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Abstract. The idea that the universe might be open is an old one, and the
possibility of having an open universe arise form inflation is not new either.
However, a concrete realization of a consistent single-bubble open inflation
model is known only recently. There has been great progress in the last two
years in the development of models of inflation consistent with observations
in such an open universe. In this overview I will describe the basic features
and the phenomenological consequences of such models, making emphasis
in the predictions of the CMB temperature anisotropies that differ from
ordinary inflation.

1. Introduction

The idea that the universe might be open is an old one, see e.g. [1]. Early
attempts to accomodate standard inflation in an open universe [2] failed
to realize that in usual inflation homogeneity implies flatness [3], due to
the Grishchuck-Zel’dovich effect [4]. The possibility of having a truly open
universe arise form inflation is not new either, see [5], via the nucleation
of a single bubble in de Sitter space. However, a concrete realization of a
consistent model is known only recently, the single-bubble open inflation
model [6, 7]. Soon afterwards there was great progress in determining the
precise primordial spectra of perturbations [8-19], most of it based on quan-
tum field theory in spatially open spaces. Simultaneously there has been a
large effort in model building [7, 20, 21, 22] and constraining the existing
models from observations of the temperature power spectrum of cosmic
microwave background (CMB) anisotropies [21-24].

In this review talk I will concentrate in model building and constraints
from CMB anisotropies. We will describe the nature of the various pri-
mordial perturbations and give the corresponding spectra, without deriv-
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ing them from quantum field theoretical arguments. The interested reader
should find this in the literature. We will then compute the corresponding
angular power spectra of temperature anisotropies in the CMB. Further-
more, we will give a review of the different single- and mutiple-field open
inflation models and constrain their parameters from present observations
of the CMB anisotropies. Sometimes this is enough to rule out some of
the models. Finally, we will describe how future observations of the CMB
temperature and polarization anisotropies might be able to decide among
different inflationary models, both flat and open inflation ones.

2. Single-bubble open inflation

The simplest inflationary model consistent with an open universe arises
from the nucleation of a bubble in de Sitter space [5], inside which a second
stage of inflation drives the spatial curvature to almost flatness. The small
deviation from flatness at the end of inflation will be amplified by the
subsequent expansion during the radiation and matter eras. The present
value of the density parameter is determined from |1−Ω0| ∼ exp(−2Ne)×
1056, where Ne ≤ 65 is the required number of e-folds during inflation
(inside the bubble), in order to give an open universe today. A few percent
change in Ne could lead to an almost flat universe or a wide open one.

This simple picture could be realized in the context of a single-field
scalar potential [6] or in multiple-field potentials [7, 20, 21, 22], as long
as there exists a false vacuum during which the universe becomes homo-
geneous and then one of the fields tunnels to the true vacuum, creating
a single isolated bubble. The space-time inside this bubble is that of an
open universe [25, 5]. Although single-field models can in principle be con-
structed, they require a certain amount of fine tuning in order to avoid
tunneling via the Hawking-Moss instanton [7]. The problem is that one
needs a large mass for successful tunneling and a small mass for successful
slow-roll. For that reason, it seems more natural to consider multiple-field
models of open inflation [7, 20, 21, 22], where one field does the tunneling,
another drives slow-roll inflation inside the bubble, and yet another may
end inflation, like in the open hybrid model [22]. Such models account for
the large scale homogeneity observed by COBE [26] and are also consistent
with recent determinations of a low density parameter [27, 28, 29].

The quantum tunneling can be described with the use of the bounce
action formalism developed by Coleman-DeLuccia [25] and Parke [30] in
the thin wall approximation, valid when the width of the bubble wall is
much smaller than the radius of curvature of the bubble. This only requires
that the barrier between the false and the true vacuum be sufficiently high,
U0 � ∆U = UF − UT . In this case we can write the radius of the bubble
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in terms of dimensionless parameters a and b [24],

R0HT = [1 + (a+ b)2]−1/2 ≡ [1 + ∆2]−1/2 , (1)

a ≡
∆U

3S1HT
, b ≡

κ2S1

4HT
, (2)

where κ2 ≡ 8πG and S1 is the surface tension of the bubble wall, which
can be computed as S1 =

∫ σT
σF

dσ [2(U(σ)−UF )]1/2. Here σ is the tunneling

field. Since S1 ∼ U0/M ∼ M(∆σ)2 for a mass M in the false vacuum, the
parameter a ' (∆U/U0)M/HT , which characterizes the degeneracy of the
vacua, can be made arbitrarily small by tuning UT ' UF . On the other
hand, the parameter b ' (∆σ/MPl)

2M/HT , which characterizes the width
of the barrier, is not a tunable parameter and could be very large or very
small depending on the model.

In order to prevent collisions with other nucleated bubbles (at least in
our past light cone) it is necessary that the probability of tunneling be
sufficiently suppressed. For an open universe of Ω0 > 0.2, this is satisfied
as long as the bounce action SB > 6, see Ref. [5]. This imposes only a very
mild constraint on the tunneling parameters a and b, as long as the energy
density in the true vacuum satisfies UT �M4

Pl, see Ref. [24].

