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Abstract

Cosmological perturbation equations derived from low-energy effective ac-

tions are shown to be invariant under a duality transformation reminiscent

of electric-magnetic, strong-weak coupling, S-duality. A manifestly duality-

invariant approximation for perturbations far outside the horizon is intro-

duced, and it is argued to be useful even during a high curvature epoch.

Duality manifests itself through a remnant symmetry acting on the classical

moduli of cosmological models, and implying lower bounds on the number

and energy density of produced particles.
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I. INTRODUCTION

In inflationary cosmology [1] the Universe quickly becomes homogeneous, isotropic, and

spatially flat, but quantum mechanics superimposes on the smooth classical backgrounds

calculable inhomogeneity perturbations [2]. It is the purpose of this paper to point out

a general duality symmetry obeyed by the lowest-order equations for these perturbations,

and to show that duality may be used to obtain lower bounds on the energy density of the

produced particles.

Our analysis applies to any physical perturbation Ψ that is described, to lowest order in

the strength of the perturbation and in its derivatives, by the following quadratic action

I =
1

2

∫
dη d3x S(η)

[
Ψ′2 − (∇Ψ)2

]
. (1.1)

In eq. (1.1), which is generic in low-energy spatially flat backgrounds, η is the conformal time

coordinate, and a prime denotes ∂/∂η. The function S(η), sometimes called the “pump”

field, is, for any given Ψ, a known function of the scale factor, a(η), and of additional scalar

fields (such as a dilaton φ(η), moduli bi(η), etc.) on which the background may depend.

The duality symmetry, which, to the best of our knowledge, has not been noticed before in

the context of cosmological perturbation theory, involves the interchange of the perturbation

Ψ with its conjugate momentum Π, as well as the inversion of the pump field S. In some

cases it corresponds to a time-dependent version of T -duality, interchanging small and large

scale factors [3,4]; in others it corresponds to a time-dependent version of S-duality [5,6],

interchanging weak and strong coupling and electric and magnetic degrees of freedom; in

most cases it amounts to a time-dependent mixture of both. As in other applications, duality

turns out to be a powerful tool for obtaining results that are hard to obtain otherwise.

Although most of our discussion will be completely general, it may be useful to recall that,

in the context of string cosmology, the massless perturbation Ψ may represent a physical

polarization of tensor metric perturbations (i.e. a gravity wave), physical electromagnetic

perturbations (i.e. photons), axionic perturbations, and so on. In these three cases the pump
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field S corresponds, respectively, to the Einstein-frame scale factor [7,8], given in terms of the

dilaton as S = a2e−φ, to the inverse string coupling [9] S = e−φ, and to the “axion-frame”

scale factor [10] S = a2eφ. Here, and in what follows, a is the scale factor of the so-called

string-frame metric, which coincides with the usual scale factor of general relativity whenever

the dilaton is constant. For a generic string cosmology perturbation S(η) = a2melφb2mi
i ,

where the numbers l,m,mi depend on the type of perturbation. Arguably, the action (1.1)

provides a useful description for a much wider class of perturbations.

II. DUALITY

In order to discuss the duality symmetry of the action (1.1), it is convenient to use the

Hamiltonian formalism. The Hamiltonian corresponding to (1.1) is given by

H =
1

2

∫
d3x

[
S−1Π2 + S(∇Ψ)2

]
, (2.1)

where Π is the momentum conjugate to Ψ. The first-order Hamilton equations read

Ψ′ =
δH

δΠ
= S−1Π , Π′ = −

δH

δΨ
= S∇2Ψ , (2.2)

and lead to the decoupled second-order equations

Ψ′′ +
S ′

S
Ψ′ −∇2Ψ = 0 , Π′′ −

S ′

S
Π′ −∇2Π = 0 , (2.3)

of which only the first is commonly used in the study of perturbations. In Fourier space the

Hamiltonian (2.1) is given by

H =
1

2

∑
~k

(
S−1Π~kΠ−~k + Sk2Ψ~kΨ−~k

)
, (2.4)

where Ψ−~k = Ψ∗~k and Π−~k = Π∗~k. The equations of motion become

Ψ′~k = S−1Π−~k , Π′~k = −Sk2Ψ−~k , (2.5)

where k = |~k|. The transformation
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Π~k → Π̃~k = kΨ~k , Ψ~k → Ψ̃~k = −k−1Π~k , S → S̃ = S−1, (2.6)

leaves the Hamiltonian, Poisson brackets, and equations of motion unchanged.

