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Abstract

In order to study quantum aspects of σ-models related by Poisson–Lie T-duality, we

construct three- and two-dimensional models that correspond, in one of the dual faces,

to deformations of S3 and S2. Their classical canonical equivalence is demonstrated by

means of a generating functional, which we explicitly compute. We examine how they

behave under the renormalization group and show that dually related models have the

same 1-loop beta functions for the coupling and deformation parameters. We find non-

trivial fixed points in the ultraviolet, where the theories do not become asymptotically

free. This suggests that the limit of Poisson–Lie T-duality to the usual Abelian and non-

Abelian T-dualities does not exist quantum mechanically, although it does so classically.
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1 Introduction

A generalization of Abelian [1] and non-Abelian [2] target space duality (T-duality) is the

so-called Poisson–Lie T-duality [3]. Its notable features for our purposes are that it does

not rely on the existence of isometries but rather on a rigid group-theoretical structure

[3] and also that it can be explicitly formulated as a canonical transformation between

phase-space variables [4, 5], similarly to ordinary T-duality cases [6, 7].1

Up to now all considerations concerning Poisson–Lie T-duality were, almost exclu-

sively, classical. It is the main objective of the present work to go beyond that level.

The main obstacle in doing so is the (almost complete) lack of explicit examples in the

literature of σ-models related by genuine Poisson–Lie T-duality. Namely, models such

that they cannot be obtained in the context of the usual Abelian or non-Abelian T-

duality and also such that their target spaces have the same dimension. We construct

explicit examples in three and two target space dimensions; they represent a two- and a

one-parameter deformations of S3 and S2 and of their non-Abelian duals, respectively,

and they reduce to them in an appropriate limit. We also give the explicit expression

for the generating functional of the canonical transformation relating them. We then

study renormalization of σ-models with two-dimensional target spaces by treating them

as ordinary 2-dimensional field theories. Renormalizability in this context means that the

counter-terms arising at every order in perturbation theory can be absorbed into renor-

malizations of the coupling and the parameters, up to field redefinitions or, equivalently,

diffeomorphisms in the target space. We show that the 1-loop beta functions for the

coupling and the parameters of the dually related models are equivalent, which strongly

hints towards their equivalence beyond the classical level.2 Moreover, we find that their

behaviour in the ultraviolet is completely different from the corresponding one for S2 and

its non-Abelian dual. The latter models are asymptotically free whereas our models have

a non-trivial behaviour, i.e. the geometry is still curved. This suggests that Poisson–Lie

T-duality is really distinct from the usual Abelian and non-Abelian T-dualities and that

it does not correspond to a “soft breaking” of these. We have also considered renormal-

ization at the 2-loop level. We have found that the models are not renormalizable in the

strict field-theoretical sense, namely, the corresponding counter-term cannot be absorbed

into coupling, parameter and field renormalization. This presumably implies that the

Poisson–Lie T-duality transformation rules should be modified at this level.

1Poisson–Lie T-duality is by construction a canonical transformation and an abstract expression for

the generating functional was already given in [8]. Also, Poisson–Lie T-duality does not cover all known

T-duality transformations. It does not cover, in particular, non-Abelian duality transformations with

respect to vector subgroups, i.e. in WZW models [9], as well as the vector-axial T-duality [10]. For this

type of dualities a new unified framework is required, as explained in [5].
2In this respect we note that the existence of a canonical transformation relating two different σ-

models seems to be necessary for their equivalence at the quantum level. We note the case of the

Principal Chiral model and the Pseudodual Chiral model [11] whose classical solutions are in one-to-

one correspondence but which are not canonically equivalent [7]. It is well known that their quantum

behaviours are drastically different [12].
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In the rest of this section we will briefly review, by following the conventions of [4, 5],

some facts about Poisson–Lie T-duality, which are necessary for our constructions. The

form of 2-dimensional σ-model actions related by Poisson–Lie T-duality is [3]3

S =
1

2λ

∫
EabL

a
µL

b
ν∂+X

µ∂−X
ν , E = (E−1

0 + Π)−1 , (1)

and

S̃ =
1

2λ

∫
ẼabL̃aµL̃bν∂+X̃

µ∂−X̃
ν , Ẽ = (E0 + Π̃)−1 . (2)

The field variables in (1) are Xµ, µ = 1, 2, . . . , dim(G) and parametrize an element g of a

group G. We also introduce representation matrices {Ta}, with a = 1, 2, . . . , dim(G) and

the components of the left-invariant Maurer–Cartan forms Laµ. The light-cone coordinates

on the world-sheet are σ± = 1
2
(τ ± σ) and λ denotes the overall coupling constant.