3. Primordial perturbation spectra

There are essentially two kinds of primordial perturbations in open infla-
tion, quantum mechanical and classical or semiclassical. In the first category
we have the usual scalar and tensor metric perturbations [9, 10, 16], mod-
ified in the context of an open universe due to bubble nucleation, as well
as supercurvature [8, 23, 10] and bubble wall perturbations [12, 13, 14, 17],
which are specific to open inflation. The other category, which appears in
the context of two-field open inflation [7], contains classical and semiclassi-
cal effects due to tunneling to different values of the inflaton field [18, 19].
All these perturbations create anisotropies in the CMB which distort the
angular power spectrum on large scales (low multipoles). On smaller scales,
at about one degree separation (multipoles l ∼ 200), the (geometrical) ef-
fect of an open universe is to shift the acoustic peaks of the temperature
power spectrum to higher multipoles [31], but the primordial spectrum
there is essentially that of a flat universe.

3.1. Scalar and tensor perturbations.

Soon after the proposal of a single-bubble open inflation model [6], the
primordial spectrum of scalar perturbations was computed and found to
be identical to the flat case except for a prefactor that depends on the
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Figure 1. The left panel shows the spectral funtion f(q) in (4) as a function of q for
a = 0 and b = 0.05, 0.1, 0.2, 0.3, 0.5, 1.0 (continuous lines, from top to bottom), and
b = 2, 5, 10, 20, 50, 200 (dotted lines, from bottom to top). It is clear that f(q) is linear
in q at q = 0. The dashed line corresponds to f(q) = tanh πq/2. The right panel shows
the sharp increase in the slope f ′(q = 0) as we increase or decrease b away from one
(continuous line) and as we increase a (dashed line). The minimum slope corresponds to
b ' 1, a = 0, i.e. for almost degenerate vacua.

bubble geometry [10],

PR(q) = A2
S f(q) , A2

S =
κ2

2ε

(HT

2π

)2
. (3)

The function f(q) depends on the tunneling parameters a and b, see Eq. (2),

f(q) = coth πq −
z2 cos q̃ + 2qz sin q̃

(4q2 + z2) sinhπq
, (4)

where q̃ = q ln((1 + x)/(1 − x)) and

x = (1−R2
0H

2
T )1/2 = ∆ (1 + ∆2)−1/2 , (5)

z = (1−R2
0H

2
T )1/2 − (1−R2

0H
2
F )1/2 = 2b (1 + ∆2)−1/2 , (6)

see Eq. (1). The function f(q) is linear at small q, and approaches a constant
value f(q) = 1 at q ≥ 2, see Fig. 1. Here q is the effective momentum in
an open universe, determined from q2 = k2 − 1. For scalar perturbations,
the effect of f(q) on the temperature power spectrum is almost negligible,
and therefore the tilt of the scalar spectrum is approximately given by the
same formula as in flat space [32],

nS − 1 ≡
d lnPR(k)

d ln k
' −6ε+ 2η , (7)

in the slow-roll approximation,

ε =
1

2κ2

(V ′(φ)

V (φ)

)2
� 1 , η =

1

κ2

(V ′′(φ)

V (φ)

)
� 1 . (8)
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On the other hand, the primordial spectrum of tensor or gravitational
waves’ anisotropies took much longer to evaluate. There was for some years
the open problem that the observed power spectrum presented an infrared
divergence at q = 0 in an open universe [33]. It was clear that a physical
regulator was necessary. But this is precisely the role played by the bubble
wall; recent computations have shown that in the presence of the bubble
the tensor primordial spectrum is given by [16]

Pg(q) = A2
T f(q) , A2

T = 8κ2
(HT

2π

)2
. (9)

It is the shape of the function f(q), see (4) and Fig. 1, which gives a
finite physical observable, as I will explain in the following section. Here
q is the effective momentum for tensor modes, defined by q2 = k2 − 3.
While for scalar modes the presence of this function f(q) in the primordial
spectrum becomes irrelevant for observations, for tensor modes the slope
of this function at q = 0 is an important ingredient in the final value of the
predicted power spectrum at low multipoles [24].

3.2. Supercurvature and bubble wall modes.

Apart from the usual continuum (q2 ≥ 0) of scalar and tensor modes,
generalized to an open universe, in single-bubble inflationary models there
is a new type of quantum fluctuations which are purely geometrical, due
to the boundary conditions associated with the presence of the bubble wall
in open de Sitter. These modes are discrete modes, that appear whenever
the mass of the scalar field in the false vacuum is smaller than the rate of
expansion, m2 < 2H2.

