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4 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

Abstract

Within the context of supergravity-coupled supersymmetry, fields which are
gauge and global singlets are usually considered anathema. Their vacuum ex-
pectation values are shifted by quadratically divergent tadpole diagrams which
are cutoff at the Planck scale, destabilizing the classical potential and driving
the singlet field to large values. We demonstrate a new and generic mechanism
which stabilizes the singlet in the presence of an extended gauge symmetry.
Such a symmetry will be broken down to the Standard Model by the super-
gravity interactions near the scale of spontaneous supersymmetry-breaking in
the hidden-sector (∼ 1010−11 GeV). The resulting singlet expectation value
is stabilized and naturally of order the gravitino mass, providing therefore a
weak-scale mass for the Higgs fields of the supersymmetric Standard Model (a
µ-parameter). The resulting low-energy theory is the minimal supersymmetric
Standard Model, with all new fields decoupling at the intermediate scale.
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One of the primary motivations for low-energy supersymmetry (SUSY) is the
stabilization of the weak scale (mW ) against quadratic divergences which appear at
the quantum level and can drive mW up to the Planck scale (MP ). To accomplish such
a feat, one typically postulates that there are two separate sectors in the Lagrangian
describing all of physics: a visible sector in which exist the Standard Model (SM) and
its SUSY extension, the Minimal Supersymmetric Standard Model (MSSM); and a
hidden sector in which exist the fields and interactions necessary to spontaneously
break SUSY (see e.g. [1]). Consistency of the model requires that the hidden and
visible sectors must not communicate with one another directly via renormalizable,
tree-level interactions, and so one must also postulate a mediation mechanism which
communicates SUSY-breaking from the hidden to the visible sector.

The simplest and most elegant means for communicating SUSY-breaking is via su-
pergravity interactions; in fact, this mechanism is inherited directly from the gauging
of SUSY and requires no additional sectors or interactions. In the picture of su-
pergravity mediation, SUSY is spontaneously broken in the hidden sector at a scale
MSUSY. This scale is then communicated to the visible sector through Planck-scale
suppressed operators so that the visible SUSY-breaking scale is M2

SUSY
/MP . Setting

this scale to mW (in order to have weak-scale SUSY), one finds that the hidden sector
scale is then MSUSY ≃

√
mWMP ≡ Mint ≃ 1010−11 GeV. The resulting picture has

three scales (though they are not all independent): MP , Mint and mW . The physics
in each sector, however, is only sensitive to two of these scales: MP and Mint in the
hidden sector, and MP and mW in the visible sector. In both cases, one expects that
SUSY-preserving masses should be near MP , and that SUSY-breaking masses in each
sector should be near the scale which controls SUSY-breaking in that sector.

However, there is one necessary, and another possible, violation of these expecta-
tions in low-energy SUSY. The former is often referred to as the µ-problem [2]. The
superpotential of the MSSM must for phenomenological reasons contain a term µHH
which mixes the two Higgs doublets responsible for electroweak symmetry breaking,
with µ ∼ mW . However, µ is both SUSY- and SU(2) × U(1)-invariant and so we
expect that its natural scale should be the Planck scale. The other possible violation
arises whenever one wishes to extend the gauge structure of the MSSM to include
new interactions broken at some scale intermediate to mW and MP . In particular,
there exist several arguments that there should be new physics in the visible sector
at a scale close to Mint ∼ 1010−11 GeV (for example, a right-handed neutrino at such
a scale could provide a suppressed neutrino mass through the seesaw mechanism con-
sistent with current indications). It is remarkable that this new scale for visible sector
physics is also roughly the scale of SUSY-breaking in the hidden sector, though there
is no obvious connection. In fact we will show in this letter that there may indeed be
a deep underlying connection. Specifically, we will demonstrate a mechanism which
simultaneously solves the µ-problem while generating a scale for new visible sector
physics close to the scale MSUSY of hidden sector physics.