Similarly, for (2) the field variables are X̃µ, where X̃µ, µ = 1, 2, . . . , dim(G), parametrize

a different group G̃, whose dimension is, however, equal to that of G. Accordingly, we

introduce a different set of representation matrices {T̃ a}, with a = 1, 2, . . . , dim(G), and

the corresponding components of the left-invariant Maurer–Cartan forms L̃aµ. In (1)

and (2), E0 is a constant dim(G)× dim(G) matrix, whereas Π and Π̃ are antisymmetric

matrices with the same dimension as E0, but they depend on the variables Xµ and X̃µ

via the corresponding group elements g and g̃. Hence, we do not require any isometry

associated with the groups G and G̃.

It is crucial [3] for Poisson–Lie T-duality that the algebras generated by {Ta} and

{T̃ a} form a pair of maximally isotropic subalgebras into which the Lie algebra of a

Lie group known as the Drinfeld double can be decomposed. This implies the existence

of non-trivial mixed commutators between the Ta’s and the T̃ a’s, of the type we will

encounter in section 2. It is important that there exist also a bilinear invariant 〈·|·〉 with

the various generators obeying

〈Ta|Tb〉 = 〈T̃ a|T̃ b〉 = 0 , 〈Ta|T̃
b〉 = δa

b . (3)

The matrices Π, Π̃ in (1) and (2) are defined as

Πab = bcaac
b , Π̃ab = b̃caã

c
b , (4)

where the matrices a(g), b(g) are constructed using

g−1Tag = aa
bTb , g−1T̃ ag = babTb + (a−1)b

aT̃ b , (5)

and similarly for ã(g̃) and b̃(g̃). Consistency restricts them to obey

a(g−1) = a−1(g) , bT (g) = b(g−1) , ΠT (g) = −Π(g) , (6)

and similarly for the tilded ones.

3The most general such actions that include spectator extra fields can be found in [3, 13].
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2 The models

2.1 Generalities: algebraic and group-theoretical structure

We start this chapter by first constructing an explicit Drinfeld double and a bilinear

invariant for it, and then computing the matrices a, b, Π as well as their tilded counter-

parts.

Consider the 3-dimensional algebras su(2) and e3, with generators labelled {Ta} and

{T̃a}, respectively (a = 1, 2, 3). For convenience we also split the index a = (i, 3), i = 1, 2.

The commutation relations are given by4

[Ta, Tb] = iεabcTc ,

[T̃3, T̃i] = T̃i , [T̃i, T̃j] = 0 . (7)

The above algebras can be thought of as a pair of maximally isotropic subalgebras of a

6-dimensional algebra corresponding to a Drinfeld double Lie group. The complete set

of commutation relations is given by (7) and the “mixed” ones

[Ti, T̃j ] = iεijT̃3 − δijT3 , [T3, T̃i] = iεijT̃j ,

[T̃3, Ti] = iεijT̃j − Ti . (8)

It can be shown that the combined set of commutation relations in (7) and (8) obey, the

Jacobi identities. Next we construct an invariant product for our 6-dimensional Drinfeld

double algebra, with respect to which the various generators should obey (3). Consider

two elements in the Lie algebra of the form (xi, yi), with i = 1, 2, where xi ∈ su(2) and

yi ∈ e3. Then, the invariant inner product is defined as

〈(x1, y1)|(x2, y2)〉 = {x1, x2} − {y1, y2} , (9)

where {·, ·} is the invariant product for the algebras su(2) and e3. A representation for

the various generators is given by

Ta = (
σa

2
,
σa

2
) , a = 1, 2, 3 ,

T̃1 = (σ+,−σ−) , T̃2 = −i(σ+, σ−) , T̃3 =
1

2
(σ3,−σ3) , (10)

where the σa’s denote the three Pauli matrices and σ± = 1
2
(σ1± iσ2). Then, the product

{·, ·} of any two matrices is equal to their trace. We note that our double is similar to

the O(2, 2) non-compact double used in [14].