The supercurvature mode was first postulated in Ref. [8] from purely
mathematical arguments related to homogeneous random fields. Only later
did concrete models of single-bubble open inflation [9] prove its existence in
the primordial spectrum of scalar fluctuations. Such a mode corresponds to
an infinite wavelength (k2 = 0, q2 = −1) mode, and thus received its name
of supercurvature mode [the curvature scale corresponds to the eigenmode
with eigenvalue k2 = 1, q2 = 0]. These authors computed its amplitude
as [10, 23]

A2
SC =

κ2

2ε

(HF

2π

)2
= A2

S

H2
F

H2
T

, (10)

where A2
S is given by Eq. (3).

However, this is not the only discrete supercurvature mode possible in
single-bubble models. As realized in Ref. [12], there are also scalar fluctu-
ations of the bubble wall with k2 = −3, q2 = −4, which could in principle
have its imprint in the CMB insotropies. Such modes were also discussed
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in Ref. [11] and their amplitude computed in Ref. [13, 14], based on field
theoretical arguments,

A2
W =

3κ2

2z

(HT

2π

)2
= A2

S

3ε

z
, (11)

where z is given by Eq. (6) and A2
S is the scalar amplitude (3). Such modes

contribute as transverse traceless curvature perturbations [13, 12], which
nevertheless behaves as a homogeneous random field [15]. It was later re-
alized [17] that the bubble wall fluctuation mode is actually part of the
tensor primordial spectrum, once gravitational backreaction is included.

3.3. Semiclassical perturbations and quasi-open inflation.

All single-field models of open inflation predict the above primordial spec-
tra of anisotropies: a continuum of scalar and tensor modes and the discrete
supercurvature and bubble wall modes. However, as mentioned in the intro-
duction, it is difficult to construct such models without a certain amount of
fine tuning [7], and thus multiple-field models were considered [7, 20, 21, 22].
However, a large class of two-field models do not lead to infinite open uni-
verses, as it was previously thought, but to an ensemble of very large but
finite inflating ‘islands’. The reason is that the quantum tunneling respon-
sible for the nucleation of the bubble does not occur simultaneously along
both field directions and equal-time hypersurfaces in the open universe are
not synchronized with equal-density or fixed-field hypersurfaces [7, 18]. The
most probable tunneling trajectory corresponds to a value of the inflaton
field at the bottom of its potential; large values, necessary for the second
period of inflation inside the bubble, only arise as localized fluctuations.
The interior of each nucleated bubble will contain an infinite number of
such inflating regions of comoving size of order γ−1, where γ depends on
the parameters of the model, see below. Each one of these islands will be
a quasi-open universe. We may happen to live in one of those patches of
comoving size d ≤ γ−1, where the universe appears to be open. This new
effect, semiclassical in origin, was recently discussed in Ref. [19] and the
amplitude of the associated fluctuation in the CMB was computed as

AC =
3

2

H2
T

m2
T

γ , γ =
2

3

m2
F

H2
F

+
1

8
H2
FR

4
0(m2

T −m
2
F ) , (12)

where R0 is the radius of the bubble at tunneling (1), and the eigenvalue
γ was computed in the thin-wall approximation [19]. As we shall see in
the next section, many of the present models are quasi-open. This does
not mean that they are not good cosmological models. If the co-moving
size of the inflating islands is sufficiently large, then the resulting classical
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Figure 2. Windows functions for the scalar (left panel) and tensor (right panel)
CMB power spectra l(l + 1)Cl/A

2, see Eqs. (13) and (14), for the first few multipoles,
l = 2, 4, 6, 8, 10.

anisotropy may be unobservable. This will prove rather constraining for the
models.

4. CMB temperature anisotropies

Quantum fluctuations of the inflaton field φ during inflation produce long-
wavelength scalar curvature perturbations and tensor (gravitational waves)
perturbations, which may leave their signature in the CMB temperature
anisotropies, when they reenter the horizon. Temperature anisotropies are
usually given in terms of the two-point correlation function or power spec-
trum, Cl, defined by an expansion in multipole number l. We are mainly in-
terested in the large scale (low multipole number) temperature anisotropies
since it is there where gravitational waves and the discrete modes could be-
come important. After l ∼ 30, the tensor power spectrum drops down [34,
35] while the density perturbation spectrum increases towards the first
acoustic peak, see Ref. [36]. On these large scales the dominant effect is
gravitational redshift via the Sachs-Wolfe effect [37]. The scalar and tensor
components of the temperature power spectrum can be written as

l(l + 1)CSl =

∫ ∞
0

dq A2
S f(q)W 2

ql , (13)

l(l + 1)CTl =

∫ ∞
0

dq A2
T f(q) I2

ql , (14)

where Wql and Iql are the corresponding window functions, see Ref. [24],
which depend on the particular value of Ω0. We have plotted these functions
in Fig. 2 for a typical value, Ω0 = 0.4, and the first few multipoles. Note
that the scalar window functions grow as a large power of q at the origin,
so that the scalar power spectrum is rather insensitive to the ‘hump’ in the
function f(q), as mentioned above. On the other hand, the tensor window
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Figure 3. The ratio of tensor to scalar contribution to the CMB power spectrum CTl /C
S
l ,

normalized to the corresponding amplitudes, for the quadrupole and tenth multipole, for
a = 0, as a function of Ω0 (for b = 0.001, 0.01, 0.1, 1, 10, 100, 1000 from top to bottom)
on the left panels, and as a function of the tunneling parameter b (for Ω0 = 0.3− 1.0) on
the right panels.

functions are singular at q = 0, and only the linear dependence of f(q) at
the origin prevents the existence of the infrared divergence found in [33].
Furthermore, since the functions qI2

ql are not negligible near the origin, the
tensor power spectrum turns out to be very sensitive to the ‘hump’ in the
spectral function f(q), see Fig. 1.