Of the existing suggestions for solving the µ-problem of the MSSM, two bear some
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kinship to our proposal. The first such suggestion is to extend the matter content
of the MSSM by a singlet, S, which couples to HH. If S receives a weak-scale vac-
uum expectation value (vev), it dynamically provides a µ-parameter, µ ∼ 〈S〉. This is
known as the Next-to-Minimal SUSY Standard Model (NMSSM) [3]. The second solu-
tion is the Giudice-Masiero mechanism [4] in which non-minimal, non-renormalizable
Kähler couplings mix the hidden and visible sectors. Thus what appears to be a
SUSY-preserving µ-parameter originates in fact from SUSY-breaking in the hidden
sector. Our mechanism has ingredients from both proposals in that we add a gauge
singlet to the spectrum along with a non-minimal Kähler potential. But the singlet
will decouple from the low-energy theory, and no potentially dangerous mixing of
hidden and visible sectors is necessary. Our proposal is more closely related to that
of Sen (and as updated by Barr) [5] for reviving the “sliding singlet” solution for the
doublet-triplet splitting problem of SU(5). There, as here, dangerous destabilizing
operators in the effective potential need to be suppressed; in Ref. [5], this is accom-
plished by extending SU(5) in a very particular way. Their models appear, in fact, to
be special cases of a more general principle which we will identify and explore here.

Begin by considering the NMSSM, which has two well-known problems. At the
renormalizable level, the NMSSM has a Z3 symmetry. If that symmetry is preserved to
all orders, then the vev of S will break the symmetry at the weak scale and produce
cosmologically dangerous domain walls. If on the other hand the Z3 symmetry is
not preserved by higher-order terms in the Lagrangian, then S carries no conserved
quantum numbers. In this latter case, S will generically develop tadpoles, in the
presence of spontaneously-broken SUSY, whose quadratic divergences are cut off by
the Planck scale [6, 7]. The resulting shift in the potential for S causes it to slide to
large values far above the weak scale. If it were to couple to the MSSM Higgs fields,
they would receive unacceptably large masses, destabilizing the weak scale. Therefore
one concludes that not only do singlets fail to provide a viable µ-parameter, but they
cannot even be allowed to couple to light fields.

We now present a toy model which solves this destabilization problem of the
NMSSM, while at the same time introducing a new visible sector interaction whose
scale will naturally fall at Mint. Within this model, singlets can couple to MSSM
fields, and in particular, can provide dynamical µ-terms at the weak scale. The
model itself demonstrates a very general mechanism, though it already contains all
of the ingredients necessary to be phenomenologically viable.

The Model. Consider a superpotential

W = λHSHH + λΣSΣΣ (1)

where H,H carry charges ±1 under a gauge symmetry U(1)H , Σ,Σ are charged ±1
under another gauge symmetry U(1)Σ, and S is a gauge singlet. We require Σ,Σ to
be neutral under U(1)H and, for simplicity, assume that H,H are also neutral under
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U(1)Σ, though they need not be. The D-term for U(1)Σ is then simply

DΣ = gΣ

(

|Σ|2 − |Σ|2
)

, (2)

and similarly for DH . To apply this toy model to the MSSM, we identify H,H as the
usual Higgs doublets, and extend U(1)H to the Standard Model gauge group; Σ and
Σ are new fields charged under a new gauge symmetry U(1)Σ.

At the level of the superpotential, there exists the usual Z3 which forbids explicit
mass terms from appearing in W [3]. This symmetry is broken by S 6= 0, which could
lead to creation of electroweak scale domain walls via the Kibble mechanism. The
appearance of an S3 term is forbidden by an R-symmetry under which R(W ) = 2
and R(S) = 0.

However, we will assume that the Z3 symmetry of the superpotential is only an ac-
cidental symmetry. This is a natural expectation since global symmetries are generally
not preserved by quantum gravity effects (unless they are remnants of broken gauge
symmetries) [8]. In particular, we expect that gravity-induced global symmetry-
breaking will appear as non-renormalizable, explicit symmetry-breaking terms in the
Kähler potential, K. The Z3 symmetry can thus be a symmetry of the effective su-
perpotential without being a symmetry of the entire action. This is equivalent to the
statement that the S field is a true singlet, carrying no conserved quantum numbers.

After SUSY-breaking, non-zero tadpoles for S will generically arise with light chi-
ral fields circulating in the loops [6, 7, 9, 10, 11]. These tadpoles appear at O(h̄n/MP )
due to supergravity corrections from Planck-suppressed operators. Because the exact
source of the couplings which generate the tadpoles is highly model-dependent, we
do not know a priori at what loop order non-zero contributions are generated. For
example, it is known that for a flat Kähler metric, non-zero tadpoles do not arise
until two-loops [9, 10]; however, for a non-flat metric they may arise at one-loop.