Next, we parametrize the SU(2) group element in terms of the three Euler angles φ,

ψ and θ. It is represented by the 4× 4 block-diagonal matrix

gSU(2) = diag(g, g) , (11)

4We note that e3 is not the algebra for the Euclidean group in three dimensions. Also, in the rest of

the paper we will not distinguish between upper and lower Lie-algebra indices.
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where

g = e
i
2
φσ3e

i
2
θσ2e

i
2
ψσ3 =

(
cos θ

2
e
i
2

(φ+ψ) sin θ
2
e
i
2

(φ−ψ)

− sin θ
2
e−

i
2

(φ−ψ) cos θ
2
e−

i
2

(φ+ψ)

)
. (12)

Also the group element of E3 is parametrized in terms of three variables y1, y2 and χ and

represented by the following 4× 4 block-diagonal matrix

g̃E3 = diag(g̃+, g̃−) , (13)

where

g̃+ =

(
e+χ

2 χ+

0 e−
χ
2

)
, g̃− =

(
e−

χ
2 0

χ− e+χ
2

)
,

χ± = ±e−
χ
2 (y1 ∓ iy2) . (14)

The Maurer–Cartan forms are defined as La = −i〈g−1dg|T̃a〉 and L̃a = 〈g̃−1dg̃|Ta〉. Using

the parametrization of the SU(2) group element in (12) we have explicitly

L1 = cosψ sin θdφ− sinψdθ ,

L2 = sinψ sin θdφ+ cosψdθ , (15)

L3 = dψ + cos θdφ .

Similarly, using the parametrization (13) for the E3 group element we find

L̃1 = e−χdy1 , L̃2 = e−χdy2 , L̃3 = dχ . (16)

Also the matrices

(aab) =


cosφ cosψ cos θ − sin φ sinψ cosφ sinψ cos θ + sinφ cosψ − cosφ sin θ

− sinφ cosψ cos θ − cos φ sinψ cosφ cosψ − sin φ sinψ cos θ sinφ sin θ

cosψ sin θ sinψ sin θ cos θ

 ,

(17)

and

(bab) =


a12 + a21 a22 − a11 a23

a22 − a11 −a12 − a21 −a13

a32 −a31 0

 , (18)

as well as

(ãab) =


e−χ 0 0

0 e−χ 0

y1e
−χ y2e

−χ 1

 , (19)

and

(b̃ab) =


−y1y2e

−χ sinhχ+ 1
2
(y2

1 − y
2
2)e−χ −y2

− sinhχ+ 1
2
(y2

1 − y
2
2)e−χ y1y2e

−χ y1

y2e
−χ −y1e

−χ 0

 . (20)
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Then the matrices Π = bTa and Π̃ = b̃T ã can be computed. Since a 3× 3 antisymmetric

tensor has as many independent components as a three-vector, we may represent them

in terms of two vectors ~A and ~̃
A using

Πab = −εabcAc , Π̃ab = −εabcÃc . (21)

In the case at hand we compute

~A = ( cosψ sin θ, sinψ sin θ, cos θ − 1 ) ,

~̃A =
(
y1e
−χ, y2e

−χ, sinhχe−χ −
1

2
(y2

1 + y2
2)e−2χ

)
. (22)