We shall call this transformation, for short, S-duality since it contains the usual strong-

weak coupling duality as a special case. Indeed, by perturbing the tree-level, lowest-

derivative string effective action, one finds that, for heterotic, four-dimensional gauge bosons,

the function S is given simply by [9] S(η) = e−φ(η). Since eφ determines the effective string

coupling constant, eφ = g2
string, the transformation S → S̃ = S−1 amounts to performing,

at each time η, a strong-weak coupling transformation gstring → g−1
string, which is part of the

SL(2, Z) S-duality group [5]. Moreover, in the case of electromagnetic perturbations, the

contribution of kΨk to the Hamiltonian can be identified with that of the magnetic field,

whereas Π is proportional to the electric field, hence, in this case, the transformation (2.6)

exactly coincides with electric-magnetic duality.

We are interested in a situation where the time evolution of the pump field amplifies the

zero-point vacuum fluctuations of the field Ψ, satisfying the initial conditions

〈S−1Π2〉 = 〈S(∇Ψ)2〉, (2.7)

where 〈· · ·〉 denotes ensemble average, or expectation value if perturbations are quantized.

Under S-duality the equations of motion are form-invariant, while the initial conditions are

invariant on the average in the sense of eq. (2.7). Therefore, under S-duality, solutions of

the perturbation equations properly normalized to zero-point fluctuations, are mapped into

other normalized solutions with the same total Hamiltonian. We will show that, as a con-

sequence of this property, the energy spectrum can be consistently estimated by truncating

the solutions outside the horizon to the frozen modes of Ψ and Π.

This may be regarded as trivial, if one has in mind a background where the non-frozen

part of Ψ quickly decays outside the horizon, as in the standard inflationary scenario [2].

There are backgrounds, however, in which Ψ grows in time instead of decaying, and the

growing mode of Ψ dominates the perturbation spectrum. Typical examples can be found

in scalar-tensor models of gravity and, in particular, in string cosmology [11]. In this context,
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the possibility of a consistent truncation to the frozen part of the perturbations is a powerful

result. Only in a duality-invariant approach is such a truncation consistent, since, as shown

below, the contribution to the Hamiltonian of the growing mode of Ψ is simply replaced by

the contribution of the frozen part of its duality-related conjugate momentum.

III. APPROXIMATE SOLUTIONS INSIDE AND OUTSIDE THE HORIZON

In order to solve the perturbation equations, and to normalize the spectrum, it is con-

venient to introduce the canonical variables Ψ̂, Π̂, whose Fourier modes are defined by

Ψ̂k = S1/2 Ψk , Π̂k = S−1/2 Πk , (3.1)

so that the Hamiltonian density takes the canonical form

H =
1

2

∑
~k

(
|Π̂k|

2 + k2|Ψ̂k|
2
)
. (3.2)

Under S-duality these canonical variables transform as the original variables. They satisfy

Schrödinger-like equations:

Ψ̂k
′′ +

[
k2 − (S1/2)′′S−1/2

]
Ψ̂k = 0 , Π̂k

′′ +
[
k2 − (S−1/2)′′S1/2

]
Π̂k = 0. (3.3)

The amplification of perturbations is typically associated with a transition from an infla-

tionary phase in which the pump field is accelerated (in cosmic time), to a post-inflationary

phase in which the pump field is decelerated or constant. In such a class of backgrounds,

the “effective potentials” VΨ = (S1/2)′′S−1/2, VΠ = (S−1/2)′′S1/2, grow (in absolute value)

during the phase of accelerated evolution, and decrease in the post-inflationary, decelerated

epoch, vanishing asymptotically for very early times η → −∞ and vanishing again for very

late times η → +∞.