We will analyze these tadpole contributions following the formalism laid out in
Refs. [7, 10]. Putting aside the question of loop-order at which the tadpoles arise, it is
sufficient to consider these contributions as coming from an effective Kähler potential
of the form

K =
{

1 +
1

MP
(S + S†)

}

ΦiΦ
†
i . (3)

The first term is just the canonical contribution to K of a chiral superfield Φi, while
the second term explicitly breaks the Z3-symmetry present in the superpotential. In
general, an n-loop induced tadpole generates a term in the effective Lagrangian of
the form:

Leff ∼ N

(16π2)n

Λ2

MP

∫

d4θ eK/M2

P (S + S†) (4)

where N counts the number of light chiral superfields that appear in the loops and
Λ is the cutoff for the quadratic divergence. (This expression results from a full
supergravity calculation [10].) Henceforth we make the reasonable assumption that
Λ ≃ MP .
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After SUSY-breaking, the superspace density, eK/M2

P , has the expansion:

eK/M2

P = 1 +
1

M2
P

{

θ2KiF
i + θ

2
KıF

ı + θ2θ
2

(

Ki +
KiK

M2
P

)

F iF 

}

(5)

where Ki (Kı) is the derivative of the Kähler potential with respect to a superfield
Φi (Φ†

i ). Even though i, j are summed over all fields in the theory, the vev of the su-
perspace density is obviously dominated by the fields responsible for SUSY-breaking.
In particular, we can take F i ∼ M2

SUSY
which is the scale of SUSY-breaking in the

hidden sector and is related to the gravitino mass, m3/2, via M2

SUSY ≃ m3/2MP (as-
suming cancellation of the cosmological constant). Throughout this article we will
always assume that the communication of SUSY-breaking to the visible sector is via
supergravity-induced terms, and thus m3/2 ≃ mW . (See Ref. [11] for the case of
tadpoles in gauge-mediated models for which m3/2 ≪ mW .)

While Kij ∼ O(1), the value of Ki is more model-dependent. For example, in
the Polonyi model (see [1]), the field responsible for SUSY-breaking has an F -term
∼ mWMP , but its scalar vev is ∼MP ; thus Ki ∼MP . However, this is not a necessary
ingredient and Ki ≪ MP is possible. To be general we will write

Ki = ǫiMP for |ǫi| ≤ 1 (6)

to parameterize our ignorance of the value of Ki. The contribution to the effective
Lagrangian coming from the tadpole is then:

Leff ∼ N

(16π2)n

{

Kım3/2FS +

(

Ki +
KiK

M2
P

)

m2

3/2MPS + h.c.

}

≡ βǫm3/2MPFS + γm2

3/2MPS + h.c. (7)

where ǫ is the maximum ǫi among the SUSY-breaking fields, and γ, β are complex
coefficients which include the loop suppression factors (16π2)−n and counting factors
N , and so whose magnitudes are roughly O(10−4 − 1).

We are now in a position to write down the full scalar potential after SUSY-
breaking, including supergravity-mediated soft masses as well as the tadpole contri-
butions. Begin by considering the contributions to the scalar potential involving the
FS auxiliary field:

VFS
= (βǫm3/2MPFS + h.c.) − |FS|2 −

(

FS
∂W

∂S
+ h.c.

)

(8)

where the first term is the contribution of the tadpole. On integrating out all auxiliary
fields, one finds that FS is shifted from its canonical form by the tadpole contribution:

F †
S = −∂W

∂S
+ βǫm3/2MP , (9)
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while all other F -terms (e.g. FΣ and FH) are canonical. The D-terms associated with
the gauge fields also take their canonical forms.

The full scalar potential after soft SUSY-breaking can then be written:

V =
∑

i

m2

i |ϕi|2 + |λΣS|2
(

|Σ|2 + |Σ|2
)

+ |λHS|2
(

|H|2 + |H|2
)

+m2

3/2MP (γS + γ†S†) +
∣

∣

∣λΣΣΣ + λHHH − βǫm3/2MP

∣

∣

∣

2

(10)

+
g2
Σ

2

(

|Σ|2 − |Σ|2
)2

+
g2

H

2

(

|H|2 − |H|2
)2

+ A,B-terms,

where the first term represents the gravitationally-induced soft SUSY-breaking masses,
m2

i ∼ m2

3/2
, for the fields ϕi = {S,Σ,Σ, H,H}. The final terms are gravitationally-

induced soft-breaking bilinear, B, and trilinear, A, terms which for simplicity we
ignore hereafter; they do not change our results substantially. Note that the poten-
tial as written requires thatm2

S ≥ 0 in order to be bounded from below (this condition
is modified in the presence of B-terms). Indeed, one expects m2

S > 0 at tree level and
it will only be driven negative if its coupling to either of the two sets of Higgs fields is
fairly large. Henceforth we will take all soft squared-masses to be equal to m2

3/2
> 0.