The ratio of tensor to scalar contribution to the temperature power
spectrum is a fundamental observable in standard inflation, which depends
on the slow-roll parameters (8) and provides a consistency check of the
theory [32]. In single-bubble open inflation such a ratio depends not only
on the slow-roll parameters but also on the tunneling parameters (2) and
on the value of Ω0, see Ref. [24],

Rl =
CTl
CSl
' fl(Ω0, a, b) [1 − 1.3(nS − 1)] 16 ε . (15)

We have plotted this ratio in Fig. 3 for the quadrupole and tenth multipole
of the power spectrum, as a function of Ω0 and the tunneling parameter b.

In the ideal case in which the gravitational wave perturbation can be
disentangled from the scalar component in future precise observations of
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Figure 4. CMB power spectrum l(l+ 1)Cl/A
2, normalized to the corresponding ampli-

tude, for the supercurvature, bubble wall and semiclassical fluctuations, as a function of
Ω0, for the first few multipoles l = 2, 3, ... Note the dip in the supercurvature and semi-
classical power spectra at different values of Ω0 for different multipoles, due to accidental
cancellations.

the CMB power spectrum [38-42], one might be able to test this relation
for a given value of Ω0. This would then constitute a check on the tunneling
parameters a and b. Such prospects are however very bleak from measure-
ments of the temperature power spectrum alone, with the next generation
of satellites, see e.g. [43, 39]. At most one can expect to impose constraints
on the parameters of the model from the absence of a significant gravita-
tional wave contribution to the CMB. However, taking into account also
the polarization power spectrum, together with the temperature data, one
expects to do much better, see Refs. [44, 41] for the case of flat models.
Hopefully similar conclusions can be reached in the context of open mod-
els, and CMB observations may be able to check the generalized consistency
relation (15) with some accuracy.

The supercurvature, bubble wall and semiclassical modes also contribute
to the temperature power spectrum. Their contribution is plotted in Fig. 4,
normalized to the corresponding amplitude, see Eqs. (10), (11) and (12), as
a function of Ω0 for the first few multipoles. Note the dip in the spectrum at
certain values of Ω0 due to accidental cancellations [21, 22, 24]. This does
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not affect the bounds since higher multipoles will fill in those gaps. The
relative importance of the different components of the power spectrum is
crucial in order to derive bounds on the model parameters. We have plotted
in Fig. 5 the quadrupole and tenth multipole of the CMB power spectrum
for each mode, normalized to their corresponding amplitudes. Assuming
that the observed quadrupole only comes from the scalar component, one
can deduce the following constraints, see Ref. [24, 19],

HT =
√
πε 5× 10−5MPl , (16)

HF < 10HT , (17)

ε < z/3 , (18)

γ <
m2
T

H2
T

3× 10−4 . (19)

The third expression accounts for both the tensor and the bubble wall
constraints, since the bubble wall fluctuation is actually part of the tensor
spectrum [17] and gives the largest contribution at low multipoles. The con-
straints coming from higher multipoles are significantly weaker, see Fig. 5.
One could argue that the quadrupole is going to be hidden in the cosmic
variance [42] and thus only the constraints at higher multipoles, say l = 10,
should be imposed. However, polarization power spectra may one day be
used to get around cosmic variance [45] and we may be able to extract
information about the scalar and tensor components at low multipoles. We
will therefore take the conservative attitude that consistent models of open
inflation should satisfy the bounds coming from the quadrupole, (16)-(19).
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5. Model building

In this section we will review the different single-bubble open inflation mod-
els present in the literature, and use the CMB observations to rule out some
of them and severely constrain others. We will see that open inflation mod-
els could be as predictive as ordinary inflation, in the sense that they also
can be ruled out if they are in conflict with observations.