2.2 The classical canonical transformation

Given the underlying algebraic and group theoretical structure, there exists a classical

canonical transformation relating the corresponding σ-model actions [4, 5]. This is uni-

versal and does not depend on the particular choice of the matrix E0 in (1), (2). Moreover

it always has the same form, even when we include spectator fields. For σ-models related

by Poisson–Lie T-duality corresponding to three-dimensional groups it can be shown that

the general canonical transformation, given in [4, 5], takes the form

~P =
1

1− ~A · ~̃A

(
~̃A× ~Lσ + ~̃Lσ − (~̃A · ~̃Lσ) ~A

)
,

~̃P =
1

1− ~A · ~̃A

(
~A× ~̃Lσ + ~Lσ − ( ~A · ~Lσ)~̃A

)
, (23)

where the three-vectors ~P and ~̃
P have components given by Pa = PµL

−1
µa and P̃a =

P̃µL̃
−1
µa, with Pµ, P̃µ being the conjugate momenta to Xµ and X̃µ, respectively. These

transformations can be derived from a generating functional of the form

F =
∮
dσ(Bµ∂σX

µ + B̃µ∂σX̃
µ) , (24)

for some functions Bµ, B̃µ of the target space variables, which are determined by solving

a set of differential equations [5]. For three-dimensional cases these can be cast into the

form

∂[µBν] = −
(

1− ~A · ~̃A
)−1

~̃
A · ~Lµ × ~Lν ,

∂̃[µB̃ν] =
(

1− ~A · ~̃A
)−1

~A · ~̃Lµ ×
~̃Lν , (25)

∂µB̃ν − ∂̃νBµ =
(

1− ~A · ~̃A
)−1 (

~Lµ ·
~̃
Lν − ( ~A · ~Lµ)(~̃A · ~̃Lµ)

)
.

For the specific models at hand it is possible to find the explicit solution to them

Bφ = − ln

(
e2χ cos2 θ

2
+ eχ sin θ(y1 cosψ + y2 sinψ) + (1 + y2

1 + y2
2) sin2 θ

2

)
,
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Bψ = −χ+ 2
y1 cosψ + y2 sinψ√

1 + (y1 sinψ − y2 cosψ)2
cot−1


√

1 + (y1 sinψ − y2 cosψ)2 tan θ
2

eχ + y1 cosψ + y2 sinψ

 ,

Bθ = 0 ,

B̃y1 = +2
sinψ√

1 + (y1 sinψ − y2 cosψ)2
tan−1

y1 cosψ + y2 sinψ + eχ cot θ
2√

1 + (y1 sinψ − y2 cosψ)2

 ,

B̃y2 = −2
cosψ√

1 + (y1 sinψ − y2 cosψ)2
tan−1

y1 cosψ + y2 sinψ + eχ cot θ
2√

1 + (y1 sinψ − y2 cosψ)2

 ,

B̃χ = −φ . (26)

The above generating functional exhibits a generic, for Poisson–Lie T-duality, behaviour

[5]. Namely, it is highly non-linear in the group variables of SU(2) and E3 and therefore

it will receive quantum corrections when the canonical transformation is implemented

in the full Hilbert space along the lines of [15]. Nevertheless, its existence seems to

guarantee the quantum equivalence of the corresponding dually related σ-models, as

noted in footnote 2 and as we will see in section 3.

2.3 Explicit three- and two-dimensional models

Let us consider three-dimensional dual models with no spectators at all and choose

the constant matrix E−1
0 = diag(λ1, λ2, λ3). Then the metric and antisymmetric tensor

corresponding to the action (1) can be written as

ds2 =
1

V

(
AaAb +

λ1λ2λ3

λa
δab

)
LaLb ,

B =
1

V
εabcλcAcLa ∧ Lb , (27)

V ≡ λ1λ2λ3 + λaA
2
a .

We note that since there is no explicit dependence of La and Aa on the Euler angle φ

the background (27) has the corresponding isometry. For the dual model the expressions

for the background metric and antisymmetric tensor are identical to those in (27), with

tilded symbols replacing the untilded ones (also λ̃a = 1/λa). A greater simplification

occurs if two of the constant coefficients are equal, i.e. if λ1 = λ2. It is then easy to see

that there is a second commuting isometry corresponding to the vector field ∂
∂ψ

. Let us

reparametrize the constants λ1 = λ2 and λ3 in terms of two other constants κ and g as