The initial evolution of perturbations, for all modes with k2 > |VΨ|, |VΠ|, may be de-

scribed by the WKB-like approximate solutions of eqs. (3.3)

Ψ̂k(η) =
(
k2 − VΨ

)−1/4
e
−i

η∫
η0

dη′(k2−VΨ)
1/2

,

Π̂k(η) = k
(
k2 − VΠ

)−1/4
e
−i

η∫
η0

dη′(k2−VΠ)
1/2

, (3.4)
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which we have normalized to a vacuum fluctuation, and where the extra factor of k in the

solution for Π̂k comes from consistency with the first-order equations (2.5). We have ignored

a possible relative phase in the solutions. Solutions (3.4) manifestly preserve the S-duality

symmetry of the equations, since the potentials VΨ, VΠ get interchanged under S → S−1.

In the case of power-law evolution of the pump field, S1/2 ∼ ηα, the effective potentials

grow like η−2 as η → 0, and the approximate solutions (3.4) are valid, at a given time η,

for all modes k with (kη)2 > 1. These modes are usually referred to as being “inside the

horizon”. The corrections to solutions (3.4) are of order V ′Ψ
2/(k2 − VΨ)

3
, VΨ

′′/(k2 − VΨ)
2

and higher, which are indeed small for large (kη)2. Asymptotically, at η → −∞, we have

VΨ, VΠ → 0 and solutions (3.4) reduce to correctly normalized vacuum fluctuations

Ψ̂k(η) = k−1/2 e −ikη+iϕ~k , Π̂k(η) = k+1/2 e
−ikη+iϕ′

~k , (3.5)

where ϕ~k, ϕ
′
~k

are random phases, originating from the random initial conditions. Note that

because of the random phases, S-duality holds only on the average in the sense of eq. (2.7).

For k2 < |VΨ|, |VΠ|, equivalently (kη)2 < 1 if S1/2 ∼ ηα, the modes are usually referred

to as being “outside the horizon”. For such modes, it is possible to write “exact” solutions

to eq. (3.3) as follows,

Ψ̂k(η) = S1/2

[
Âk T cos(S−1, S) + B̂k T sin(S−1, S)

]
,

Π̂k(η) = kS−1/2

[
B̂k T cos(S, S−1)− Âk T sin(S, S−1)

]
, (3.6)

where Âk, B̂k are arbitrary integration constants, and the functions T cos(S−1, S; k, η),

T sin(S−1, S; k, η) are defined through the following expansions:

T cos(S−1, S; k, η) = 1− k

η∫
ηex

dη1S
−1(η1) k

η1∫
ηex

dη2S(η2)

+ k

η∫
ηex

dη1S
−1(η1) k

η1∫
ηex

dη2S(η2) k

η2∫
ηex

dη3S
−1(η3) k

η3∫
ηex

dη4S(η4) + · · · ;

T sin(S−1, S; k, η) = k

η∫
ηex

dη1S
−1(η1)− k

η∫
ηex

dη1S
−1(η1) k

η1∫
ηex

dη2S(η2) k

η2∫
ηex

dη3S
−1(η3)

+ · · · . (3.7)
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The time ηex, appearing as an arbitrary lower limit of integration in (3.7), is most conve-

niently chosen to be near horizon-exit time, i.e. such that kηex ∼ 1. The above functions

satisfy

[
T cos(S−1, S)

]′
= −

k

S
T sin(S, S−1) ,

[
T sin(S−1, S)

]′
=
k

S
T cos(S, S−1). (3.8)

Using these relations, and similar ones for [T cos(S, S−1)]
′
and [T sin(S, S−1)]

′
, it is possible

to verify explicitly that (3.6) are indeed solutions of eqs. (3.3). Formally, these solutions

are also valid inside the horizon, but the power series defining T cos, T sin are not convergent

there. Solutions (3.6) manifestly preserve S-duality, which now acts on the parameters of

the solutions in the following simple way:

Âk → −B̂k , B̂k → Âk , S → S−1 . (3.9)

We now fix the integration constants by matching solutions (3.4) and (3.6) and their first

derivatives at horizon-exit time, for which kηex ∼ 1. The result (written for the variables

without the hats) is simply

Ψk(η) =
(
k2 − V ex

Ψ

)−1/4
[
S−1/2
ex T cos(S−1, S)eiϕ~k + S1/2

ex T sin(S−1, S) e iϕ′
~k

]
,

Πk(η) = k
(
k2 − V ex

Π

)−1/4
[
S1/2
ex T cos(S, S−1)eiϕ

′
~k − S−1/2

ex T sin(S, S−1)eiϕ~k

]
, (3.10)

where ϕ~k and ϕ′~k now contain an additional phase depending on the exit time ηex, and a

label ex means evaluation at η = ηex. The above matching respects S-duality on the average,

in the sense of eq. (2.7).