As mentioned in the introduction, single-field models of open infla-
tion [6] require some finetuning in order to have a large mass for successfull
tunneling and a small mass for slow-roll inside the bubble [7]. Even if such
a model can be constructed from particle physics, it still needs to satisfy
the constraints coming from observations of the CMB anisotropies. These
models lack both supercurvature and semiclassical anisotropies, by con-
struction. However, they generically produce too large tensor modes at low
multipoles, where it is dominated by the bubble wall fluctuations. The rea-
son is that in these models the tunneling parameter b that characterizes
the width of the tunneling barrier (2) is extremely small and it is very dif-
ficult to satisfy the bound (18) due to the bubble wall fluctuations, unless
one does extreme finetuning of the parameters. Let us analyze a typical
example, which is a variant of the new inflation type [6]. Tunneling oc-
curs from a symmetric phase at σ = 0 to a value σb from which the field
slowly rolls down the potential towards the symmetry breaking phase at
σ = v ∼ MGUT ∼ 1015 GeV. The fact that we have a finite number of e-
folds, N = 60, requires σb ∼ v exp(−αN)� v, where α ' 2m2

T /3H
2
T . The

rate of expansion in the false vacuum is of order that in the true vacuum,
HT = (8πV (0)/3M2

Pl)
1/2 ∼ 3× 10−6MPl, which implies ε ∼ 10−3. Taking a

typical mass in the false vacuum to be M ∼MGUT, we find

bsingle '
( σb
MPl

)2 M

HT
∼ 5× 10−9 , (20)

which gives z ∼ 2b ∼ 10−8, an extremely small number that makes it
impossible to satisfy the bubble wall constraint, ε < z/3, see Eq. (18).

In other words, the simplest single-field models of open inflation [6]
are not only fine tuned but actually produce too large gravitational wave
anisotropies in the CMB on large scales to be consistent with observations.
Perhaps more complicated models could still be fine tuned to agree with
observations.

5.1. Coupled and uncoupled two-field models.

In this section we shall consider a class of two-field models [7] with a po-
tential of the form

V (σ, φ) = V0(σ) +
1

2
m2φ2 +

1

2
g2σ2φ2. (21)
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Here V0 is a non-degenerate double well potential, with a false vacuum at
σ = 0 and a true vacuum at σ = v. When σ is in the false vacuum, V0

dominates the energy density and we have an initial de Sitter phase with
expansion rate given by H2

F ≈ 8πV0(0)/3M2
Pl. Once a bubble of true vac-

uum σ = v forms, the energy density of the slow-roll field φ may drive a
second period of inflation. However, as pointed out in Ref. [7], the simplest
two-field model of open inflation, given by (21) with g = 0 and m 6= 0,
is actually a quasi-open one because equal-time hypersurfaces, defined by
the σ field after nucleation, are not synchronized with equal-density hy-
persurfaces, determined by the slow-roll of the φ field during inflation in-
side the bubble. In order to suppress this effect it was argued [7] that a
large rate of expansion in the false vacuum compared to the true vacuum,
HF � HT , could prevent the φ field from rolling outside the bubble and
distorting the equal-density hypersurfaces inside the bubble. However, this
would induce [23] a large supercurvature mode anisotropy in the CMB,
which would be incompatible with observations. A careful analysis [18, 19]
shows that indeed the effect is important at low multipoles. In this model,
mF = mT = m, the supercurvature eigenvalue γ = 2m2

F /3H
2
F , and in or-

der to satisfy (19) it requires HF > 50HT , which is incompatible with the
supercurvature constraint, HF < 10HT . Therefore, this model seems to be
ruled out.

In order to construct a truly open model, Linde and Mezhlumian sug-
gested taking m = 0 and g 6= 0, i.e. the “coupled” two-field model [7]. In
this way, the mass of the slow-roll field vanishes in the false vacuum, and it
would appear that the problem of classical evolution outside the bubble is
circumvented. However, as we showed in Ref. [19], this is not exactly so, and
actually the whole class of models (21) leads to quasi-open universes, which
are constrained by CMB observations. Let us work out those constraints in
detail. We will assume a tunneling potential like [7]

V0(σ) = V0 +
1

2
M2σ2 − αMσ3 +

1

4
λσ4 . (22)

For α =
√
λ we have σc = 2M/

√
λ and φc = M/g. The field can tunnel for

φ < φc. The constant V0 ' 2.77M4/λ has been added to ensure that the
absolute minimum, at φ = 0 and σ0 ' 1.3σc, has vanishing cosmological
constant. After tunneling, the field φ moves along an effective potential
V (φ) = m2φ2/2, where the effective mass varies only slightly from tunneling
to the end of inflation, m ' 1.3 gσc. This potential drives a period of chaotic
inflation with slow-roll parameters ε = η = 1/2Ne = 1/120. Substituting
into (16) we findHT = 6.32m = 8×10−6MPl, and therefore gσc = 10−6MPl.
The rate of expansion in the false vacuum is determined from H2

F /H
2
T =
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Figure 6. The complete angular power spectrum of temperature anisotropies for the
coupled two-field model (left panel) for Ω0 = 0.4 and (a = 10, b = 0.2), and the open
hybrid model (right panel) for Ω0 = 0.4 and (a = 6, b = 0.01). We show also the individ-
ual contributions from the scalar, tensor, supercurvature, semiclassical and bubble wall
modes, as well as the expected cosmic variance (dashed lines) for 1/3 of the sky coverage
from the future CMB satellites. Note that the bubble wall mode is responsible for the
large growth of the tensor contribution at low multipoles. Only the scalar modes remain
beyond about l = 50, where they grow towards the acoustic peaks.

