)

〉
+

+
∫
d4y

〈
mq q̄(y)λ

aγ5q(y) δAΛn(z)
〉
. (4.19)

Eq. (4.18) follows from eq. (4.17) through the octet Ward Identity, eq. (3.22), and

the octet chiral invariance of
∫
d4xF F̃R(x),12 while eq. (4.19) follows from eq. (4.17)

through eq. (4.16).

The terms containing δaAΛn(z) and δAΛn(z), in eqs. (4.18) and (4.19), can be further

transformed. The integrated octet Ward Identity, eq. (3.13), in fact, gives

mq

∫
d4y

〈
q̄(y)λaγ5q(y) δΛn(z)

〉
= −

〈
δaAδAΛn(z)

〉
(4.20)

12
∫
d4xF F̃R(x) only depends on gluon fields.
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while, integrating the U(1) Ward Identity eq. (4.10), we get

∫
d4x

〈
[m′q q̄(x)γ5q(x) + FF̃R(x)]δaΛn(z)

〉
= −

〈
δAδ

a
AΛn(z)

〉
. (4.21)

Since the octet and the U(1) axial transformations commute

δAδ
a
A = δaAδA , (4.22)

eqs. (4.18) and (4.19) imply

m′q
1 + Cs(g0)

1 + Cp(g0)
= mq(1 + C ′(g0)) , (4.23)

which proves the required consistency.

We can further show that

C ′(g0) = Cs(g0) . (4.24)

In fact eq. (4.13) tells us that13

P a(x) ,
1 + C ′(g0)

1 + Cs(g0)
Sa(x) (4.25)

belong to an irreducible, renormalized representation of the chiral U(1) group. From

the commutativity of U(1) and octet transformations (b 6= 0, a), eq. (4.22), we have

δAδA
bP a(x) =

1 + Cs(g0)

1 + C ′(g0)
dbacP c(x) =

= δA
bδAP

a(x) =
1 + C ′(g0)

1 + Cs(g0)
dbacP c(x) , (4.26)

so that
1 + Cs(g0)

1 + C ′(g0)
= ±1 , (4.27)

where the sign ambiguity can be reabsorbed into a redefinition of the abelian U(1)

charge, thus proving eq. (4.24).
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