Minimization of the Potential. To continue further, we take ǫ ≃ 1, i.e., Ki ≃ MP

which is the generic choice; small deviations of ǫ away from 1 can be absorbed into
β. Writing down the minimization conditions for the potential is trivial, but as the
potential is quite complicated, it has many local minima besides the true global one.
However, there are two lowest-lying minima, both along directions that are D-flat up
to weak-scale corrections, i.e., Σ ≃ Σ and H ≃ H.

At a first minimum, denoted V1,

Σ = Σ = H = H = 0,

S ≃ −γ†MP ,

|FS| ≃ |βm3/2MP |,
V1 ≡ Vmin ≃ (|β|2 − |γ|2)m2

3/2
M2

P .

This minimum represents the case usually considered in the literature for singlets
with non-zero tadpoles — their vevs are pulled up to the Planck scale, taking with
them any matter to which they couple. This is precisely the reason it was argued in
Refs. [7, 10] that the vev of a true singlet cannot be responsible for the µ-term in the
MSSM.

At a second minimum, V2,

ΣΣ =
βm3/2MP

λΣ

,

H = H = 0,
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S ≃ − γ†

2|λΣβ|
m3/2,

FS ∼ m2

3/2
,

F
Σ,Σ ≃ λΣm

3/2

3/2
M

1/2

P ,

V2 ≡ Vmin ≃ 1

|λΣ|

(

|β| −
∣

∣

∣

∣

∣

γ2

2β

∣

∣

∣

∣

∣

)

m3

3/2MP .

The Σ-fields receive vev’s of ∼
√

m3/2MP to cancel off the FS contribution to the

potential. These large Σ-vev’s then produce masses for the S-field (through the FΣ

terms) which stabilizes the S-vev against the tadpole-induced linear potential. The
resulting vev of S is then only 〈S〉 ∼ m3/2 ≃ mW !

Any gauge symmetry carried by the Σ-fields will be broken at the scale of their
vev’s. Up to the loop factors buried in β, this is the intermediate scale, Mint. It is
also, not coincidentally, the scale of SUSY-breaking in the hidden sector. In fact,
one may interpret the physics at this minimum as the tadpoles communicating to the
Σ-fields the true scale of SUSY-breaking, up to the loop factors.

There is also a third minimum, V3, which is identical to V2 except that the would-
be MSSM Higgs fields, H and H , play the role of Σ and Σ and receive vev’s ∼Mint,
with λH replacing λΣ in all expressions. This is clearly not the desired minimum but
is instead another example of how the tadpole can destabilize the weak scale. (Note
that points at which H,H,Σ,Σ all get vev’s simultaneously are not even local minima
of the potential.)

One still needs to resolve which of the three minima is the global one. Clearly
|V2,3| ≪ |V1|, but if V1 < 0 then V1 will be the global minimum. It is easy to show that
V1 < 0 if and only if |γ|2 > |β|2. As we know of no general argument that can set the
relative sizes of γ and β, we simply regard the inequality |γ|2 < |β|2 to be a condition
for the universe to lie in the interesting minimum, which, given the arbitrariness of β
and γ, is not a restrictive requirement.

But assuming V1 > V2,3, which of either pair of fields Σ,Σ or H,H gets a vev?
Though the form of the potential for the Σ- and H-fields are the same, they have
differing quadratic pieces (effective masses) coming from their soft masses and their
couplings to S. Assuming equality of soft masses, V at its minimum is positive (given
|γ|2 < |β|2) and scales as either |λΣ|−1 or |λH |−1. Thus the global minimum of the
potential occurs where only the pair of fields with largest absolute coupling to S
gets vevs ∼ Mint. That is, if |λH | < |λΣ|, it is energetically unfavorable for H,H to
receive vevs ∼ Mint and so only the Σ,Σ fields do. Note in particular that simple
inequality is all that is needed to ensure that a gauge hierarchy develops; no large
hierarchy is needed between the two couplings themselves. Unequal soft masses shift
the condition slightly, but the same basic result will always hold. Thus we conclude
that the S-vev can in fact provide the µ-term of the MSSM as long as |λH | < |λΣ|.
The whole question of which gauge group is broken at the scale m3/2 and which at
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Mint may rest entirely on the relative size of two couplings (λH and λΣ) whose ratio
is generically O(1)!