1 + 4ab, where b = (4π
√

2/3λ)M3/HTM
2
Pl, which gives

M =
(1 + 4ab)1/2

4b
HF ≥

√
2HF , (23)

the last condition arising from preventing the formation of the bubble
through the Hawking-Moss instanton, see Ref. [7]. Furthermore, taking
mF = 0 in the eigenvalue γ gives (12)

AC =
3

16

H2
F

H2
T

(R0HT )4 =
3(1 + 4ab)

16[1 + (a+ b)2]2
< 4× 10−4 . (24)

From the supercurvature mode condition (17), (1 + 4ab)1/2 < 10, together
with (23) we find the constraint b < 1. From Eq. (24), we realize that hav-
ing nearly degenerate vacua, a � 1, is not compatible with observations.
Satisfying (24) would require b � 1 and a � 1. However, for these val-
ues of the parameters we expect large tensor contributions, see Fig. 3. So
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there should be a compromise between the different mode contributions.
For details, see Ref. [46].

We have shown in the left panel of Fig. 6a the complete temperature
power spectrum for a coupled two-field model having a = 10 and b = 0.2, for
Ω0 = 0.4, which is consistent with observations. It has contributions from
all the modes: scalar, tensor, supercurvature, semiclassical and bubble wall.
Note however that the bubble wall mode is in fact included in the sharp
growth of the tensor contribution at small multipole number, as emphasized
in Ref. [17] and shown explicitly in Fig. 6a, and should not be counted
twice. Although it is in principle possible to construct a model consistent
with observations, the parameters of the model are not very natural. In
this simple model (22) one would expect that quantum tunneling would
occur soon after the critical point, φ = φc, where a � 1 and b ∼ 1. In
that case, instead of an infinite open universe we would actually live in a
finite quasi-open one [19]. In order to suppress the associated semiclassical
anisotropy we had to choose other values of the parameters. As can be seen
from Fig. 6a, there exists a range of parameters for which all contributions
to the CMB anisotropies are compatible with observations.

5.2. Supernatural open inflation.

An attractive scenario for open inflation is the model of a complex scalar
field with a slightly tilted mexican hat potential, where the radial compo-
nent of the field does the tunneling and the pseudo-Goldstone mode does
the slow-roll. This model was called “supernatural” inflation in Ref. [7],
because the hierarchy between tunneling and slow-roll mass scales is pro-
tected by the approximate global U(1) symmetry. Expanding the field in
the form Φ = (σ/

√
2) exp(iφ/v), where v is the expectation value of σ in

the broken phase, we consider a potential of the form V = V0(σ)+V1(σ, φ),
where V0 is U(1) invariant and V1 is a small perturbation that breaks this
invariance. It is assumed that V has a local minimum at Φ = 0 which makes
the symmetric phase metastable. We shall consider a tilt in the potential
of the form V1 = Λ4(σ)G(φ) where Λ is a slowly varying function of σ
which vanishes at σ = 0. For definiteness we can take G = (1 − cosφ/v).
The idea is that σ tunnels from the symmetric phase σ = 0 to the broken
phase σ0 = v, landing at a certain value of φ away from the minimum
of the tilted bottom. Once in the broken phase, the potential V1 cannot
be neglected, and the field φ slowly rolls down to its minimum, driving a
second period of inflation inside the bubble. An attractive feature of this
model is that depending on the value of φ on which we end after tunnel-
ing, the number of e-foldings of inflation will be different. Hence it appears
that in principle we can get a different value of the density parameter in
each nucleated bubble. As we shall see, however, the picture is somewhat
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different. For V1(φ) = Λ4(1 − cosφ/v) we find the slow-roll parameters
ε = (1/2κ2v2) cot2 φ/2v � 1 and η = ε− 1/2κ2v2. From the constraint on
the spectral tilt, nS − 1 = −4ε − 1/κ2v2 > −0.2, we find that necessarily
κ2v2 > 5, which means that the vev of σ is v ' MPl. We are again in a
situation similar to the single-field models, where we need some extreme
fine tuning to prevent the Hawking-Moss instanton from forming the bub-
ble, see Ref. [7]. Indeed, for a generic tunneling potential like (22) we have
V0 'M2σ2

0/2 and thus HF ' 2M σ0/MPl ≥ M . Under this conditions the
tunneling does not occur along the Coleman-DeLuccia instanton, which is
necessary for the formation of an open universe inside the bubble. The only
way to prevent this is by artificially bending the potential so that it has a
large mass at the false vacuum. In Ref. [7] it was proposed a way to lower
the minimum at the center of the Mexican hat via radiative corrections
from a coupling of the U(1) field Φ to another scalar χ. For certain values
of the coupling constant, g4 = 32πλ, it is possible to make the two minima,
at σ = 0 and σ0, exactly degenerate. The tunneling potential is then