λ1 = λ2 = κ(1 + g)1/2 and λ3 = κ(1 + g)−1/2. Then the metric and the antisymmetric

tensors are given by

ds2 = κ−1(1 + g)−1/2V −1

(
κ2(LaLa + gL3L3) + 4 sin4 θ

2
(dφ− dψ)2

)
,
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B = 2 sin θV −1 dθ ∧

(
(1− 2g(1 + g)−1 sin2 θ

2
)dφ+ dψ

)
, (28)

where

V ≡ κ2 + sin2 θ + 4(1 + g)−1 sin4 θ

2
, (29)

and

LaLa + gL3L3 = (1 + g)dψ2 + (1 + g cos2 θ)dφ2 + dθ2 + 2(1 + g) cos θdψdφ (30)

is the metric for S3 deformed by the bilinear in the current L3. Notice that the an-

tisymmetric tensor is a pure gauge, i.e. dB = 0. Also the dual metric and the dual

antisymmetric tensors are given by

ds̃2 = κ3(1 + g)1/2Ṽ −1
{
e−2χ

(
e−χ(y1dy1 + y2dy2) +

(
sinhχ−

1

2
(y2

1 + y2
2)e−χ

)
dχ
)2

+ κ−2(1 + g)−1dχ2 + κ−2e−2χ(dy2
1 + dy2

2)
}
,

B̃ = 2κ2e−2χṼ −1
{

(1 + g)e−χ
(

sinhχ−
1

2
(y2

1 + y2
2)e−χ

)
dy1 ∧ dy2

+ (y1dy2 − y2dy1) ∧ dχ
}
, (31)

where

Ṽ ≡ 1 + κ2e−2χ

(
y2

1 + y2
2 + (1 + g)

(
sinhχ−

1

2
(y2

1 + y2
2)e−χ

)2
)
. (32)

Notice that if we take the limit κ→∞ and also rescale the overall coupling constant

as λ → λκ−1(1 + g)−1/2, the metric in (28) reduces to the deformed S3 metric in (30).

In addition, we rescale (y1, y2, χ) → 1
κ
(x1, x2, x3). This contracts the group E3 into an

Abelian one. Then, (31) reduces to the expression for the usual non-Abelian dual of (30)

with respect to the left action of SU(2). If on the other hand we rescale as θ → κρ,

φ→ 1
2
(κx3 + 2α), ψ → 1

2
(κx3 − 2α) and λ→ κλ(1 + g)1/2, and if we let then κ→ 0 we

obtain the non-Abelian dual of E3 (effectively this contracts also SU(2) into an Abelian

group). In addition, for both of the limits we just briefly mentioned, the generating

functional (26) reduces to the appropriate one for non-Abelian duality [7, 16].

We may also consider a different limit. Namely we reparametrize κ = 2a−1(1 + g)−1/2

and then let g → −1. This implies that λ1 = λ2 = 2/a are finite in that limit, whereas

λ3 = 2a−1(1 + g)−1 is sent to infinity. We also rescale the overall coupling constant

as λ → λa/2. The resulting models have two-dimensional target spaces as the third

dimension becomes suppressed in that limit. The metric corresponding to (28) becomes

ds2 =
1

1 + a2 sin4 θ
2

(
dθ2 + sin2 θdφ2

)
. (33)

It represents a deformed 2-sphere, as can also be seen by explicitly verifying that the

Euler characteristic χ = 1
4π

∫ √
GR equals 2. The metric corresponding to (31) is given

7



by

ds̃2 =
1/2

r(1 + az)

(
dz2 +

(
dr +

z − ar/2

1 + az
dz

)2
)
, (34)

where we have changed variables as y2
1 + y2

2 = 1
2
ra2 and e2χ = 1 + az. This is a non-

compact manifold. In the limit a→ 0, (33) and (34) reduce to the metric for S2 and its

non-Abelian dual with respect to SU(2) (see third article in ref. [2]).

In order to perform the 1-loop quantum analysis in a unified manner it will be useful

to cast the metrics (33) and (34) into the conformally flat form

ds2 = e−2Φ(dx2 + dy2) , (35)

where the appropriate change of variables and the inverse of the conformal factor are

given for (33) by

x = cosφ cot
θ

2
, y = sin φ cot

θ

2
, (36)

and

e2Φ =
1

4

(
(1 + x2 + y2)2 + a2

)
, (37)

and for (34) by

x =
1

a2

(
(1 + az)1/2 − 2

)
+
(

1

a2
+
r

2

)
(1 + az)−1/2 ,

y =
1

a

(
(1 + az)1/2 − 1

)
, (38)

and

e2Φ = x(1 + ay)− y2 . (39)

The two-dimensional models (33) and (34) correspond to some analytic continuations of

“dressed coset” models in [17].5

3 Renormalization

In this section we investigate the behaviour under the renormalization group of our 2-

dimensional dually related models (35) with conformal factors given by (37) and (39).