IV. ENERGY SPECTRA

To complete a calculation of the energy spectrum of the amplified perturbations we need

to perform a second matching step, to late-time solutions after horizon re-entry in the decel-

erated, post-inflationary era. However, if we are only interested in the leading contribution

to the final energy spectrum, we can estimate it by using the well-known phenomenon of
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freezing of perturbations. Solutions (3.10) always contain a time-independent part coming

from the first term of the T cos expansion (3.7), and always either the constant part of Ψ or

the constant part of Π dominates the Hamiltonian in the large wavelength limit |kη| � 1.

In order to illustrate this important point, we parametrize the background during the

phase of accelerated evolution with a power-like behaviour of the pumping field, S1/2 ∼ |η|α

for η < 0, η → 0−. From the general solution (3.6) we obtain, in the limit |kη| � 1,

Ψ̂k = Âk|η|
α +

k|η|

1− 2α
B̂k|η|

−α, Π̂k = k

(
B̂k|η|

−α −
k|η|

1 + 2α
Âk|η|

α

)
, (4.1)

with logarithmic corrections for α = ±1/2. Computing the Hamiltonian density (3.2) we

obtain, for |kη| � 1,

H =
1

2

∑
~k

k2

{
|Âk|

2|η|2α
[
1 +O(|kη|2)

]
+ |B̂k|

2|η|−2α
[
1 +O(|kη|2)

]
+O

(
|Âk||B̂k||kη|

)}

'
1

2

∑
~k

k2

{
|Âk|

2|η|2α + |B̂k|
2|η|−2α

}
. (4.2)

Thus, irrespectively of the value and sign of α, the joint contribution of the constant modes

Ψk ∼ Âk and Πk ∼ kB̂k always provides an accurate estimate of the leading contribution to

the Hamiltonian for super-horizon wavelengths. Which of the two constant modes in (4.2)

gives the dominant contribution varies from case to case. Also, it is not always true that

the subleading constant mode provides the leading correction.

The above statements can be explicitly checked when the pump field S is given by a power

of η with different powers in the different cosmological epochs. In this case, the joining of

solutions at the transition times can be done analytically, exact formulae for the Bogoliubov

coefficients can be given, and their duality can be directly checked [12]. An important

point [12] is that, for backgrounds with discontinuous derivatives at the transitions, exact

duality is satisfied only if continuity is imposed on the original perturbation (and on its first

derivative) and not on the rescaled fields Ψ̂, Π̂.

Up to numerical factors, the contributions of V ex
Ψ , V ex

Π in (3.10) can be neglected, and one

can thus approximate the normalized vacuum fluctuations outside the horizon by truncating

to 1 the T cos expansion and to 0 the T sin expansion,
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Ψk(η) = (kSex)
−1/2

eiϕ~k , Πk(η) = (kSex)
1/2
e
iϕ′
~k . (4.3)

This truncation reflects just a remnant of S-duality, the transformation Sex → S−1
ex . It is

adequate for an approximate computation of the energy spectrum after re-entry.

At late times η → +∞, when VΨ, VΠ → 0 in the post-inflationary phase, the perturbation

modes with kη � 1 oscillate freely inside the horizon, according to the equations

Ψ̂k
′′ + k2Ψ̂k = 0 , Π̂k

′′ + k2Π̂k = 0, (4.4)

with plane-wave solutions

Ψ̂k =
1
√
k

(
Cke

−ikη +Dke
ikη
)
,

Π̂k = Ψ̂′k −
S ′

2S
Ψ̂k ' Ψ̂′k = i

√
k
(
−Cke

−ikη +Dke
ikη
)
. (4.5)