V0(σ) =
λ

2
(σ2

0 − σ
2)σ2 + λσ4 ln

σ

σ0
, (25)

where σ0 = M/
√
λ ' MPl. The associated tunneling parameters become

a = 0 and b = (σ0/MPl)
2M/HT ' M/HT , which can be large. As empha-

sized in Ref. [19] there is a supercurvature mode in this model, associated
with the massless Goldstone mode, which induces both supercurvature and
semiclassical perturbations. Because of the different normalization of the
supercurvature mode in supernatural inflation, HF → 2R−1

0 , the supercur-
vature constraint (17) should read in this case

R0HT > 0.2 , (26)

which is not trivially satisfied. On the other hand, the eigenvalue γ =
R2

0m
2
T /2 for the Goldstone mode [19] induces a large semiclassical pertur-

bation (19) unless
R0HT < 0.024 . (27)

It is clear that these two constraints cannot be accommodated simultane-
ously, and thus the model is incompatible with observations. One still has
to make sure [46] that a slight modification of the potential does not give
a certain range of parameters in which the model works.

5.3. Induced gravity open inflation.

This model was proposed in Ref. [20] as a way of avoiding the problems of
classical motion outside the bubble. In the false vacuum the inflaton field is
trapped due to its non-minimal coupling to gravity, with coupling ξ. When
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the tunneling occurs it is left free to slide down its symmetry breaking
potential V (ϕ) = λ(ϕ2 − ν2)2/8. The expectation value of the inflaton at
the global minimum gives the Planck mass today, M2

Pl = 8πξν2. The model
is parametrized by α = 8UF /λν

4, which determines the value of the stable
fixed point in the false vacuum, ϕ2

st = ν2(1 + α), as well as the difference
in rates of expansion in the false and true vacua, H2

F = H2
T (1 + α)/α, and

the slow-roll parameters, ε = 8ξ/(1 + 6ξ)α2, η = 8ξ (1− α)/(1 + 6ξ)α2, see
Ref. [21].

We will assume a tunneling potential for the σ field of the type

U(σ) =
1

4
λ′σ2(σ − σ0)2 + µU0

[
1−

( σ
σ0

)4]
, (28)

where σ0 = M
√

2/λ, U0 = M4/4λ′ and µ � 1 for the thin wall approx-
imation to be valid. This form of the potential gives a tunneling param-
eter b = (2π/3λ)M3/HTM

2
Pl, which determines the relation between the

mass of the σ field in the false vacuum and the rate of expansion there,
M = HF (1 + 1/α)1/2/µb. Thanks to µ � 1, we can have M � HF for
values of b ≥ 1, which induces gravitational wave anisotropies that are well
under control.

Furthermore, the induced gravity model seems to be truly open, since
the inflaton field ϕ is static in the false vacuum and thus there is no su-
percurvature mode associated with classical motion outside the bubble, see
Ref. [19]. Therefore the constrain (19) does not apply, and there exists for
this model a range of parameters for which all contributions to the CMB
anisotropies are compatible with observations, see Ref. [24]. However, the
instanton may not take you to ϕst in the true vacuum, but to a different
value, closer to the minimum of the potential, ϕ = v. In that case, the
number of e-folds is smaller than expected and so is the value of Ω0. Such
effects should be taken into account for the determination of the model
parameters, see Ref. [46].

5.4. Open hybrid inflation.

This model was proposed recently [22] in an attempt to produce a sig-
nificantly tilted scalar spectrum in the context of open inflation to be in
agreement with large scale structure [47]. It is based on the hybrid inflation
scenario [48, 49], which has recently received some attention from the point
of view of particle physics [50-54], together with a tunneling field which sets
the initial conditions inside the bubble.

In this model there are three fields: the tunneling field σ, the inflaton
field φ and the triggering field ψ. The tunneling occurs like in the coupled
model of section 5.1 with potential

U(σ, φ) = V0 +
λ

4
σ2(σ − σ0)2 +

1

2
g2(φ2 − φ2

c)σ
2 + U0 , (29)
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where σ0 = 2M/
√
λ, φc = M/g, V0 ' 2.77M4/λ to ensure that at

the global minimum we have vanishing cosmological constant, and U0 is
the vaccum energy density associated with the triggering field. We satisfy
V0 � U0. If the σ field tunnels when φ = 3φc/4, then ∆U = UF − UT '
V0/2 ' m2φ2

c/4. After that the inflaton field will slow-roll down the effec-
tive potential U = U0 + m2φ2/2 ' U0 driving hybrid inflation, until the
coupling to ψ triggers its end. The model is parametrized by α = m2/H2,
see Refs. [22, 24, 46], in terms of which the spectral tilts can be written as
nS−1 = 2α/3−2ε and nT = −2ε. At tunneling we can write V0 ' m2φ2

c/2 =
8m2φ2

T /9, so that the slow-roll parameter ε = (α/3)9V0/16UT = 3αab/2,
where 4ab = ∆U/UT ' V0/2UT , see (2), and thus

nS = 1 +
2α

3

(
1−

9ab

2

)
. (30)

In order for open hybrid to have a large tilt we require both a large α and
a small value of ab. As we will show, this is not going to be possible due to
the set of conditions (16-19) from the CMB.