For the cases of the usual Abelian and non-Abelian dualities, a similar investigation was

performed for a one-parameter family of deformations of the Principal Chiral model for

SU(2), with metric given in (30), and its non-Abelian dual [7, 18] in [18].

Consider a two-dimensional σ-model with Lagrangian density L = 1
2λ
Q+
µν∂+X

µ∂−X
ν ,

where Q+
µν = Gµν +Bµν . It will be renormalizable if the corresponding counter-terms, at

a given order in a loop expansion, can be absorbed into a renormalization of the coupling

5A comparison of (34) with the corresponding metric (after analytic continuation) in [17] is facilitated

when the latter is also cast into the form (35). The conformal factor is exactly the same as that in (39),

but the necessary coordinate transformation to bring the metric into that form is different than (38).
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constant λ and (or) of some parameters labelled collectively a. In addition, we allow for

general field redefinitions, which are coordinate reparametrizations in the target space.

This definition of renormalizability of σ-models is quiet strict and similar to that for

ordinary field theories. A natural extension of this is to allow for the manifold to vary

with the mass scale and the renormalization group to act in the infinite dimensional space

of all metrics and torsions [19]. Further discussion of this generalized renormalizability

will not be needed for our puproses. Perturbatively in powers of λ we express the bare

quantities, denoted by a zero as a subscript, as

λ0 = µελ

(
1 +

J1(a)

πε
λ+

J2(a)

8π2ε
λ2 · · ·

)
≡ µελ

(
1 +

yλ

ε
+ · · ·

)
,

a0 = a+
a1(a)

πε
λ+

a2(a)

8π2ε
λ2 + · · · ≡ a

(
1 +

ya

ε
+ · · ·

)
, (40)

Xµ
0 = Xµ +

Xµ
1 (X, a)

πε
λ+

Xµ
2 (X, a)

8π2ε
λ2 + · · · .

The ellipses stand for higher-order loop- and pole-terms in λ and ε respectively. Then,

the beta-functions up to two loops are given by βλ = λ2 ∂yλ
∂λ

= λ2

π
(J1 + J2λ/(4π)) and

βa = λa∂ya
∂λ

= λ
π

(a1 + a2λ/(4π)). The equations to be satisfied by appropriately choosing

Ji, ai and Xµ
i , with i = 1, 2, are given by

T (i)
µν = −JiQ

+
µν + ∂aQ

+
µνai + ∂λQ

+
µνX

λ
i +Q+

λν∂µX
λ
i +Q+

µλ∂νX
λ
i , i = 1, 2 , (41)

where the corresponding counter-terms computed in the dimensional regularization

scheme are (see, for instance, [20])

T (1)
µν =

1

2
R−µν , T (2)

µν =
1

4
R−µλρσY

ρσλ
ν ,

Yρσλν ≡ −2R−ρσλν + 3R−[λρσ]ν +
1

2
(H2

λρGσν −H
2
λσGρν) , (42)

with R−µνρλ and R−µν being the “generalized” curvature and Ricci tensors constructed with

connections that include the torsion. In principle we may add a term on the right-hand

side corresponding to a redefinition (gauge transformation) of the antisymmetric tensor

as Bµν → Bµν + ∂[µΛν]. Such a gauge transformation will affect only the antisymmetric

part of (41).