The matching of these solutions to the approximate solutions (4.3), performed at η = ηre ∼

k−1, imposes the conditions

Ψ̂k(ηre) =
1
√
k

(
Sex
Sre

)−1/2

eiϕ~k , Ψ̂′k(ηre) =
√
k

(
Sex
Sre

)1/2

e
iϕ′
~k , (4.6)

from which we obtain Ck, Dk. The final amplified vacuum fluctuation amplitude, in the

regime kη � 1, is thus given by

Ψ̂k(η) =
1
√
k

[(
Sex
Sre

)−1/2

cos(kη) eiϕ~k +
(
Sex
Sre

)1/2

sin(kη) eiϕ
′
~k

]
,

Π̂k(η) =
√
k

[(
Sex
Sre

)1/2

cos(kη) eiϕ
′
~k −

(
Sex
Sre

)−1/2

sin(kη) eiϕ~k

]
(4.7)

(we have absorbed into ϕk and ϕ′k an additional phase factor kηre, arising from the matching).

The corresponding averaged Hamiltonian density, for a mode k,

〈Hk〉 =
1

2

(
〈|Π̂k|

2〉+ k2〈|Ψ̂k|
2〉
)

= k

(
Sex
Sre

+
Sre
Sex

)
, (4.8)

is invariant under Sex → S−1
ex , Sre → S−1

re , and also under an overall rescaling of S. The

same invariances thus characterize the spectral energy distribution, dρk/d ln k = (k3/a4)〈Hk〉,

which can be written in terms of the proper energy ω = k/a as
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dρ(ω)

d lnω
= ω4

[
Sex(ω)

Sre(ω)
+
Sre(ω)

Sex(ω)

]
' ω4 Max

{
Sex
Sre

,
Sre
Sex

}
. (4.9)

The approximate expression (4.9) reproduces, up to numerical factors O(1), the leading

contribution to all known particle spectra for various models of cosmological evolution.

Consider, for instance, graviton production in a transition at η = η∗ from de Sitter inflation

to radiation, at constant dilaton. In that case S = a2, Sex/S∗ = (kη∗)
2 = (k/k∗)

2 and

S∗/Sre = (k/k∗)
2, where k∗ = η−1

∗ is the maximal amplified frequency. Therefore Sre/Sex =

(k∗/k)
4. For all modes ω < ω∗, where ω∗ = k∗/a, Max{Sex/Sre, Sre/Sex} = Sre/Sex =

(ω∗/ω)4, and we recover the well-known flat Harrison-Zeldovich spectrum [2], dρ/d lnω ' ω4
∗.

If, instead, we consider the transition from a phase of dilaton-driven inflation to radi-

ation, typical of string cosmology, we can recover from (4.9) the leading contribution to

known spectra for photons [9], gravitons [8] and axions [10,13,12]. For heterotic photons, in

particular, and more generally for gauge bosons coming from extra dimensions, S(η) = e−φ(η)

coincides with the real part of the usual S-field of string theory, and the leading contribu-

tion to the energy spectrum (4.9) is the same for two cosmologies that arrive at the same

final S from above (weak coupling) or from below (strong coupling). In the two cases the

energy is predominantly stored in the electric and in the magnetic field, respectively. From

the approximate expression (4.9) we can also recover the leading contribution to the energy

spectrum for more general classes of backgrounds and types of perturbations [13,12].

V. LOWER BOUNDS ON ENERGY SPECTRA

Since the approximate expression for the energy spectra, eq. (4.9), contains, as a direct

result of the remnant duality symmetry, a factor of the form x+ x−1, an interesting conse-

quence of the remnant duality symmetry is the existence of a uniform and model-independent

lower bound for the energy spectrum:

dρ

d lnω
>∼ ω4, (5.1)
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valid for all models of backgrounds and all types of perturbations: it represents the minimal

spectrum corresponding to the production of one particle per mode, per polarization and

per unit phase-space volume [14]. For some particular model of background, and for a given

type of perturbation, eq. (4.9) can provide a less trivial lower bound, corresponding to a

“minimal” spectrum flatter than ω4. In such cases the frequency dependence of the lower

bound is, in general, model-dependent.

Consider, in particular, the amplification of tensor perturbations in a string cosmology

background in which the initial dilaton-driven phase, with S ∼ η, is followed at η = ηs by a

high-curvature string phase, with final transition to the radiation-dominated era at η = η1.