Recapping, we have found that if |β|2 > |γ|2 and if |λH | < |λΣ| then S develops a
vev at the weak scale and provides a µ-term of the correct size for light MSSM Higgs
fields. Henceforth we will assume that these conditions hold and examine the solution
in minimum V2. It is well-known that models with a dynamical µ-term can contain a
Peccei-Quinn (PQ) symmetry which would be spontaneously broken and thus create
an unwanted axion at the weak scale. To examine this possibility, promote the PQ-
symmetry to the previously discussed R-symmetry under which S is neutral and all
other superfields are singly charged. However, R(βm3/2MP ) = 2 explicitly breaks
the symmetry and the would-be axions are all given masses near the intermediate
scale, rendering them harmless. But there still remains a residual PQ symmetry in
the MSSM Lagrangian. This too is explicitly broken, this time by FS ∼ m2

W , which
generates a B-term in the Higgs sector (∼ F †

SHH) and gives mass to the pseudoscalar
Higgs/would-be axion.

In detail, the heavy spectrum contains two massive pseudoscalars (with masses
near 〈Σ〉), a massless Goldstone which is eaten by the gauge field, and three massive
scalars. In particular, the S-scalar itself is not in the light spectrum. It receives a
mass via its coupling to Σ and Σ near Mint. Analysis of the heavy fermion mass
spectrum is more complicated since ψS mixes with the ψΣ and ψ

Σ
fields and the

gaugino, χ, of the broken gauge group. The mass matrix in the {ψS, ψΣ, ψΣ
, χ} basis

is given by

M =











0 λΣ λΣ 0
λΣ 0 λS gΣ
λΣ λS 0 −gΣ
0 gΣ −gΣ mχ











(11)

where the (4,4) element is the soft SUSY-breaking mass of the χ: mχ ≃ m3/2. This
mass matrix has all four eigenvalues of order Mint, so there is no remnant of the
dynamical S field at the weak scale, only its weak scale vev.

While the application of S to the MSSM µ-term does not require that any of
the MSSM fields be charged under the U(1)Σ gauge group, it is easy to see that our
mechanism still works even if this charge were carried by some or all of the MSSM
fields. Difficulties could arise if the DΣ-term were large after symmetry-breaking,
DΣ ≫ m2

3/2
. Then all fields charged under that symmetry would be pulled up to

the scale of the (large) DΣ-term. However, the Σ-fields receive their vevs along an
approximately D-flat direction Σ ≃ Σ where:

Σ2 − Σ
2

=
1

4g2
Σ

(

m2

Σ
−m2

Σ

)

. (12)

Thus, just as in the case without tadpoles, the mass corrections to the MSSM fields
are not dangerous, though perhaps observable [12].

It is clear from our analysis why it was necessary to forbid S3 terms from the
superpotential (such a term is automatically forbidden if S carries zero R-charge).
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Generically, these terms disrupt minimization of the potential since S can take on
a vev itself to cancel off the large FS term in V . While this may provide a natural
way of giving intermediate scale masses to vector-like matter, it does not give a µ-
term. (The situation is again somewhat different in the case of gauge-mediated SUSY
breaking [11].)

The Lagrangian of Eq. (7) receives corrections after SUSY-breaking from the one-
loop effective potential. The dominant contribution is an S4 term:

∆V =
1

64π2
STrM4 log(M2/Q2) ≃ λ4

Σ

64π2

(

m3/2

MP

)

S4 + · · · . (13)

However, this correction is too small to affect the minimization of the potential or
our results. As well, if mixing in K between the hidden and visible sectors is allowed,
terms of the form K = Z†ZS/MP + h.c. generically arise. After carrying out the d4θ
integral, these echo the form of the tadpole-induced contributions, only with O(1)
coefficients. Thus their entire effect can be absorbed into redefining β, γ ∼ O(1),
which leaves our central result unchanged.

Conclusions. In this letter, we have demonstrated a new mechanism for obtaining
a weak-scale µ-term in the MSSM by adding a total singlet in conjunction with a
new gauge interaction and its accompanying Higgs sector. We have used the tadpoles
endemic to models with singlets to drive the breaking of the new symmetry at the
intermediate scale

√
mWMP , to remove all vestiges of the singlet from the low-energy

theory, and to render all would-be axions harmless. In this way we have pointed out
a natural way to tie the introduction of intermediate-scale operators, such as those
that might give mass to a right-handed neutrino, to the solution of the weak-scale
µ-problem. The model itself is highly generic and can naturally explain the hierarchy
between the weak and intermediate scales in terms of the ratio of two couplings which
is O(1). It seems straightforward to generalize our discussion to more complete models
of physics at intermediate scales [13].
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