Next we specialize to the case of two-dimensional metrics of the form (35) with (X1 =

z = x + iy, X2 = z̄ = x − iy). If we work out (41) for µ = ν = 1 and µ = ν = 2, we

obtain the conditions ∂z z̄i = 0 and ∂z̄zi = 0 (for i = 1, 2) respectively. Setting µ = 1,

ν = 2 we obtain instead

e2φ∂z∂z̄Φ = −
J1

2
− ∂aΦa1 +

(
1

2
∂z − ∂zΦ

)
z1 +

(
1

2
∂z̄ − ∂z̄Φ

)
z̄1 , (43)

8e4φ(∂z∂z̄Φ)2 = −
J2

2
− ∂aΦa2 +

(
1

2
∂z − ∂zΦ

)
z2 +

(
1

2
∂z̄ − ∂z̄Φ

)
z̄2 . (44)
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For two-dimensional models the antisymmetric tensor is a pure gauge. It has no effect

on (41) since the latter has only a symmetric part. At the 1-loop level, there remains to

compute the constants J1, ε1 and the holomorphic function z1(z). The function z̄1(z̄) is

the complex conjugate of z1(z). For the model (33) we found, using (43), that

J1 = −
1

2
(1 + a2) , a1 =

1

2
a(1 + a2) ,

x1 =
1

4
a2x , y1 =

1

4
a2y , (45)

where z1 = x1 + iy1. The corresponding computation for the model (39) gives

J1 = −
1

2
(1 + a2) , a1 =

1

2
a(1 + a2) ,

x1 =
1

4
−
(

1 +
3

4
a2
)
x−

a

4
y , y1 = −

a

4
+
a

4
x−

(
1 +

3

4
a2
)
y . (46)

Since J1, a1 are the same for both models, we conclude that they have the same 1-loop

beta-functions, which are explicitly given by6

βλ = −
λ2

2π
(1 + a2) , βa =

λ

2π
a(1 + a2) . (47)

Notice that according to this system of equations a runs to infinity and the product λa

remains constant. Hence, under renormalization flow, λ approaches zero. However, in

the ultraviolet the fixed point is not a trivial one. This is easily seen by performing

the scaling of variables x → xa1/2 and y → ya1/2 in (37) and (39), and then taking the

limit a → ∞. We also have to rescale the coupling λ → λ/a, so that the product λa is

kept fixed. In the limit a → ∞ the resulting metrics are well defined and again of the

form (35), with the conformal factors given by e2Φ∞ = 1/4(1 + (x2 + y2)2) (also with the

topology of the 2-sphere) and ε2Φ∞ = xy respectively. Since these do not correspond to

flat metrics, the theories do not become asymptotically free. This is to be contrasted with

the behaviour of βλ for the O(3)-chiral model and its non-Abelian dual that is obtained

from βλ in (47) for a = 0. For these theories the coupling runs to zero in the ultraviolet

and therefore they are asymptotically free. Hence, at the quantum level, a limit under

which Poisson–Lie T-duality reduces to the usual non-Abelian duality does not exist.

We also note that the σ-models corresponding to the geometries with the Φ∞’s above

are no longer renormalizable. This is natural as they correspond to the fixed point at

6We have also checked the renormalizability of the models at the 2-loop level and found that (44)

admits no solution with the exception of the model (33), which becomes renormalizable when a = 0

(with J2 = −1, in agreement with [18]). Hence, the corresponding counter-term cannot be absorbed into

a renormalization of the couplings and of the fields. This presumably implies that the corresponding

Poisson–Lie T-duality transformation rules need to be corrected order by order in perturbation theory as

it is the case for ordinary T-dualities [21, 18]. Such a conclusion is also supported by the expectation that

the non-linear generating functional (26) will receive quantum corrections [15]. This implies that the

induced canonical transformation, hence the Poisson–Lie T-duality rules, will be accordingly corrected.
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the ultraviolet of the geometries corresponding to the Φ’s, but it can also be checked

independently by seeing that there are no J1, a1 and z1 that solve (43).

We have mentioned that the Drinfeld double we have considered, in the limit of

SU(2) contracting into an Abelian group, will be appropriate for σ-models related by

non-Abelian duality with respect to the E3 group. As was shown in [22], such models

are problematic as far as conformal invariance is concerned, since the algebra structure

constants are not traceless. This is not in conflict with our result that for a particular

“non-conformal” example the 1-loop beta-functions are equivalent. As we have seen,

taking singular limits does not always produce quantum mechanically the expected result

from classical considerations.7 Contraction of SU(2) into an Abelian group is certainly

such a limit. This issue does deserve further investigation.