During the string phase, a total redshift zs = |a1/as| > 1 is accumulated, the curvature is

approximately constant, and the dilaton grows by the ratio exp(φ1 − φs)/2 = g1/gs > 1.

Equation (4.9) gives, in that case:

dρ

d lnω
' ω4Max

{
ω1

ω

(
gs

g1

)2

z3
s ,
ω

ω1

(
g1

gs

)2

z−3
s

}
, ω < ωs ≡ ω1/zs. (5.2)

The assumption that the pump field keeps growing during the string phase, zsgs/g1 > 1,

then leads to the well-known cubic (n = 4) graviton spectrum [8], whose lower bound,

dρ

d lnω
>∼ ω4

1

(
gs
g1

)2 (
ω

ωs

)3

, (5.3)

is more constraining than eq. (5.1). The “minimal” spectrum is dρ/d lnω = ω1ω
3 and

corresponds to the limiting case in which gs → g1 and zs → 1, namely to a model with almost

no intermediate string phase. Note that, for gravitons, the largest subleading contribution is

not given by the second term in the bracket in eq. (5.2) [8,13] but, instead, can be extracted

by carefully matching solutions at η = η1. When this is done, the more stringent bound can

be seen as a consequence of a remnant symmetry acting on both zs and gs/g1.

An important point is that the duality-symmetric form (4.9) of the spectrum, which

provides an accurate order-of-magnitude estimate for the energy spectra produced from per-

turbations whose action is given by (1.1), can also provide a lower bound on the total energy

density of long-wavelength perturbations, even when the background evolution includes a
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high-curvature phase in which the action and perturbation equations are not known. The

argument goes as follows.

The result (4.9) was obtained by approximating the evolution of Ψ and Π by their

constant modes outside the horizon. The approximation was motivated by the explicit

solution of the perturbation equations. When the background enters a high-curvature phase,

which requires a corrected effective action for an accurate description, the exact form of the

perturbation equations and their solutions are not always known, or in any case difficult to

obtain in practice. We expect that, for any type of action, the perturbation equations should

always admit constant solutions whenever spatial gradients are negligible with respect to

time derivatives, in agreement with the general physical principle of freezing of perturbations

outside the horizon.

For metric perturbations, a formal argument can be given to justify our conjecture. Since

the action is invariant under gauge (i.e. coordinate) transformations, a particular set of al-

lowed perturbations are infinitesimal gauge transforms of the background itself. Of course,

these are spurious perturbations without any physical content. It is possible, however, to

construct physical, large-wavelength perturbations, which approach the infinitesimal gauge

transformations in the infinite-wavelength limit. By continuity, these large-wavelength grav-

itational waves are approximate solutions of the perturbation equations. The amount by

which they deviate from exact solutions away from the limit is controlled by the only di-

mensionless parameter present, i.e. by kη. We may thus conclude that, at least for metric

perturbations, the constant mode in Ψ is always present for perturbations sufficiently outside

the horizon. Canonical Poisson brackets then require that the same be true for Π. Although

we cannot exclude that other modes in Ψ and Π will dominate over the constant modes,

assuming that this does not happen will provide a lower bound on the amplified spectra in

the presence of a high-curvature phase.

For tensor perturbations, this argument has been confirmed within an explicit string

theory model of quadratic curvature corrections [15]. The results of a numerical integration

show that Ψ becomes frozen outside the horizon even after including the higher-curvature

12



terms in the perturbation equations. The final normalized amplitude is larger, by a numerical

factor, than the estimate (4.3), so that the spectrum (4.9) indeed represents a lower bound

for the total energy density.

VI. CONCLUSION

We have shown that the equations of cosmological perturbation theory, to lowest order in

the strength of perturbations and in their derivatives, are invariant under a duality transfor-

mation acting on the classical moduli of the background and interchanging the perturbation

with its conjugate momentum. As a consequence of this invariance, the large-wavelength

part of the Hamiltonian is always dominated by the sum of the contributions of the frozen

modes of the perturbation and of its conjugate momentum.

The energy spectrum obtained by truncating the solutions of the perturbation equa-

tions to the constant modes is characterized by a residual duality symmetry; it reproduces

known results of produced particle spectra and can provide a useful lower bound on parti-

cle production, when our knowledge of the detailed dynamical history of the background is

approximate or incomplete.
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