For that purpose, we should compute the tunneling parameter b =
(4π
√

2/3λ)M3/HTM
2
Pl ' (V0/4UT )HT /M , which requires M = 2aHT >

2HT , and thus a > 1. Since both HT < M and V0 � UT , we expect
b � 1, which will induce large tensor anisotropies at low multipoles. This
is a generic feature of open hybrid models. The tensor amplitude is related
to the scalar one by A2

T = 16εA2
S = 8A2

S (nS − 1) 9ab/(2− 9ab). In order to
satisfy the CMB constraints we require

H2
F/H

2
T = 1 + 4ab < 100 , (31)

ε =
3αab

2
<

2b

3[1 + (a+ b)2]1/2
, (32)

AC =
3(1 + 4ab)

16[1 + (a+ b)2]2
< 4× 10−4 , (33)

M =
2a

(1 + 4ab)1/2
HF > 2HF . (34)

Since a > 1 requires b < V0/8UT � 1, we can use the third constraint to
get the bound a > 5, which then imposes (through the second constraint)
that α < 4/9a(1 + a2)1/2 ' 1/2a2 < 1/50. This means that the scalar tilt
(30) cannot be significantly larger than 1, as was the aim of Ref. [22].

We have plotted in Fig. 6b the complete angular power spectrum of
temperature anisotropies for the open hybrid model, in the case Ω0 = 0.4
and (a = 6, b = 0.01). We have also included the cosmic variance uncer-
tainty [40]

σl =
[ 2

(2l + 1)fsky

]1/2
Cl , (35)
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where we have chosen fsky = 1/3 as the typical fraction of the sky covered
by the future satellites MAP [38] and PLANCK [39]. In order to prevent the
tensor contribution from exceeding the cosmic variance we had to reduce
the scalar spectral tilt to n = 1.006, which is essentially scale invariant
and may not be enough to allow consistency with large scale structure [47].
Furthermore, as we decrease in Ω0 it will be necessary to have scalar spectra
which are closer and closer to scale invariance, in order to reduce the tensor
contribution. In any case, there exists for this model a range of parameters
for which all contributions to the CMB anisotropies, see e.g. Fig. 6b, are
compatible with observations.

6. Conclusions

Single-bubble open inflation is an ingenious way of reconciling an infinite
open universe with the inflationary paradigm. In this scenario, a symmetric
bubble nucleates in de Sitter space and its interior undergoes a second stage
of slow-roll inflation to almost flatness. In the near future, observations of
the microwave background with the new generation of satellites, MAP and
Planck, will determine with better than 1% accuracy whether we live in
an open universe or not. It is therefore crucial to know whether inflation
can be made compatible with such a universe. Single-bubble open infla-
tion models provide a natural scenario for understanding the large scale
homogeneity and isotropy. Furthermore, these inflationary models generi-
cally predict a nearly scale invariant spectrum of density and gravitational
wave perturbations, which could be responsible for the observed CMB tem-
perature anisotropies. Future observations could then determine whether
these models are compatible with the observed features of the CMB power
spectrum. For that purpose it is necessary to know the predicted power
spectrum with great accuracy. Open models have a more complicated pri-
mordial spectrum of perturbations, with extra discrete modes and possibly
large tensor anisotropies. In order to constrain those models we have to
compute the full spectrum for a large range of parameters.

In this review we have shown that the simplest single-field models of
open inflation are not only fine tuned, but actually ruled out because they
induce too large tensor anisotropies in the CMB, which is incompatible with
present observations. On the other hand, two-field models generically do not
lead to infinite open universes, as previously thought, but to an ensemble
of very large but finite inflating ‘islands’. Each one of these islands will
be a quasi-open universe. We may happen to live in one of those patches,
where the universe appears to be open. This new effect, semiclassical in
origin, was recently discussed in Ref. [19] where it was found that many of
the present models are in fact quasi-open. This does not mean that they
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are not good cosmological models. If the co-moving size of the inflating
islands is sufficiently large, then the resulting semiclassical anisotropy may
be unobservable. We have shown however that such a component imposes
very stringent constraints on the models. Most of them have a narrow range
of parameters for which they are compatible with observations.

It is perhaps worth mentioning here some alternative proposals (not
single-bubble) for the generation of an open universe in the context of
inflation. First of all, the group of Roma [55] proposed a model based on
higher order gravity that induces bubble nucleation and later percolation,
resulting in a distribution peaked at Ω0 ' 0.2. Perhaps the most striking
recent results are those of Hawking-Turok [56] and Linde [57], who claim
that an open inflationary universe could have been created directly from
the vacuum, without the intermediate de Sitter phase.
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