There are several directions in which the present work can be extended. One should

further investigate the conditions (41) in full generality and classify all σ-models related

by Poisson–Lie T-duality that have equivalent beta-functions, as in the example we have

considered. An important question is whether or not the limit of Poisson–Lie T-duality

to non-Abelian duality, i.e. when one of the groups becomes Abelian, exists quantum

mechanically. Our present investigation suggests that this is not always the case, but one

would like to know to what extent this is a general statement and not a model-dependent

one. Finally, the construction of conformal σ-models related by genuine Poisson–Lie T-

duality is an important open problem since it is of direct relevance to string theory. An

important step towards this will be the complete classification of all Drinfeld doubles.
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Note added

1. The comments of this paragraph follow a discussion with J. Iliopoulos.

The fact that the renormalization group flow drives the σ-model (33) (and also (34))

away from the point a = 0 is quite similar to phenomena discussed some years ago in the

context of usual four dimensional field theories, in searching for the origin of symmetries

in Nature (see [25] and refs. therein). In some of these examples, enhanced symmetry

points in the space of couplings and parameters acted as infrared repulsors due to the fact

that the theories corresponding to the enhanced symmetry points were asymptotically

7Nevertheless, this was the case with the singular limits considered in [23, 9]. In these cases one

starts with exact string solutions and, after the limit is taken, one obtains plane wave (among other)

exact solutions to string theory as well. Hence, in these examples conformal invariance was already an

input before any limits were taken.
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free. In our case the enhanced symmetry point, with an SU(2) symmetry group, is at

a = 0 and the corresponding σ-model for the S2 metric is indeed asymptotically free.

2. The referee suggested that the reason that the σ-models (33) and (34) are not

2-loop renormalizable, in the strict field theoretical sense, might be due to the fact that

we have not allowed for the most general renormalization of constants possible. Indeed,

there is a more general class of 2-dimensional σ-models that are related by Poisson–Lie

T-duality (see also [17]). They can be obtained by taking a non-diagonal matrix E0 in

(1) and (2). For our purposes it is enough to concentrate on the generalization of (33),

which reads

ds2 =
1

1 + a2(b− sin2 θ
2
)2

(
dθ2 + sin2 θdφ2

)
,

where a, b are constants. It is easy to check that this is the most general form preserving

the isometry corresponding to shifts of φ and also keeping e2Φ a quadratic in zz̄ polyno-

mial, when the metric is written in the form (35) after using (36). It is a lengthly, but

straightforward, calculation to verify that the condition for a 2-loop renormalizability

(44) is not satisfied for any choice of a2, b2, J2 and z2, z̄2.

Hence, the only reasonable conclusion is that the Poisson–Lie T-duality transforma-

tions have to be modified to this order. This is in agreement with the general arguments

presented in footnote 6.

References

[1] K. Kikkawa and M. Yamasaki, Phys. Lett. B149 (1984) 357; N. Sakai and I. Senda,

Prog. Theor. Phys. 75 (1986) 692; T. Buscher, Phys. Lett. B194 (1987) 59 and

B201 (1988) 466.

[2] B.E. Fridling and A. Jevicki, Phys. Lett. B134 (1984) 70; E.S. Fradkin and

A.A. Tseytlin, Ann. Phys. 162 (1985) 31; X. C. de la Ossa and F. Quevedo, Nucl.

Phys. B403 (1993) 377, hep-th/9305055.

[3] C. Klimcik and P. Severa, Phys. Lett. B351 (1995) 455, hep-th/9502122; C. Klimcik,

Nucl. Phys. (Proc. Suppl.) B46 (1996) 116, hep-th/9509095.

[4] K. Sfetsos, Nucl. Phys. (Proc. Suppl.) 56B (1997) 302, hep-th/9611199.

[5] K. Sfetsos, Nucl. Phys. B517 (1998) 549, hep-th/9710163.

[6] A. Giveon, E. Rabinovici and G. Veneziano, Nucl. Phys. B322 (1989) 167; E.
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